Definite quaternion algebras and triple-product *L*-functions

MATTHEW GREENBERG UNIVERSITY OF CALGARY

SAGE DAYS 36 UCSD, 21 FEBRUARY, 2012

Objective

The formulas of Gross-Kudla, Böcherer–Schulze-Pillot, Watson and Ichino express central critical values of triple-product L-functions $L(\pi_1 \times \pi_2 \times \pi_3, \frac{1}{2})$ in terms of values of trilinear forms

$$\ell: V_{\pi_1} \otimes V_{\pi_2} \otimes V_{\pi_3} \longrightarrow \mathbb{C}$$

on specific test vectors.

I will discuss joint work with Marco Seveso in which we show that, in the definite case, **the trilinear forms themselves can be constructed in** *p***-adic families**, implying the existence of corresponding 3-variable *p*-adic *L*-functions.

Outline

- Introduction: Special values and arithmetic
 - why? examples
 - families of L-functions and families of special values
 - p-adic variation
- 2 Automorphic forms and *L*-functions
 - elliptic modular forms
 - L-functions
 - p-adic families of modular forms
 - automorphic forms on quaternion algebras
- Special value formulas
 - formulas of Gross, Gross-Kudla
 - higher weight analogues
 - p-adic variation
 - a theorem

1. Special values and arithmetic

Special values of *L*-functions encode arithmetic invariants.

Prototypical example: K number field, $\mathcal{O} \subset K$ ring of integers

$$\zeta_{\kappa}(s) = \sum_{I \subset \mathcal{O}} N(I)^{-s} = \sum_{n=1}^{\infty} r_n n^{-s}, \quad \Re(s) > 1,$$

where $N(I) = |\mathcal{O}/I|$, $r_n = \#$ of ideals of \mathcal{O} of norm n

Theorem: $\zeta_K(s)$ admits analytic continuation to $\mathbb{C}-\{1\}$. Moreover,

$$\lim_{s\to 1}(s-1)\zeta_K(s)=\frac{2^{r_1}(2\pi)^{r_2}h_KR_K}{w_K\sqrt{|d_K|}}.$$

Quadratic fields and their discriminants

$$m$$
 squarefree, $K=\mathbb{Q}(\sqrt{m})$: $d_K=egin{cases} m & ext{if } m\equiv 1 \pmod 4 \ 4m & ext{otherwise}. \end{cases}$

 \blacksquare d_K characterizes K:

$$d \in \mathcal{D} := \{d_K : K \text{ quadratic}\}: \quad K_d = \mathbb{Q}(\sqrt{d}) \text{ has disc. } d$$

■ $d \in \mathcal{D} \leadsto \mathsf{Kronecker}$ character:

$$\chi_d: (\mathbb{Z}/d\mathbb{Z})^{\times} \to \{\pm 1\}, \quad \chi_d(x) = \left(\frac{d}{x}\right)$$

■ Dirichlet *L*-function:

$$L(\chi_d, s) = \sum_{(n,d)=1} \chi_d(n) n^{-s}, \quad \Re(s) > 1$$

Quadratic class number formula

$$K = K_d: \quad \zeta_K(s) = \zeta(s)L(\chi_d,s)$$
 Since $\operatorname{res}_{s=1}\zeta(s) = 1$,
$$L(\chi_d,1) = \begin{cases} \frac{h_d \log |u_d|}{\sqrt{d}} & \text{if } d > 0, \\ \\ \frac{\pi h_d}{\sqrt{-d}} & \text{if } d < -4, \end{cases}$$
 where
$$\mathcal{O}_d^\times/\{\pm 1\} = \langle u_d \rangle,$$

$$\operatorname{Cl}_d = \{0 \neq I \subset \mathcal{O}_d\}/\sim, \quad I \sim J \Leftrightarrow aI = bJ, \ a,b \in \mathcal{O}_d, \ ab \neq 0$$
 Class number:
$$h_d := |\operatorname{Cl}_d| < \infty.$$

Using the formula

$$h_d = L(\chi_d, 1) \frac{\sqrt{-d}}{2\pi},$$

the special values at s=1 of the <u>family of L-functions</u> $\{L(\chi_d,1):d\in\mathcal{D}^-\}$ can be used to study the behaviour of h_d as $d\to\infty$.

