Factoring Polynomials over Local Fields and Single Factor Lifting

Sebastian Pauli

Department of Mathematics and Statistics University of North Carolina at Greensboro

2012

Table of Contents

- Introduction
 - History
 - Applications
 - Notation
- Main Algorithm
 - Introduction
 - 1st Iteration
 - 2nd Iteration
 - Algorithm
 - t-th Iteration
 - Example
- 3 Lifting
 - Algorithm
- 4 Applications

History of the Algorithm: Round Four

- Ford (1978): On the Computation of the Maximal Order in a Dedekind Domain
- Cantor, Gordon (2000): Factoring polynomials over p-adic fields
- P. (2001): Factoring polynomials over local fields
- Ford, P., Roblot (2002): A fast algorithm for polynomial factorization over \mathbb{Q}_p

History of the Algorithm: Montes

- Ore (1928): Newtonsche Polygone in der Theorie der algebraischen Körper
- MacLane (1936): A Construction for absolute values in polynomial rings
- Montes, Nart (1992): On a theorem of Ore
- Montes (1999): Polígonos de Newton de orden superior y aplicaciones aritméticas
- Guardia, Montes, Nart (since 2008): Newton polygons of higher order in algebraic number theory, . . .

Recent Developments

• Ford, Veres (2009/10): Complexity of Montes algorithm

$$O(N^{3+\varepsilon}\nu(\operatorname{disc}\Phi)+N^{2+\varepsilon}\nu(\operatorname{disc}\Phi)^{2+\varepsilon})$$

- P. (2010): Factoring polynomials over local fields II
- Guardia, Nart, P. (2011): Single factor lifting for polynomials over local fields

Implementations

- Ford (197x) in Algeb: Maximal orders of number fields
- Ford, Letard (1994) in Pari: Maximal orders of number fields
- Baier (1996) in KANT / Magma: Maximal orders of number fields
- Guardia (2000) in Mathematica: Ideal decomposition
- Roblot (2001) in Pari: Polynomial factorization over \mathbb{Z}_n
- P. (2001/03) in Magma: Polynomial factorization over local fields
- Guardia, Nart (2009) Ideal+ for Magma: Ideal decomposition
- Sinclair (2012) in Sage: Polynomial factorization over \mathbb{Z}_p

Applications

Local Fields

- Integral Basis (splitting extensions into unramified and ramified part)
- Two Element Certificates for Irreducibility
- Splitting Fields

Global Fields

- Prime Decomposition
- Integral Basis
- Completions

Notation

- K field complete with respect to a non-archimedian valuation
- \mathcal{O}_K valuation ring of K
- π uniformizing element in $\mathcal{O}_{\mathcal{K}}$
- u exponential valuation normalized such that $u(\pi)=1$
- \underline{K} residue class field $\mathcal{O}_K/(\pi)$ of K with char $\underline{K}=p$
- $\Phi(x) \in \mathcal{O}_K[x]$ the polynomial to be factored
- $\varphi(x) \in \mathcal{O}_K[x]$ an approximation to an irreducible factor of $\Phi(x)$

Reducibility – Classical

Let
$$\Phi(x) = \sum_{i=0}^{N} \Phi_i x^i = \prod_{j=1}^{N} (x - \alpha_j) \in \mathcal{O}_K[x]$$
.

Hensel's Lemma

If there is a factorization of $\Phi(x)$ into coprime factors over the residue class field K, then there is a factorization of $\Phi(x)$ over \mathcal{O}_K .

The lower convex hull of the set of points

$$\{(i,\nu(\Phi_i))\mid 0\leq i\leq N\}$$

is the Newton polygon of $\Phi(x)$.

Let v be a the slope of a segment of length n of the Newton Polygon of $\Phi(x)$ then there are j_1, \ldots, j_n such that $\nu(\alpha_{i_i}) = v$ for $1 \le i \le n$.

Theorem

Each segment of the Newton Polygon of $\Phi(x)$ corresponds to a proper factor of $\Phi(x)$.

Approximations to an Irreducible Factor

Let $\Phi(x) \in \mathcal{O}_K[x]$ be the polynomial to be factored

Let α be a root of $\Phi(x)$. α is a root of an irreducible factor P(x) of $\Phi(x)$.

Construct a sequence of approximations

$$\varphi_1(x) = x, \varphi_2(x), \dots, \varphi_k(x) \in \mathcal{O}_K[x]$$

to the irreducible factor P(x) such that

$$\nu(\varphi_1(\alpha)) < \nu(\varphi_2(\alpha)) < \cdots < \nu(\varphi_k(\alpha))$$

with

$$\deg(\varphi_1) \mid \deg(\varphi_2) \mid \cdots \mid \deg(\varphi_m) = \deg(P).$$

Approximations to an Irreducible Factor

Let

$$\varphi_1(x) = x, \varphi_2(x), \dots, \varphi_k(x) \in \mathcal{O}_K[x]$$

be a sequence of approximations to an irreducible factor of $\Phi(x)$.

