Upcoming p-adic functionality in FLINT

Sebastian Pancratz

p-adic Sage Days, San Diego, 19-23 February 2012

Overview

v

Motivation

v

Design decisions

v

Field of p-adic numbers Q,

> Elements of Q,
» Addition, multiplication, inversion, square root, exponential, logarithm,
Teichmiiller lift

v

Polynomials over Q,,

v

Unramified extensions Q,

> Elements of Q,
» Addition, multiplication, inversion, Teichmiiller lift, Frobenius

» Summary of timings

Motivation
Motivation for the implementation.

» | need p-adic arithmetic for my own research code in point counting,
which is largely based on FLINT.

Purpose of the talk.

» Present the already implemented functionality;
» Offer comparisons between Sage, Magma, and FLINT;
» Ask for feedback.

Design decisions
Comparison with Laurent series over F,,.

A Laurent series consists of the data (m, n, (am, ..., a,)) giving
n
>
i=m

Given f(X) and g(X), we can compute their sum modulo X ¥ as

min{max{ns,ny},N—1}

f(X)+9(X) = Z (a;+ b)) X’

i=min{ms,my}

As coefficients are readily available, it is reasonable for operations to treat
inputs as exact and require only the output precision N.

Design decisions

Decision.

» Each p-adic operation treats the input as exact data and requires the
desired output precision as a separate argument.

Rationale.

» A number is just a number.

» The intrinsic difficulty in p-adic arithmetic stems from the precision loss,
which depends on the particular operation.

» Note that it would be straightforward to implement various precision
models on top of this.

Elements of Q,

Consider two numbers,

T=34+2x5+1x5%+4x53
y=14+1x5+4x5"+2x5 +3x5*

We can compute their sum modulo 52,

z+y=0B+1)+(2+1)5

without looking at higher order digits. But this is not what is happening in
practical implementations. The p-adic digits are not readily available, and for
p < 2% this is certainly not desirable anyway.

Elements of Q,

Instead, an element = # 0 is typically stored as x = p”u with
v=ord,(z) € Z and u € Z with p { u. In FLINT, we choose

typedef struct {
fmpz u;
long v;

} padic_struct;

Remark

» Improved maintainability by having one data type; no special case
depending on the size of p or p™;

» Eventually, p = 2 should have a special case.

» One could consider a different implementation performing basic arithmetic
to base p* with k s.t. such that p” fits in a word. This would allow
replacing mod p? operations by mod p* operations (with a precomputed
word-sized inverse) in many algorithms.

Benchmarks for Q,

We present some timings for arithmetic in Q, mod p” where p = 17, N = 21,
i =0,...,10, comparing the three systems Magma (V2.17-13), Sage (4.8 incl.
#4821) and FLINT (2.3) on a machine with Intel Xeon CPUs running at
2.93GHz.

To avoid worrying about taking the same random sequences of elements, we

instead fix elements a = 33V, b = 52N, ¢ = 172bh, and d = 1 — ¢ modulo pN.

We consider the following operations:

Addition
Multiplication
Inversion
Square root
Teichmiiller lift

Exponential

vV V. vV vV vV VY Y

Logarithm

Hensel lifting

Theorem

Let g € Z,[X] and assume that zy € Z,, satisfies
ordy (9(0))) = m+n, ordy(g'(z)) = m,

for some 0 < m < n. There exists a unique root x € Z, of g satisfying z = x
modulo p”.

Algorithm
» Compute sequence e = N, ex_1 = [ex/2],..., e until 1 < ey < n.
» Fori=0,...,k—1, compute

g9(x;)
9' (i)

Tiy1 = T — (mod p“+t).

Hensel lifting

Remark

In the above formulation, Hensel lifting requires a nested lifting process to
compute the p-adic inverse of ¢’(z;) in each step. This can be replaced by a
single parallel Hensel lift:

» Compute sequence e = N, ep—1 = [ex/2],...,e0 until 1 < ¢y < n.
> Set yo = ¢'(79) " mod p.
» Fori=0,...,k—1, compute

Tiv1 = 2 — 9(m;)yi (mod p“tt),

Yir1 = i (2 — vig (zig1)) (mod p“+t).

Addition

Signature

void padic_add(z, x, y, ctx)

Contract

Assumes that 2 and y are reduced modulo p”¥ and returns z in reduced form,
too.

Algorithm

Avoids expensive modulo operation, replacing this by one comparison and at
most one subtraction.

Addition (equal valuation)

Computes a + b mod p™.

logd, with T'in ns
L

—Sage
-Magma
5|—FLINT

Addition (distinct valuation)

Computes a + ¢ mod p¥.

logT, with 7'in ns
1

Sage
5| -Magma
—FLINT

Multiplication
Signature

void padic_mul(z, x, y, ctx)

Contract

Makes no assumptions on z and y, returns z reduced modulo p¥.