Theorem: (Siegel, 1935) For every $\epsilon > 0$, there is a $C_{\epsilon} > 0$ such that

$$h_d > C_{\epsilon} d^{1/2-\epsilon} \quad \forall d \in \mathcal{D}^-.$$

Theorem: (Goldfeld, 1976; Gross-Zagier, 1983) For every $\epsilon > 0$, there is an effectively computable constant $C_{\epsilon} > 0$ such that

$$h_d > C_{\epsilon}(\log |d|)^{1-\epsilon} \quad \forall d \in \mathcal{D}^-.$$

Another interesting family

Consider the (nonunitary) character

$$\rho_{2k}:I_{\mathbb{Q}}\longrightarrow\mathbb{C}^{\times},\quad \rho_{2k}(n)=n^{2k}.$$

$$L(\rho_{2k},s) = \sum_{n=1}^{\infty} n^{2k} n^{-s} = \sum_{n=1}^{\infty} n^{-(s-2k)} = \zeta(s-2k)$$

Consider the special values at s=1 of L-functions in the family $\{L(\rho_{2k},s): k>0\}$:

Theorem: (Euler)
$$L(\rho_{2k},1) = -\frac{B_{2k}}{2k} \in \mathbb{Q}.$$

The values at s=1 of this family of L-functions display p-adic continuity in the "variable" $\rho_{2k}...$

Kummer's congruences:

$$2k \equiv 2\ell \pmod{(p-1)p^{n-1}} \Longrightarrow$$

$$(1-p^{-(1-2k)})rac{B_{2k}}{2k} \equiv (1-p^{-(1-2\ell)})rac{B_{2\ell}}{2\ell} \pmod{p^n}$$

or, written differently,

$$|L^*(\rho_{2k},1)-L^*(\rho_{2\ell},1)|_p \leq p^{-n},$$

where

$$L^*(\rho_{2k},s) = (1-\rho_{2k}(p)p^{-s})L(\rho_{2k},s).$$

Theorem: (Kubota-Leopoldt, 1964) There is a continuous function

$$\zeta_p: \mathbb{Z}_p \times 2\mathbb{Z}/(p-1)\mathbb{Z} \longrightarrow \mathbb{Z}_p$$

extending the mapping

$$2k \mapsto L^*(\rho_{2k}, 1) \quad \forall k \in \mathbb{Z}.$$

Choose an embeddings $\bar{\mathbb{Q}} \subset \mathbb{C}$ and $\bar{\mathbb{Q}} \subset \bar{\mathbb{Q}}_p$.

Let Φ be a collection of objects to which we can attach *L*-functions.

The philosophy of p-adic variation

Suppose that

- Φ has a p-adic analytic structure it's a "p-adic family"
- we can make sense of $L(\varphi, s_0)$ as an algebraic number for all $\varphi \in \Phi$.

Then we should investigate the p-adic properties of the function

$$L_p(\cdot): \varphi \mapsto e^{(p)}(\varphi, s_0)L(\varphi, s_0),$$

where $e^{(p)}(\varphi, s)$ is the factor at p in the Euler product for $L(\varphi, s)$.