If $deg(\varphi_{t+1}) = deg(\varphi_t)$ then this step is called an improvement step.

If $\deg(\varphi_{t+1}) > \deg(\varphi_t)$ then this step is called a Montes step.

 $\varphi_{t+1}(x)$ is a key polynomial (MacLane). Each key polynomial, together with the previous key polynomials yields a valuation on K[x].

Irreducibility - Bound

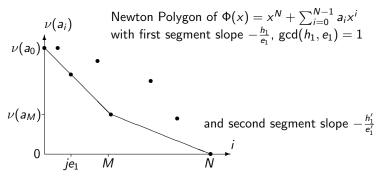
Theorem

If $\alpha_1, \ldots, \alpha_N$ are elements of an algebraic closure of K,

- $-\Phi(x)=\prod_{j=1}^N(x-\alpha_j)\in\mathcal{O}_K[x]$ squarefree,
- $-\varphi(x)\in\mathcal{O}_K[x],$
- $-N \cdot \nu(\varphi(\alpha_i)) > 2 \cdot \nu(\operatorname{disc} \Phi)$ for all $1 \leq j \leq N$, and
- the degree of any irreducible factor of $\Phi(x)$ is greater than or equal to deg φ ,

then $N = \deg(\varphi)$ and $\Phi(x)$ is irreducible over K.

1st Iteration - Newton Polygon



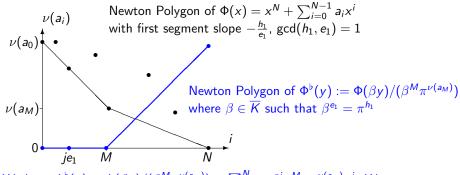
The Newton polygon of $\Phi(x)$ yields the valuations $\nu(\varphi_1(\alpha))$ for $\varphi_1(x) = x$ for the roots α of $\Phi(x)$.

Here (after reordering the roots $\alpha = \alpha_1, \dots, \alpha_N$ of $\Phi(x)$ if necessary):

$$\nu(\alpha_1) = \dots = \nu(\alpha_M) = \frac{h_1}{e_1}$$
 and $\nu(\alpha_{M+1}) = \dots = \nu(\alpha_N) = \frac{h_1'}{e_1'}$.

 $E_1 := e_1$ is a divisor of the ramification index of $K(\alpha_i)/K$ $(1 \le i \le M)$.

1st Iteration – Residual Polynomial



We have
$$\Phi^{\flat}(y) = \Phi(\beta y)/(\beta^M \pi^{\nu(a_M)}) = \sum_{i=0}^N a_i \beta^{i-M} \pi^{-\nu(a_M)} y^i$$
. We set
$$A_1(z) := \sum_{i=0}^{M/e_1} a_{je_1} \pi^{h_1(j-M/e_1)-\nu(a_M)} z^j.$$

 $\underline{A}_1(z) \in \underline{K}$ is the *residual polynomial* of $\Phi(x)$ with respect to the first segment.

1st Iteration – The next φ

Let $\underline{A}_1(z)$ be the residual polynomial, so $\nu\left(A_1\left(\frac{\varphi_1^{e_1}(\alpha)}{\pi^{h_1}}\right)\right)>0$.

$$\underline{A}_1(z) = \underline{\rho}_1(z)^{r_1} \cdot \dots \cdot \underline{\rho}_m^{r_m}(z)$$
 for some irreducible $\underline{\rho}_i(z) \in \underline{K}$ $(1 \le i \le m)$.

 $F_1 := \deg \underline{\rho}_1$ is a divisor of the inertia degree of $K(\alpha_i)$ for $1 \le i \le F_1 \cdot r_1$ (after reordering the roots $\alpha = \alpha_1, \dots, \alpha_M$ of $\Phi(x)$ if necessary).

1st Iteration – The next φ

Let $\underline{A}_1(z)$ be the residual polynomial, so $\nu\left(A_1\left(\frac{\varphi_1^{e_1}(\alpha)}{\pi^{h_1}}\right)\right)>0$.

$$\underline{A}_1(z) = \underline{\rho}_1(z)^{r_1} \cdot \dots \cdot \underline{\rho}_m^{r_m}(z)$$
 for some irreducible $\underline{\rho}_i(z) \in \underline{K}$ $(1 \le i \le m)$.

 $F_1 := \deg \underline{\rho}_1$ is a divisor of the inertia degree of $K(\alpha_i)$ for $1 \le i \le F_1 \cdot r_1$ (after reordering the roots $\alpha = \alpha_1, \ldots, \alpha_M$ of $\Phi(x)$ if necessary).

As
$$\nu\left(\rho_1\left(\frac{(\varphi_1(\alpha_i))^{e_1}}{\pi^{h_1}}\right)\right) > 0$$
 for a lift $\rho_1(z)$ of $\underline{\rho}_1(z)$ to $\mathcal{O}_K[x]$ we have

$$\nu\left(\pi^{F_1h_1}\rho_1\left(\frac{(\varphi_1(\alpha_i))^{e_1}}{\pi^{h_1}}\right)\right) > F_1h_1 \geq \frac{h_1}{e_1} = \nu(\varphi_1(\alpha_i)).$$

Also deg
$$\left(\rho_1(\varphi_1^{e_1}/\pi^{h_1})\right) = E_1F_1 \leq N$$
.