Multiplication

Computes ab mod p".

logd, with T'in ns
1
g| ~Sage
-Magma

—FLINT

Inversion
Signature

void padic_inv(z, x, ctx)

Contract

Makes no assumptions on z # 0, returns z reduced modulo p*.

Algorithm

Hensel lifting on g(X) = 2X — 1, starting from an inverse in F,, and using the
update formula 2z’ = z + 2(1 — z2).

Inversion

1

Computes ¢~ mod p¥ to the required precision N.

logT, with 7'in ns

5

4.5

3.5

2.5

Square root

Signature

int padic_sqrt(z, x, ctx)

Contract

Returns whether has a square root, and if this is the case sets z to a square
root modulo p?.

Recall that non-zero z = p”u has a square root if and only if v is even and u
has a square root modulo 8 or p where p =2 or p > 2, respectively.

Algorithm

» Compute z~ %2 mod p" using Hensel lifting on g(X) = 22X — 1,

starting modulo p and using the division-free update formula
7 =z—2(zz* —1)/2.

> Set z = zz~ /2 mod p".

Square root

Computes a square root of a to the required precision N.

logT, with T'in ms

3]

Teichmiiller lift
Signature

void padic_teichmuller(z, x, ctx)

Contract

Assumes only that ord,(z) = 0, returns the unique z such that z =«
(mod p) and z =z (mod p) and 2P — z = 0, reduced modulo p¥.

Algorithm

Hensel lifting on ¢(X) = XP? — X, starting from 2 = z mod p.
Improvements

> Hensel lifting without inverses.
» At the first step, we want zp = z mod p and
Yo = ((p - 1):(:1”_2)_1 mod p, so yg = p — zp without inversion.

Teichmiller lift

Computes the Teichmiiller lift of @ mod p™ to the required precision N.

logZ, With T'in ps

Exponential
Signature

int padic_exp(z, x, ctx)

Contract

Returns whether exp,, () converges, that is, ord,(z) > 2 or ord,(z) > 1 as
p =2 or p > 2, respectively, and computes z reduced modulo p¥ .

Algorithm

Evaluates the truncated series

m—1 "Ei
exp, (r) = Z T
i=0

over Z,, by multiplying through by (m — 1)!, hence requiring only one p-adic
inversion. We can choose m = [((p — 1)N —1)/((p — 1)v —1)].

Exponential

Improvements

» Rectangular splitting algorithm, starting from the expression

[m/Bl—1 ,B—1 :L’i '
exp,(r) = Z <Z ..>IBJ
§=0 = (i+5))!

where B = |\/m].

» Asymptotic improvements possible, e.g. using a binary splitting algorithm,
which recursively considers half the coefficients of the series.

Exponential

Computes the exponential of ¢ to the required precision N.

logT, with T'in ms

2| -Sage -

Logarithm

Signature

int padic_log(z, x, ctx)

Contract

Assumes that log, () converges, that is, ord,(z — 1) > 2 or ord,(z — 1) > 1
as p = 2 or p > 2, respectively, and returns z reduced modulo p¥.

Algorithm

Evaluates the truncated series

m

log, () = S (-1 e

7
=1

over Z,, by inverting i at each step using a precomputed Hensel lifting
structure.

Logarithm

Computes the logarithm of d = 1 — ¢ to the required precision N.

logT, with T'in ms

—Sage -
2| _.Magma -

—FLINT -

1 -7

2-7 4 3 8 10

al -7
2l
a3l
al

Polynomials over Q,,
We represent a non-zero polynomial f(X) € Q,[X] as
fX)=p"(a0+a X+ +a,X")
where ag, ..., a, € Z and, for at least one i, p does not divide a;.
Remark

» Allows for transfer of many problems over Q, to Z/(p™), where fast
implementations are available.

» Similar to the approach chosen over Q in FLINT (and Sage), see trac
ticket #4000.

Functions for Q,[X]

Conversions to polynomials over Z and Q
Coefficient manipulation

Addition, subtraction, negation

Scalar multiplication

Multiplication

Powers

Series inversion

Derivative

Evaluation

vV V. Y vV VY VYV VvV VY

Composition

Unramified extensions Q,

We represent an unramified extension of Q,, as

Q, = Q,[X]/(f(X))

where f(X) mod p is separable, storing f(X) in a data structure for sparse
polynomials.

This allows for the reduction of a degree n polynomial modulo f(X) in linear

time O(n).

Benchmarks for Q,

We present some timings for arithmetic in Q, mod p» where ¢ = and
N =2% i=0,...,10, comparing the three systems Magma (V2.17-13), Sage
(4.8 incl. #4821) and FLINT (2.3) on a machine with Intel Xeon CPUs
running at 2.93GHz.

5251

To avoid worrying about taking the same random sequences of elements, we
instead fix elements a = (X + 1)V, b= (X2 +2)", and ¢ = 52b modulo p¥.