2. Automorphic forms and *L*-functions

ELLIPTIC MODULAR FORMS

$$f(z) = \sum_{n=0}^{\infty} a_n(f)e^{2\pi inz}, \quad z \in \mathfrak{H} = \{z \in \mathbb{C} : \Im(z) > 0\}$$

holomorphic, weight k, level N:

$$(f|\gamma)(z) = f(z)$$
 for

$$\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(N) = \left\{ \gamma \equiv \begin{pmatrix} * & * \\ & * \end{pmatrix} \; (\text{mod } N) \right\} \subset \mathsf{SL}_2(\mathbb{Z})$$

(and holomorphic at the cusps $\neq \infty$)

- a cusp form if $a_0(f) = 0$ (and vanishes at the other cusps $\neq \infty$)
- Notation: $M_k(N)$ for modular forms, $S_k(N)$ for cusp forms

2. Automorphic forms and *L*-functions

ELLIPTIC MODULAR FORMS

$$f(z) = \sum_{n=0}^{\infty} a_n(f)e^{2\pi inz}, \quad z \in \mathfrak{H} = \{z \in \mathbb{C} : \Im(z) > 0\}$$

holomorphic, weight k, level N:

$$(f|\gamma)(z):=(\det\gamma)^{k-1}(cz+d)^{-k}f\left(rac{az+b}{cz+d}
ight)=f(z)$$
 for

$$\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(N) = \left\{ \gamma \equiv \begin{pmatrix} * & * \\ & * \end{pmatrix} \pmod{N} \right\} \subset \mathsf{SL}_2(\mathbb{Z})$$

(and holomorphic at the cusps $\neq \infty$)

- lacksquare a cusp form if $a_0(f)=0$ (and vanishes at the other cusps $eq \infty$)
- Notation: $M_k(N)$ for modular forms, $S_k(N)$ for cusp forms

Arithmeticity of modular forms

- subgroup structure of $SL_2(\mathbb{Z}) \rightsquigarrow Hecke operators T_n$
- the T_n are self-adjoint and commute pairwise \Rightarrow they're simultaneously diagonalizable
- systems of Hecke eigenvalues are algebraic integers
- If f is a normalized, cuspidal eigenform $(a_1(f) = 1)$, then $f | T_n = a_n(f) f$.

p-adic families of modular forms

Suppose

- f is a normalized eigenform of weight k_0 and level N,
- lacksquare ord_p $a_p(f) < k_0 1$ ("small slope").

Theorem: (Hida, Coleman) There is a *p*-adic domain

$$\Omega \subset \mathbb{Z}/(p-1)\mathbb{Z} \times \mathbb{Z}_p$$

with $k_0 \in \Omega$ and analytic functions \mathbf{a}_n on Ω such that:

• for each $k \in \Omega \cap \mathbb{Z}$, $k > k_0$, $\mathbf{a}_n(k)$ is algebraic for all n, and

$$\mathbf{f}_k := \sum_{n=1}^{\infty} \mathbf{a}_n(k) q^n \in \bar{\mathbb{Q}}[[q]] \subset \mathbb{C}[[q]], \quad q := e^{2\pi i z},$$

is the Fourier expansion of an eigenform of weight k,

p-adic family of Eisenstein series

$$E_{2k}^{(p)}(q) = rac{L^*(
ho_{2k},1)}{2} + \sum_{n=1}^{\infty} \sigma_{2k-1}^{(p)}(n) q^n \in M_{2k}(p)$$
 where $\sigma_{2k-1}^{(p)}(n) = \sum_{\substack{d \mid n \ p
eq d}} d^{2k-1}$ $k \equiv \ell \pmod{(p-1)p^{N-1}} \Longrightarrow E_{2k}^{(p)} - E_{2\ell}^{(p)} \in p^N \mathbb{Z}_{(p)}[[q]]$

■ Cuspidal examples of p-adic families typically don't have such simple q-expansions, i.e., nice formulas for the \mathbf{a}_n .

L-functions of modular forms

Let $f \in S_k(N)$ be a normalized, primitive eigenform.

$$\Re(s) > k: \quad L(f,s) = \prod_{\ell \nmid N} \left(1 - a_\ell(f)\ell^{-s} + \ell(\ell^{-s})^2\right)^{-1} \prod_{\ell \mid N} (\cdots)^{-s}$$

Mellin transform:

$$\Lambda(f,s) = N^{s/2} \int_0^\infty f(iy) y^s \frac{dy}{y} = L(f,s) N^{s/2} (2\pi)^{-s} \Gamma(s)$$

Theorem: (Hecke) $\Lambda(f,s)$ has analytic continuation to $\mathbb C$ and satisfies the functional equation

$$\Lambda(f,s) = w_N(f)\Lambda(f,k-s), \quad w_N(f) \in \{\pm 1\} \quad (f|W_N = w_N(f)f).$$

■ We need more than classical modular forms to study the *L*-functions of modular forms!