We set
$$\varphi_2(x) := \pi^{F_1 h_1} \rho_1 \left(\frac{(\varphi_1(x))^{e_1}}{\pi^{h_1}} \right)$$
. $\varphi_2(x)$ is irreducible.

1st Iteration – Data

$\varphi_1(x) = x \in \mathcal{O}_K[x]$	an approximation to an irreducible factor of $\Phi(x)$
h_1/e_1	slope of a segment of the Newton polygon of $\Phi(x)$ with $\gcd(h_1,e_1)=1$
$F_1 = e_1$	the maximum known ramification index

$$\underline{A}_1(z)$$
 the residual polynomial with respect to $arphi_1$

$$\rho_1(z) \in \mathcal{O}_K[z]$$
 irreducible factor of $\underline{A}_1(z) \ \underline{K}_1 = \underline{K}[x]/(\underline{(}\rho_1))$

$$F_1 = [K_1 : K]$$
 the maximum known inertia degree

1st Iteration

Let
$$\theta(x) = \sum_{i=0}^{\deg \varphi_2 - 1} b_i x^i$$
, that is $\deg(\theta) < \deg(\varphi_2) = E_1 \cdot F_1$

As the valuations

$$\nu(\varphi_1(\alpha)) = \nu(\alpha) = \frac{h_1}{e_1}, \ldots, \ \nu(\varphi_1(\alpha)^{e_1-1}) = \nu(\alpha^{e_1-1}) = \frac{(e_1-1)h_1}{e_1}$$

are distinct (and not in \mathbb{Z}) and

$$1, \varphi_1(\alpha)^{\mathsf{e}_1}/\pi^{h_1} \equiv \gamma_1 \bmod (\pi), \ \dots \ , \left(\varphi_1(\alpha)^{\mathsf{e}_1}/\pi^{h_1}\right)^{F_1-1} \equiv \gamma_1^{F_1-1} \bmod (\pi)$$

are linearly independent over \mathcal{O}_K , we have

$$\nu(\theta(\alpha_1)) = \min_{i} \nu(b_i) \left(\frac{h_1}{e_1}\right)^i.$$

For $\frac{H}{E_1}$, $H \in \mathbb{Z}$, we can find $\Psi(x) \in K[x]$ such that $\nu(\Psi(\alpha_1)) = \frac{H}{E_1}$.

2nd Iteration – φ_2 -expansion

φ_2 -expansion of $\Phi(x)$

There are unique $a_i(x) \in \mathcal{O}_K[x]$ with deg $a_i < \deg \varphi_2 = n_2$ such that

$$\Phi(x) = \sum_{i \geq 0} a_i(x) (\varphi_2(x))^i.$$

For each root α of $\Phi(x)$ we have

$$\Phi(\alpha) = \sum_{i>0} a_i(\alpha) (\varphi_2(\alpha))^i = 0$$

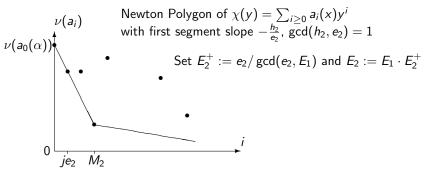
Thus

$$\chi(y) = \sum_{i>0} a_i(\alpha) y^i$$

is a polynomial with root $\varphi_2(\alpha)$.

The Newton Polygon of $\chi(y)$ yields the valuations of $\varphi_2(\alpha)$ for all roots α of $\Phi(x)$ with $\nu(\alpha) = \frac{h_1}{e_1}$.

2nd Iteration - Newton Polygon



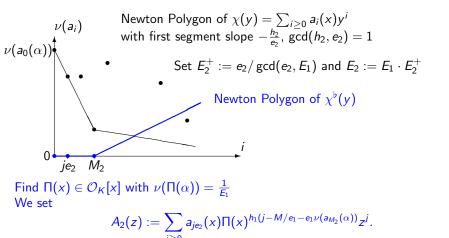
The Newton polygon of $\Phi(x)$ yields the valuations $\nu(\varphi_1(\alpha))$ for $\varphi_1(x) = x$ for the roots α of $\Phi(x)$.

Here (after reordering the roots of $\Phi(x)$ if necessary):

$$\nu(\varphi(\alpha_1)) = \cdots = \nu(\varphi(\alpha_{M_2})) = \frac{h_2}{e_2}$$

 E_2 is a divisor of the ramification index of $K(\alpha_i)/K$.

2nd Iteration - Residual Polynomial



 $\underline{A}_2(z)$ is the *residual polynomial* of $\Phi(x)$ with respect to the first segment.