We consider the following operations:

» Addition
Multiplication
Inversion
Teichmiiller lift
Frobenius

vV v v Yy

Addition
Signature
void qadic_add(z, x, y, ctx)

Contract

Sets z = z + y mod p", assuming both z and y are reduced modulo p?v.

Algorithm

Avoids expensive modulo operation on the coefficients, replacing this by one
comparison and at most one subtraction per coefficient.

Addition (equal valuation)

Computes the sum a + b to the required precision N.

logT, with 7'in ps

0.5 -7

05|

Addition (distinct valuation)

Computes the sum a + b to the required precision N.

logT, with 7'in ps

L

—Sage
-Magma

~FLINT !

2.5

0.5 !

0.5 1

10

Multiplication
Signature
void qadic_mul(z, x, y, ctx)

Contract

Sets z = zy mod p”, without assuming that z, y are reduced modulo p".

Algorithm

First compute the product of the polynomials, then reduce the result modulo
p™V and f(X).

Multiplication

Computes the product ab to the required precision N.

logT, with 7'in ps

—Sage
Magma
—FLINT
L
3| },’)
, -
’
’
7
2|)/
/
L
1} _-7 .
/) ° ’

L
10

Inversion

Signature

void qadic_inv(z, x, ctx)

Contract

Sets z to the inverse of z # 0 modulo p¥.

Algorithm

Hensel lifting on g(X) = 2X + 1, using the update formula 2z’ = z + 2(1 — zz);
the starting point z is the inverse of z in F,,[X]/(f(X)) computed by a
version of Euclid’s extended algorithm only updating one cofactor?.

LUsing Euclid’s extended algorithm to compute d, s, t such that d = ged(a, b) = sa + tb,
one improvement is to only update s during the procedure and then construct
t = (d — sa)/b. Here, we can omit the last step as we do not need the cofactor of f(X).

Inversion

Computes the inverse of a to the required precision N.

logT, with T'in ms

10

Teichmiller lift

Signature

void qadic_teichmuller(z, x, ctx)

Contract

Assumes only that ord,(z) = 0, returns the unique ¢ such that 27— 2 =0
reduced modulo p?.

Algorithm

Hensel lifting on g(X) = X9 — X, starting from 2z = z mod p.

Improvements

Observe that ¢/(z) = gz2 ' — 1 and 27" is close to 1 so ¢'(z) is close to
q — 1. Thus, we only need to compute an inverse of ¢ — 1, which is defined
over Q,.

Teichmiller lift

Computes the Teichmiiller lift of a to the required precision N.

logT, with T'in ms

Frobenius

Signature

void qadic_frobenius(z, x, k, ctx)

Contract
Sets z to X¥z modulo pV, where ¥ € Gal(Q,/Q,) = Gal(F,/F,) is the
imageof 0: Fy = F,, 2 — 2P,

Algorithm

> Write Q, = Q,[X]/(f(X)) and z = Y% " 4, X7
» Compute ¥ X using Hensel lifting on f, starting from z = X7 in

Fp [X]/(F(X)).

» Compute XFz = Z?:_ol ai (EkX)i, which is a polynomial composition
modulo p™ and f(X).

Frobenius

Improvements

» In a first approach, might use Horner's method to carry out the
composition, which uses about d multiplications in Q,

» Instead, use a rectangular splitting method, starting from the expression

[d/B1-1 ,B—1
r= % (T amxt)xo
§=0 i=0

where B = |\/d|, precomputing $¥(X)? for i = 0,..., B. This requires
about 2v/d multiplications in Q, and extra space for about d*/2 elements
of Z/(p").

Frobenius

Computes the image of a under the Frobenius homomorphism to the required
precision V.

logT, With Tin ms

L -
—-Sage .7
-Magma e

6| —FLINT -

Missing functionality for Q,

Exponential
Logarithm

>

>

» Square root
» Norm

| 4

Trace

Summary of timings

Operation Tsage/ TruNT TMagma/ TFLINT
Q, a+tb 0.67 0.49
a+c 1.63 0.91
ab 0.58 241
a~t 3.94 3.9
Ja 6.17
Teichmiiller(a) 156.19 4670
exp(c) 206.25 12.25
log(d) 27.95 3.01
Q, a+tb 2.36 1.1
a+c 6.3 0.82
ab 8.59 0.62
a"! 51.47 1.23
Teichmiiller(a) 0.48 1.03

Y(a) 11000 0.72

Codebase

» FLINT,
http://www.flintlib.org

» Personal development branch for p-adic arithmetic,
https://github.com/SPancratz/flint2/tree/padic
» Lines of source code,
padic padic_poly padic_poly qadic

Base 1987 1460 683 920
Test 2321 1380 903 1131

http://www.flintlib.org
https://github.com/SPancratz/flint2/tree/padic