Quaternion algebras

- A quaternion \mathbb{Q} -algebra B is a 4-dimensional central, simple \mathbb{Q} -algebra.
- There is a finite set F of places of \mathbb{Q} such that

$$B \otimes_{\mathbb{Q}} \mathbb{Q}_v \begin{cases} \cong M_2(\mathbb{Q}_v) & \text{if } v \notin F, \\ \text{is a division algebra} & \text{if } v \in F. \end{cases}$$

■ If $v \in F$, v is said to ramify in B. F characterizes B, up to isomorphism. The discriminant of B is the quantity

$$\prod_{\ell \in F, \ell \neq \infty} \ell.$$

■ *B* is called *definite* \iff $B_{\infty} \cong \mathbb{H} \iff \infty \in F$

$$\mathbb{H} = \mathbb{R} + \mathbb{R}i + \mathbb{R}j + \mathbb{R}ij, \qquad i^2 = j^2 = k^2 = -1, \ ji = -ij$$

Quaternionic orders and ideals

- An order R in B is a subring of B free of rank 4 over \mathbb{Z} .
- An Eichler order R of level N^+ , $(N^+, N^-) = 1$, is an order such that for all $\ell \nmid N^-$,

$$R\otimes\mathbb{Z}_{\ell}\cong\left\{egin{pmatrix}a&b\\c&d\end{pmatrix}\in M_{2}(\mathbb{Z}_{\ell}):c\in N\mathbb{Z}_{\ell}
ight\}$$

- R_{N^-,N^+} := Eichler order of level N^+ in the quaternion algebra of discriminant N^-
- A rank 4 \mathbb{Z} -submodule I of B is called a *left R-ideal* if

$$R = \{x \in B : xI \subset I\}.$$

 $\blacksquare \mathcal{I}_R := \text{set of left } R\text{-ideals.}$

Automorphic forms on definite quaternion algebras

$$R = R_{N^-,N^+}: M_2(N^-,N^+) := \{f: \mathcal{I}_R/B^{\times} \longrightarrow \mathbb{Q}\}$$

ideal class representatives:
$$\mathcal{I}_R/B^{\times} = \{[I_i] : i = 1, \dots, h\}$$

standard basis:
$$e_i(I_j) := \delta_{i,j}$$

inner product:
$$\langle F, G \rangle := \sum_{i=1}^{n} \frac{1}{w_i} f(I_i) g(I_i)$$

cusp forms:
$$\mathcal{S}_2(\mathit{N}^-,\mathit{N}^+) := \ker\langle\,\cdot\,,\mathbf{1}
angle \subset \mathit{M}_2(\mathit{N}^-,\mathit{N}^+)$$

Hecke operators

ideal structure of $R_{N^-,N^+} \leadsto$ operators T_n on $M_2(N^-,N^+)$ & S_2

self-adjoint: $\langle F|T_n, G\rangle = \langle F, G|T_n\rangle$

theta-function: $\Theta(F,G)(q) := \sum_{n=1}^{\infty} \langle F|T_n,G\rangle q^n$

Proposition: (Brandt matrices B(n)) We have:

$$\Theta(e_i, e_j) = \frac{1}{2w_j} \sum_{x \in I_i^{-1}I_i} q^{N(x)/N(I_j^{-1}I_i)} = \sum_{n=0}^{\infty} B_{i,j}(n)q^n,$$

where $B_{i,j}(n) = \#$ of ideals of norm n right equivalent to $I_j^{-1}I_i$.