2nd Iteration – The next $\varphi(x)$

Let
$$\psi_2(x) \in \mathcal{O}_K[x]$$
 with $\nu(\psi_2(\alpha)) = \frac{E_2^+ h_2}{e_2}$. From

$$\varphi_3^*(x) := \psi_2(x)^{F_1^+} \rho_2 \left(\frac{\varphi_2(x)^{E_2^+}}{\psi_2(x)} \right) = \sum_{i=0}^{F_2^+} \sum_{j=0}^{F_1-1} r_{i,j} \left(\frac{x^{e_1}}{\pi^{h_1}} \right)^j \psi_2(x)^{F_2^+ - i} \varphi_2(x)^{iE_2^+}$$

we construct $\varphi_3(x) \in \mathcal{O}_K[x]$ such that

- $\nu(\varphi_3^*(\alpha) \varphi_3(\alpha) > \nu(\varphi_3^*(\alpha))$ and
- $\deg \varphi_3 = E_2F_2 = E_2^+F_2^+E_1F_1$.

using that

- $r_{i,j}$ is congruent to a linear combination of $\varphi_1^{e_1}/\pi^{h_1}$,
- $\nu(\rho_1((\varphi_1(\alpha)^{e_1}/\pi^{h_1})) > 0$, and $\deg(\rho_1(\varphi_1^{e_1}/\pi^{h_1})) = E_1F_1$

2nd Iteration – The next $\varphi(x)$

Let
$$\psi_2(x) \in \mathcal{O}_K[x]$$
 with $\nu(\psi_2(\alpha)) = \frac{E_2^+ h_2}{e_2}$. From

$$\varphi_3^*(x) := \psi_2(x)^{F_1^+} \rho_2 \left(\frac{\varphi_2(x)^{E_2^+}}{\psi_2(x)} \right) = \sum_{i=0}^{F_2^+} \sum_{j=0}^{F_1-1} r_{i,j} \left(\frac{x^{e_1}}{\pi^{h_1}} \right)^j \psi_2(x)^{F_2^+-i} \varphi_2(x)^{iE_2^+}$$

we construct $\varphi_3(x) \in \mathcal{O}_K[x]$ such that

- $\nu(\varphi_3^*(\alpha) \varphi_3(\alpha) > \nu(\varphi_3^*(\alpha))$ and
- $\deg \varphi_3 = E_2F_2 = E_2^+F_2^+E_1F_1$.

using that

- ullet $r_{i,j}$ is congruent to a linear combination of $arphi_1^{\mathrm{e}_1}/\pi^{h_1}$,
- $\nu(\rho_1((\varphi_1(\alpha)^{e_1}/\pi^{h_1})) > 0$, and $\deg(\rho_1(\varphi_1^{e_1}/\pi^{h_1})) = E_1F_1$

Remark

 $\varphi_3(x)$ is irreducible.

- $t \leftarrow 1$, $\varphi_1 \leftarrow x$, $E_0 \leftarrow 1$, $F_0 \leftarrow 1$, $\underline{K}_0 \leftarrow \underline{K}$.
- Repeat:
 - **1** Find the Newton Polygon for $\varphi_t(x)$

- $t \leftarrow 1$, $\varphi_1 \leftarrow x$, $E_0 \leftarrow 1$, $F_0 \leftarrow 1$, $\underline{K}_0 \leftarrow \underline{K}$.
- Repeat:
 - **1** Find the Newton Polygon for $\varphi_t(x)$
 - **3** Choose a segment of the Newton Polygon, let h_t/e_t be its slope.

- $t \leftarrow 1$, $\varphi_1 \leftarrow x$, $E_0 \leftarrow 1$, $F_0 \leftarrow 1$, $\underline{K}_0 \leftarrow \underline{K}$.
- Repeat:
 - **1** Find the Newton Polygon for $\varphi_t(x)$
 - **3** Choose a segment of the Newton Polygon, let h_t/e_t be its slope.

- $t \leftarrow 1$, $\varphi_1 \leftarrow x$, $E_0 \leftarrow 1$, $F_0 \leftarrow 1$, $\underline{K}_0 \leftarrow \underline{K}$.
- Repeat:
 - **1** Find the Newton Polygon for $\varphi_t(x)$
 - **3** Choose a segment of the Newton Polygon, let h_t/e_t be its slope.

 - **§** Find the residual polynomial $\underline{A}_t(y)$ of $\Phi(x)$ with respect to $\varphi_t(x)$.

- $t \leftarrow 1$, $\varphi_1 \leftarrow x$, $E_0 \leftarrow 1$, $F_0 \leftarrow 1$, $\underline{K}_0 \leftarrow \underline{K}$.
- Repeat:
 - **1** Find the Newton Polygon for $\varphi_t(x)$
 - **3** Choose a segment of the Newton Polygon, let h_t/e_t be its slope.
 - $\bullet h_t/e_t \leftarrow v_{\Phi}^*(\varphi_t), \ E_t^+ = \frac{e_t}{\gcd(e_t, E_{t-1})}, \ E_t \leftarrow E_{t-1} \cdot E_t^+.$
 - **5** Find the residual polynomial $\underline{A}_t(y)$ of $\Phi(x)$ with respect to $\varphi_t(x)$.
 - **6** Choose an irreducible factor $\underline{\rho}_t(y) \in \underline{K}_{t-1}$ of $\underline{A}_t(y)$.