Eichler's correspondence (aka. Jacquet-Langlands)

$$\mathbb{T} := \mathbb{Q}[T_n : (n, N^-) = 1] \subset \operatorname{End}_{\mathbb{Q}} S_2(N^-, N^+),$$

$$N := N^-N^+$$
.

Theorem: (Eichler) The map

$$\Theta: S_2(N^-, N^+) \otimes_{\mathbb{T}} S_2(N^-, N^+) \longrightarrow S_2(N)^{N^--\text{new}}$$

is an isomorphism.

Corollary: Fix $0 \neq \star \in S_2(N)$. Then

$$\Theta_{\star}: S_2(N^-, N^+) \longrightarrow S_2(N)^{N^--\text{new}}, \quad \Theta_{\star}(F) = \Theta(F, \star)$$

is a \mathbb{T} -equivariant isomorphism.

3. Special value formulas

Suppose:

- $Arr N = N^- N^+$ is squarefree,
- d is a fundamental discriminant, d < -4, (d, N) = 1.
- $\chi_d(\ell) = -1$ for all $\ell | N^-$,
- $\chi_d(\ell) = +1$ for all $\ell | N^+$.

Let $\psi: G_K^{ab} \to \mathbb{C}^{\times}$ be a finite order, anticyclotomic character.

Theorem:

(Gross, 1987; Hatcher; Dagigh; Xue; Yuan–Zhang–Zhang, 2011) There is a linear functional

$$\ell_{\psi}: \mathcal{S}_{2}(\mathsf{N}^{-}, \mathsf{N}^{+}) \to \mathbb{Q}(\psi)$$

such that for all Hecke eigenforms $F \in S_2(N^-, N^+)$,

$$\frac{L(\Theta_{\star}(F), \psi, 1)}{\|\Theta_{\star}(F)\|^2} = d^{-1/2} \frac{|\ell_{\psi}(F)|^2}{\|F\|^2}.$$

Gross-Kudla formula

$$f,g,h\in S_2(N), \quad \Sigma=\{\ell|N:-a_\ell(f)a_\ell(g)a_\ell(h)=-1\}.$$
 Suppose $|\Sigma|$ is $\underline{\mathsf{odd}}.$

 $B:=\mathsf{quaternion}\ \mathbb{Q}\text{-algebra ramified at}\ \Sigma\cup\{\infty\}\quad \ (\mathsf{definite})$

$$N^- := \prod_{\ell \in \Sigma} \ell, \quad N^+ = N/N^-.$$

$$\exists F, G, H \in S_2(N^-, N^+) \text{ s.t. } \Theta_{\star}(F) = f, \ \Theta_{\star}(G) = g, \ \Theta_{\star}(H) = h$$

Theorem: (Gross-Kudla, 1992; Böcherer-Schulze-Pillot; Ichino)

$$\frac{L(f \times g \times h, 2)}{\|f\|^2 \|g\|^2 \|h\|^2} \triangleq \frac{\left| \sum_i w_i^{-2} F(I_i) G(I_i) H(I_i) \right|^2}{\|F\|^2 \|G\|^2 \|H\|^2}$$

Higher weight

Let F be a field that splits B:

$$B \otimes F \cong M_2(F)$$
. (e.g. $F = \mathbb{Q}_{\ell}$, $\ell \nmid N^-$)

$$P_k = \{ P(x, y) \in F[x, y] : P(tx, ty) = t^k P(x, y) \}$$

 $V_k = \text{Hom}(P_k, F)$

$$\gamma \in \mathsf{SL}_2(F): \quad (\gamma P)(x,y) = P\big((x,y)\gamma\big), \quad (\ell \gamma)(P) = \ell(\gamma P)$$

$$M_{k+2}(N^-, N^+) = \{f : \mathcal{I}_R \longrightarrow V_k : f(I\gamma) = f(I)\gamma \ \forall \ \gamma \in B^\times \}$$

Gross-Kudla in higher weight

weight 2:
$$\frac{L(f \times g \times h, 2)}{\|f\|^2 \|g\|^2 \|h\|^2} \triangleq \frac{\left| \sum_i w_i^{-2} F(I_i) G(I_i) H(I_i) \right|^2}{\|F\|^2 \|G\|^2 \|H\|^2}$$

What's the analogue of the trilinear form

$$(F,G,H)\mapsto \sum_i w_i^{-2}F(I_i)G(I_i)H(I_i)$$

for
$$F \in M_{k+2}(N^-, N^+)$$
, $G \in M_{\ell+2}(N^-, N^+)$, $H \in M_{m+2}(N^-, N^+)$?

To answer this, we need some representation theory of SL_2 :

- self-duality of highest weight representations
- Clebsch-Gordan decomposition

$$P_k^\iota = P_k$$
 with "reversed" action $P\gamma := \gamma^\iota P$,
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^\iota = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Highest weight vectors:

$$E_k \in P_k^{\iota}, \ E_k(x,y) = x^k; \qquad \delta_{(1,0)} \in V_k, \ \delta_{(1,0)}(P) = P(1,0)$$

$$E_k \begin{pmatrix} t^{-1} \\ t \end{pmatrix} = t^k E_k, \qquad \delta_{(1,0)} \begin{pmatrix} t^{-1} \\ t \end{pmatrix} \qquad = t^k \delta_{(1,0)}$$

$$E_k \begin{pmatrix} 1 \\ * & 1 \end{pmatrix} = E_k, \qquad \delta_{(1,0)} \begin{pmatrix} 1 \\ * & 1 \end{pmatrix} \qquad = \delta_{(1,0)}$$

Proposition: There is a unique $SL_2(F)$ -equivariant map $\varphi: V_k \to P_k^{\iota}$ such that $\varphi(\delta_{(1,0)}) = E_k$. It is an isomorphism.

Proposition: (Clebsch-Gordan)

$$\ell,m$$
 even, $\ell>m$: $V_{\ell}\otimes V_{m}=igoplus_{\ell-m< i<\ell+m}V_{i}$

Assume:
$$k > \ell > m$$
 even, $k < \ell + m$, $s := \frac{-k + \ell + m}{2}$

then
$$\exists \,!\, arphi_{k,\ell,m} \colon V_k \longrightarrow V_\ell \otimes V_m = \left(P_\ell^{\mathsf{x}_1,\mathsf{y}_1} \otimes P_m^{\mathsf{x}_2,\mathsf{y}_2} \right)^\iota$$

such that
$$\varphi_{k,\ell,m}(\delta_{(1,0)}) = x_1^{\ell-s} x_2^{m-s} (x_1 y_2 - x_2 y_1)^s =: E_{k,\ell,m}.$$

Trilinear form: Since
$$(V_\ell \otimes V_m)^\vee = V_\ell \otimes V_m$$
,

$$\varphi_{k,\ell,m} \in \operatorname{Hom}(V_k, V_\ell \otimes V_m) = \operatorname{Hom}(V_k \otimes V_\ell \otimes V_m, F).$$

 $\varphi_{k,\ell,m}$, induces

$$\Phi_{k,\ell,m}: M_{k+2}(N^-,N^+)\otimes M_{\ell+2}(N^-,N^+)\otimes M_{m+2}(N^-,N^+)\longrightarrow F.$$

Theorem: (Böcherer–Schulze-Pillot, 1995) Suppose f_k , g_ℓ , and h_m have weights k+2, $\ell+2$, and m+2, respectively, and that $\Theta_\star(F_k)=f_k$, $\Theta_\star(G_\ell)=g_\ell$, and $\Theta_\star(H_m)=h_m$. Then

$$\frac{L(f_k \times g_\ell \times h_m, c_{k,\ell,m})}{\|f_k\|^2 \|g_\ell\|^2 \|h_m\|^2} \triangleq \frac{\left| \Phi_{k,\ell,m}(F_k \otimes G_\ell \otimes H_m) \right|^2}{\|F_k\|^2 \|G_\ell\|^2 \|H_m\|^2},$$

where

$$c_{k,\ell,m}=\frac{k+\ell+m+4}{2}.$$

Question: What happens if we vary f_k , g_ℓ , and h_m in p-adic families?