- $t \leftarrow 1$, $\varphi_1 \leftarrow x$, $E_0 \leftarrow 1$, $F_0 \leftarrow 1$, $\underline{K}_0 \leftarrow \underline{K}$.
- Repeat:
 - **1** Find the Newton Polygon for $\varphi_t(x)$
 - **3** Choose a segment of the Newton Polygon, let h_t/e_t be its slope.
 - $\bullet h_t/e_t \leftarrow v_{\Phi}^*(\varphi_t), \ E_t^+ = \frac{e_t}{\gcd(e_t, E_{t-1})}, \ E_t \leftarrow E_{t-1} \cdot E_t^+.$
 - **5** Find the residual polynomial $\underline{A}_t(y)$ of $\Phi(x)$ with respect to $\varphi_t(x)$.
 - **6** Choose an irreducible factor $\underline{\rho}_t(y) \in \underline{K}_{t-1}$ of $\underline{A}_t(y)$.

- $t \leftarrow 1$, $\varphi_1 \leftarrow x$, $E_0 \leftarrow 1$, $F_0 \leftarrow 1$, $\underline{K}_0 \leftarrow \underline{K}$.
- Repeat:
 - **1** Find the Newton Polygon for $\varphi_t(x)$
 - **3** Choose a segment of the Newton Polygon, let h_t/e_t be its slope.

 - **5** Find the residual polynomial $\underline{A}_t(y)$ of $\Phi(x)$ with respect to $\varphi_t(x)$.
 - **6** Choose an irreducible factor $\rho_t(y) \in \underline{K}_{t-1}$ of $\underline{A}_t(y)$.

 - § Find $\varphi_{t+1}(\overline{x}) \in \mathcal{O}_K[x]$ with $\nu(\varphi_{t+1}(\alpha)) > \nu(\varphi_t(\alpha))$, $\deg \varphi_{t+1} = E_t F_t$.

- $t \leftarrow 1$, $\varphi_1 \leftarrow x$, $E_0 \leftarrow 1$, $F_0 \leftarrow 1$, $\underline{K}_0 \leftarrow \underline{K}$.
- Repeat:
 - **1** Find the Newton Polygon for $\varphi_t(x)$
 - **3** Choose a segment of the Newton Polygon, let h_t/e_t be its slope.

 - **5** Find the residual polynomial $\underline{A}_t(y)$ of $\Phi(x)$ with respect to $\varphi_t(x)$.
 - **6** Choose an irreducible factor $\underline{\rho}_t(y) \in \underline{K}_{t-1}$ of $\underline{A}_t(y)$.

 - $0 t \leftarrow t+1$

- $t \leftarrow 1$, $\varphi_1 \leftarrow x$, $E_0 \leftarrow 1$, $F_0 \leftarrow 1$, $\underline{K}_0 \leftarrow \underline{K}$.
- Repeat:
 - **1** Find the Newton Polygon for $\varphi_t(x)$
 - 2 If the length of the first segment is one, lift the factor $\varphi_t(x)$
 - **3** Choose a segment of the Newton Polygon, let h_t/e_t be its slope.

 - **5** Find the residual polynomial $\underline{A}_t(y)$ of $\Phi(x)$ with respect to $\varphi_t(x)$.
 - **6** Choose an irreducible factor $\rho_t(y) \in \underline{K}_{t-1}$ of $\underline{A}_t(y)$.

 - **3** Find $\varphi_{t+1}(x) \in \mathcal{O}_K[x]$ with $\nu(\varphi_{t+1}(\alpha)) > \nu(\varphi_t(\alpha))$, $\deg \varphi_{t+1} = E_t F_t$.
 - $0 t \leftarrow t+1$

(t-1)-st Iteration – Data

$$\varphi_{t-1}(x) \in \mathcal{O}_K[x]$$

$$h_{t-1}/e_{t-1}$$
 $E_{t-1}^+ = \frac{e_{t-1}}{\gcd(E_{t-2}, e_{t-1})}$

$$E_{t-1} = E_{t-2} \cdot E_{t-1}^+$$

$$\psi_{t-1} = \pi^{s_{\pi}} \prod_{i=1}^{t-2} \varphi_i^{s_i}$$

$$\underline{A}_{t-1}(z)$$

$$\underline{\rho}_{t-1}(z) \in \underline{K}[z]$$

$$\underline{K}_{t-1} = \underline{K}_{t-2}[x]/(\underline{(}\rho_{t-1})$$

$$F_{t-1} = \operatorname{lcm}(F_{t-2}, [\underline{K}_{t-1} : \underline{K}])$$

an approximation to an irreducible factor of $\Phi(x)$ with deg $\varphi_{t-1} = E_{t-2}F_{t-2}$

a slope of the Newton Polygon for φ_{t-1} the increase of known ramification index

the maximal known ramification index

where $s_{\pi} \in \mathbb{Z}$ and $0 \leq s_i < E_i^+$ with $v_{\Phi}^*(\psi) = E_{t-1}^+ h_{t-1}/e_{t-1}$

the residual polynomial with respect to φ_{t-1} an irreducible factor of $A_{t-1}(z)$

the maximum known inertia degree

t-th Iteration – the $(\varphi_1, \ldots, \varphi_{t-1})$ -expansion

We compute the $\varphi_t(x)$ -expansion of $\Phi(x)$ in order to find $\nu_{\Phi}^*(\varphi_t)$.