The universal highest weight representation

$$\Sigma_{0}(p) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_{2}(\mathbb{Z}_{p}) \cap \mathsf{GL}_{2}(\mathbb{Q}_{p}) : a \in \mathbb{Z}_{p}^{\times}, \ c \in p\mathbb{Z}_{p} \right\}$$
$$= \left\{ \gamma \in \mathsf{GL}_{2}(\mathbb{Q}_{p}) : \mathbb{Z}_{p}\gamma \subset \mathbb{Z}_{p} \right\}$$

Theorem: (Stevens) There exist:

lacktriangle a \mathbb{Q}_p -Fréchet algebra R_{univ} and a universal weight

$$\varphi_{\mathsf{univ}}: \mathbb{Z}_p^{\times} \longrightarrow R_{\mathsf{univ}},$$

■ a Fréchet R_{univ} -module $\mathcal{D}_{\text{univ}}$ and a vector $\delta_{\text{univ}} \in \mathcal{D}_{\text{univ}}$ such that $(\mathcal{D}_{\text{univ}}, \delta_{\text{univ}})$ is a highest weight Σ -module for φ_{univ} ,

such that for any highest weight representation (V, v) of $SL_2(\mathbb{Q}_p)$ with weight φ , there are unique maps

$$\rho: R_{\mathsf{univ}} \longrightarrow \mathbb{Q}_{p}, \quad \rho: \mathcal{D}_{\mathsf{univ}} \otimes_{\rho} \mathbb{Q}_{p} \longrightarrow V$$

such that $\rho \circ \varphi_{\mathsf{univ}} = \varphi$ and $\rho(\delta_{\mathsf{univ}}) = v$.

$$\begin{split} \mathcal{A} &= \mathcal{A}(\mathbb{Z}_p^\times \times \mathbb{Z}_p) := \text{locally analytic functions on } \mathbb{Z}_p^\times \times \mathbb{Z}_p \\ \mathcal{D}_{\text{univ}} &= \mathcal{D}(\mathbb{Z}_p^\times \times \mathbb{Z}_p) := \text{Hom}_{\text{cts}}(\mathcal{A}, \mathbb{Q}_p) \\ &= \text{locally analytic distributions on } \mathbb{Z}_p^\times \times \mathbb{Z}_p \\ \delta_{\text{univ}} &= \delta_{(1,0)} \in \mathcal{D} \text{ univ. highest weight vector} \end{split}$$

Universality: Given (V, v) highest weight representation of $SL_2(\mathbb{Q}_p)$, define

$$J: \mathbb{Z}_p^{\times} \times \mathbb{Z}_p \to V, \quad J(x, y) = v \begin{pmatrix} x & y \\ & 1 \end{pmatrix}$$

and

$$ho: (\mathcal{D}_{\mathsf{univ}}, \delta_{\mathsf{univ}}) o (V, v), \quad
ho(\mu) = \int_{\mathbb{Z}_p^{ imes} imes \mathbb{Z}_p} J(x, y) d\mu(x, y).$$

p-adic families of automorphic forms

$$\mathbf{M}(\mathit{N}^-,\mathit{N}^+) := \mathcal{D}_{\mathsf{univ}}$$
-valued automorphic forms for $R_{\mathit{N}^-,\mathit{N}^+}$

$$\rho_k : \mathcal{D}_{\mathsf{univ}} \to V_k, \quad \rho_k(\delta_{\mathsf{univ}}) = \delta_{(1,0)}$$

Theorem: (Chenevier, 2003) Given an eigenform f_k in $M_{k+2}(N^-, N^+)$, with

$$\operatorname{ord}_p a_p(f_k) < k+1,$$

there is a unique **f** in $\mathbf{M}(N^-, N^+)$ such that $\rho_k(\mathbf{f}) = f_k$.