The $(\varphi_1, \dots, \varphi_{t-1})$ -expansion of the coefficients of the expansion yields the necessary information.

Let $a(x) \in \mathcal{O}_K[x]$ with deg $a < E_{t-1}F_{t-1}$.

$$(\varphi_1,\ldots,\varphi_{t-1})$$
-expansion of $a(x)$

$$a(x) = \sum_{j_{t-1}=0}^{E_{t-1}^+ F_{t-1}^+ - 1} \varphi_{t-1}^{j_{t-1}}(x) \cdots \sum_{j_{t-2}=0}^{E_{t-2}^+ F_{t-2}^+ - 1} \varphi_2^{j_2}(x) \sum_{j_1=0}^{E_1^+ F_1^+ - 1} x^{j_1} \cdot a_{j_1, \dots, j_{t-1}}$$

Lemma

$$\nu(\mathbf{a}(\alpha)) = \min_{\substack{1 \leq i \leq t-1 \\ 1 \leq j_i < E_i^+}} \nu\left(\varphi_{t-1}^{j_{t-1}}(\alpha) \cdots \varphi_2^{j_2}(\alpha) \cdot \mathbf{x}^{j_1} \cdot \mathbf{a}_{j_1, \dots, j_{t-1}}\right)$$

Example: Factorization of $\Phi = x^{16} + 16 \in \mathbb{Q}_2[x]$

1st Iteration $\varphi_1 = x$

$$\begin{array}{l} \chi_1 = \Phi = y^{16} + 16 \text{, thus } h_1/e_1 = 1/4 \text{, } E_1^+ = 4 \text{ and } E_1 = 4. \\ \text{Residual polynomial: } \underline{A}_1 = z^4 + 1 = (z+1)^4 \in \mathbb{F}_2[z] \text{, hence } F_1 = 1. \\ \psi_1 = 2 \text{, such that } \nu(\psi_1) = \nu(\varphi_1^{E_1^+}) \text{ and } \deg(\psi_1) < E_1 F_1 \end{array}$$

Example: Factorization of $\Phi = x^{16} + 16 \in \mathbb{Q}_2[x]$

1st Iteration $\varphi_1 = x$

$$\begin{array}{l} \chi_1 = \Phi = y^{16} + 16 \text{, thus } h_1/e_1 = 1/4 \text{, } E_1^+ = 4 \text{ and } E_1 = 4. \\ \text{Residual polynomial: } \underline{A}_1 = z^4 + 1 = (z+1)^4 \in \mathbb{F}_2[z] \text{, hence } F_1 = 1. \\ \psi_1 = 2 \text{, such that } \nu(\psi_1) = \nu(\varphi_1^{E_1^+}) \text{ and } \deg(\psi_1) < E_1 F_1 \end{array}$$

2nd Iteration $\varphi_2 = \varphi_1^{e_1} - \psi_1 = x^4 - 2$

$$\begin{split} \Phi &= 32 + \varphi_2(32 + \varphi_2(24 + \varphi_2(8 + \varphi_2))) \\ \chi_2 &= y^4 + 8y^3 + 24y^2 + 32y + 32, \text{ thus } h_2/e_2 = 5/4, \ E_2^+ = 1 \text{ and } E_2 = 4. \\ \text{Residual polynomial: } \underline{A}_2 &= z^4 + 1 = (z+1)^4 \in \mathbb{F}_2[z], \text{ hence } F_2 = 1. \\ \psi_2 &= 2\varphi_1, \text{ such that } \nu(\psi_2^{E_2^+}) = \nu(\varphi_1) \text{ and } \deg(\psi_2) < E_2F_2 \end{split}$$

Example: Factorization of $\Phi = x^{16} + 16 \in \mathbb{Q}_2[x]$

1st Iteration $\varphi_1 = x$

$$\chi_1 = \Phi = y^{16} + 16$$
, thus $h_1/e_1 = 1/4$, $E_1^+ = 4$ and $E_1 = 4$. Residual polynomial: $\underline{A}_1 = z^4 + 1 = (z+1)^4 \in \mathbb{F}_2[z]$, hence $F_1 = 1$. $\psi_1 = 2$, such that $\nu(\psi_1) = \nu(\varphi_1^{E_1^+})$ and $\deg(\psi_1) < E_1F_1$

2nd Iteration $\varphi_2 = \varphi_1^{e_1} - \psi_1 = x^4 - 2$

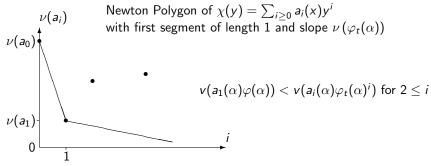
$$\begin{split} \Phi &= 32 + \varphi_2(32 + \varphi_2(24 + \varphi_2(8 + \varphi_2))) \\ \chi_2 &= y^4 + 8y^3 + 24y^2 + 32y + 32, \text{ thus } h_2/e_2 = 5/4, \ E_2^+ = 1 \text{ and } E_2 = 4. \\ \text{Residual polynomial: } \underline{A}_2 &= z^4 + 1 = (z+1)^4 \in \mathbb{F}_2[z], \text{ hence } F_2 = 1. \\ \psi_2 &= 2\varphi_1, \text{ such that } \nu(\psi_2^{E_2^+}) = \nu(\varphi_1) \text{ and } \deg(\psi_2) < E_2F_2 \end{split}$$

3rd Iteration
$$\varphi_3 = \varphi_2 - 2\varphi_1(x) = x^4 - 2x + 2$$

$$\begin{split} &\Phi = -64x^3 + 96x^2 - 32x + \varphi_3 \big(32x^3 - 96x^2 + 96x - 16 + \varphi_3 \big(24x^2 - 48x + 24 + \varphi_3 (8x - 8 + \varphi_3) \big) \big). \\ &\chi_3 = -64x^3 + 96x^2 - 32x + \big(32x^3 - 96x^2 + 96x - 16 \big)y + \big(24x^2 - 48x + 24 \big)y^2 + \big(8x - 8 \big)y^3 + y^4. \\ &\text{The valuations of the coefficients are } 21/4, \ 4, \ 3, \ 3 \ \text{and } 0, \ \text{hence } h_3/e_3 = 21/16. \end{split}$$

Good Approximations

Consider the φ_t -expanson of $\Phi(x) = \sum_{i \geq 0} a_i(x) \varphi_t^i(x)$. If the first segment of the newton polygon has length one $\varphi_t(x)$ is an approximation to a unique factor of degree $\deg(\varphi_t)$. $\varphi_t(x)$ is called a good approximation.



We have
$$0 = \Phi(\alpha) = \sum_{i \geq 0} a_i(\alpha) \varphi_t^i(\alpha)$$
, so $a_1(\alpha) \varphi_t(\alpha) + a_0(\alpha) = -\sum_{i \geq 2} a_i(\alpha) \varphi_t^i(\alpha)$.

$$\nu\left(\varphi_t(\alpha) + \frac{\mathsf{a}_0(\alpha)}{\mathsf{a}_1(\alpha)}\right) = \nu\left(\frac{\sum_{i\geq 2} \mathsf{a}_i(\alpha)\varphi_t^i(\alpha)}{\mathsf{a}_1(\alpha)}\right).$$

Single Factor Lifting Idea

Assume the first segment of the newton polygon for $\varphi_t(x)$ has length one, then $\varphi_t(x)$ is an approximation to a unique factor P(x) of $\Phi(x)$.

We have

$$\varphi_t(\alpha) + \frac{a_0(\alpha)}{a_1(\alpha)} = -\frac{\sum_{2 \leq s} a_s(\alpha) \varphi_t(\alpha)^s}{a_1(\alpha)}.$$

Now

$$v\left(\varphi_t(\alpha) + \frac{a_0(\alpha)}{a_1(\alpha)}\right) = v\left(\frac{\sum_{2 \leq s} a_s(\alpha)\varphi_t(\alpha)^s}{a_1(\alpha)}\right) > v\left(\varphi_t(\alpha)\right).$$

Find $a_1^{-1}(x) \in K[x]$ with $a_1(x)a_1^{-1}(x) \equiv 1 \mod \varphi_t(x)$. For $\varphi^*(x) := \varphi_t(x) + A(x)$ where $A(x) \equiv a_0(x)a_1^{-1}(x) \mod \varphi_t(x)$, with $\deg A < \deg \varphi_t$, we get

$$v(\varphi^*(\alpha)) = v(\varphi_t(\alpha) + A(\alpha)) > v(\varphi_t(\alpha))$$

So $\varphi^*(x)$ is a better approximation to the irreducible factor P(x).