p-adic families of trilinear forms

Setting $X = \mathbb{Z}_p^{\times} \times \mathbb{Z}_p$, we might look for a diagram like:

$$\begin{array}{c|c} \mathcal{D}_{\mathsf{univ}} \otimes \mathcal{D}_{\mathsf{univ}} \otimes \mathcal{D}_{\mathsf{univ}} & \xrightarrow{\varphi_{\mathsf{univ}}} & R_{\mathsf{univ}} \otimes R_{\mathsf{univ}} \otimes R_{\mathsf{univ}} \\ & & \downarrow^{\rho_k \otimes \rho_\ell \otimes \rho_m} \\ & V_k \otimes V_\ell \otimes V_m & \xrightarrow{\varphi_{k,\ell,m}} & \mathbb{Q}_p \otimes \mathbb{Q}_p \otimes \mathbb{Q}_p = \mathbb{Q}_p \end{array}$$

We don't get this. We get a similar diagram, but with

$$(
ho_k \otimes
ho_\ell \otimes
ho_m) \circ \varphi_{\mathsf{univ}} = (e_{k,\ell,m}^{(p)} \cdot \varphi_{k,\ell,m}) \circ (
ho_k \otimes
ho_\ell \otimes
ho_m)$$

where $e_{k,\ell,m}^{(p)} = \mathsf{Euler-like}$ factor at p .

Constructing φ_{univ}

Recall that we constructed

$$\varphi_{k,\ell,m} \in \operatorname{\mathsf{Hom}}(V_k, V_\ell \otimes V_m) = \operatorname{\mathsf{Hom}}(V_k \otimes V_\ell \otimes V_m, F).$$

by identifying a highest weight k vector

$$E_{k,\ell,m} \in V_{\ell} \otimes V_m = (P_{\ell}^{x_1,y_1} \otimes P_m^{x_2,y_2})^{\iota}.$$

To construct φ_{univ} we do the <u>same thing</u>, but with universal objects instead of the Vs and Ps.

"Clebsch-Gordan in families"

A theorem

Let f_k , g_ℓ , and h_m be in $S_k(N_f)$, $S_\ell(N_g)$, and $S_m(N_h)$, respectively such that

$$k$$
, ℓ , m are even, $m - \ell < k < m + \ell$.

Set $N = \gcd(N_f, N_g, N_h)$, suppose that

$$\Sigma := \{q | N : -w_q(f_k)w_q(g_\ell)w_q(h_m) = -1\}$$

has odd size, and let

$$N^- = \prod_{q \in \Sigma} q, \quad N^+ = N/N^-.$$

Suppose $p \nmid N$ and that

$$\operatorname{ord}_{\rho} a_{\rho}(f_k) < k-1, \quad a_{\rho}(g_{\ell}) < \ell-1, \quad a_{\rho}(h_m) < m-1.$$

Let \mathbf{f} , \mathbf{g} , and \mathbf{h} be the p-adic families through f_k , g_ℓ , and h_m .

Theorem: (G–Seveso, 2012) There is a p-adic analytic function \mathcal{L}_p such that

$$\frac{L(\mathbf{f}_{\kappa} \times \mathbf{g}_{\lambda} \times \mathbf{h}_{\mu}, c_{\kappa, \lambda, \mu})}{\|\mathbf{f}_{\kappa}\|^{2} \|\mathbf{g}_{\lambda}\|^{2} \|\mathbf{h}_{\mu}\|^{2}} \triangleq C_{p} \cdot C_{N_{f}, N_{g}, N_{h}} \cdot \mathcal{L}_{p}(\kappa, \lambda, \mu)$$

for all positive, even integers κ , λ , and μ p-adically close to k, ℓ , and m, respectively, in $\mathbb{Z}/(p-1)\mathbb{Z} \times \mathbb{Z}$.

Thanks!

Questions?