Single Factor Lifting Convergence

Theorem

Let φ_t be a good approximation to an irreducible factor P(x) of $\Phi(x)$ and let α be a root of P(x). Let $\Phi(x) = \sum_{i \geq 0} a_i(x) \varphi_t^i(x)$ nbe the φ_t -expansion of $\Phi(x)$. Let $a_1^{-1}(x) \in K[x]$ with $a_1(x)a_1^{-1}(x) \equiv 1 \mod \varphi_t(x)$ and $A(x) \in \mathcal{O}_K[x]$ with $A(x) \equiv a_0(x)a_1^{-1}(x) \mod \varphi_t(x)$ Then

$$v(\varphi_t(\alpha) + A(\alpha)) \ge 2v(\varphi_t(\alpha)).$$

Single Factor Lifting Algorithm

Input: a good approximation $\varphi(x)$ to an irreducible factor P(x) of $\Phi(x)$ **Output:** a lift of $\varphi(x)$ to a given precision $\nu \in \mathbb{N}$

- (1) $a, a_0 \leftarrow \operatorname{quotrem}(f, \varphi), a_1 \leftarrow a \mod \varphi$
- (2) $h_{\varphi} \leftarrow w(a_0) w(a_1\varphi)$
- (3) Find $\Psi \in K[x]$ with deg $\Psi < \deg \varphi$ and $v(\Psi(\alpha)) = -v(a_1(\alpha))$
- (4) $A_0 \leftarrow \Psi a_0 \mod \varphi$, $A_1 \leftarrow \Psi a_1 \mod \varphi$
- (5) Find $A_1^{-1} \in K[x]$ with $v((A_1^{-1}A_1 \mod \varphi(\alpha)) 1) > 0$
- (6) $s \leftarrow 1$
- (7) while $s < h_{\varphi}$: (Newton inversion)
 - (a) $A_1^{-1} \leftarrow A_1^{-1}(2 A_1A_1^{-1}) \mod \varphi$
 - (b) $s \leftarrow 2s$
- (8) $A \leftarrow A_0 A_1^{-1} \mod \varphi$, $\Phi \leftarrow \varphi + A$, $C_1^{-1} \leftarrow A_1^{-1}$
- (9) $h \leftarrow 2h_{\varphi}$

Single Factor Lifting Algorithm

- (10) while $h < e(\nu \nu_0)$: **(The main loop)**
 - (a) $c, c_0 \leftarrow \operatorname{quotrem}(f, \Phi), c_1 \leftarrow c \mod \Phi$
 - (b) $C_0 \leftarrow \Psi c_0 \mod \Phi$, $C_1 \leftarrow \Psi c_1 \mod \Phi$
 - (c) $C_1^{-1} \leftarrow C_1^{-1}(2 C_1C_1^{-1}) \mod \Phi$
 - (d) $C \leftarrow C_0 C_1^{-1} \mod \Phi$
 - (e) $\Phi \leftarrow \Phi + C$
 - (f) $h \leftarrow 2h$
- (11) return Φ

where
$$u_0 := \frac{h_1}{e_1} + \frac{h_2}{e_1 e_2} + \cdots + \frac{h_r}{e_1 \cdots e_r}$$

Applications

Assume that the first segment of the Newton Polygon for $\varphi_t(x)$ has length one. Let α be a root of $\Phi(x)$ that corresponds to this segment.

Uniformizers

There are $s_{\pi} \in \mathbb{Z}$ and $s_1, \ldots, s_t \in \mathbb{N}$ with $0 \le s_i \le E_i^+$ such that $\nu(\Pi(\alpha)) = \frac{1}{E_t}$ for

$$\Pi(x) = \pi^{s_{\pi}} \varphi_1(x)^{s_1} \cdot \dots \cdot \varphi_t^{s_t} \in K[x].$$

Splitting Extensions into Unramified and Ramified Part

Let L/K be unramified of degree F_t and g(y) be factor of

$$\chi_{\Pi}(y) = \operatorname{res}_{x}(\Phi(x), y - \Pi(x))$$

over L. Then

$$K(\alpha) \cong L(\Pi(\alpha)) \cong L[y]/(g(y))$$

where L[y]/(g(y)) over L is totally ramified of degree E_t .

Applications

Assume that the first segment of the Newton Polygon for $\varphi_t(x)$ has length one. Let α be a root of $\Phi(x)$ that corresponds to this segment and let $P(x) \in \mathcal{O}_K[x]$ be the corresponding irreducible factor of $\Phi(x)$.

Two Element Certificates

There are $r_{\pi} \in \mathbb{Z}$ and $r_1, \ldots, r_t \in \mathbb{N}$ with $0 \le r_i \le E_i^+ F_i^+$ such that $[\underline{K}(\underline{\Gamma(\alpha)}) : \underline{K}] = F_t$ for

$$\Gamma(x) = \pi^{r_{\pi}} \varphi_1(x)^{r_1} \cdot \cdots \cdot \varphi_t^{r_t} \in K[x].$$

 $\Gamma(x)$ and $\Pi(x)$ with $[\underline{K}(\Gamma(\alpha)) : \underline{K}] = F_t$ and $\nu(\Pi(\alpha)) = \frac{1}{E_t}$ are a certificate for the irreducibility of $\overline{P(x)}$ with $\deg(P) = E_t \cdot F_t$.

Integral Basis

$$\left\{ \Gamma(\alpha)^{i} \Pi(\alpha)^{j} \mid 0 \le i < F_{\Gamma}, 0 \le j < E_{\Pi} \right\}$$

is an integral basis of $K(\alpha)$.