The Laurent and Robbins phenomena

Sage Days, UCSD, 20 Feb 2012

Joe Buhler, CCR
Kiran Kedlaya, UCSD
$\begin{array}{lllllllll}\cdots & 1 & 1 & 1 & 2 & 3 & 23 & \cdots\end{array}$

$$
\begin{gathered}
x_{0}=x_{1}=x_{2}=x_{3}=1 \\
x_{n}=\left(x_{n-1} x_{n-3}+x_{n-2}^{2}\right) / x_{n-4}
\end{gathered}
$$

$\ldots, 2,3,7,23,59,314,1529,8209,83313,620297,7869898$, 126742987, 1687054711, 47301104551, 1123424582771, 32606721084786, 1662315215971057, 61958046554226593, 4257998884448335457, ...

$$
\begin{gathered}
x_{0}=x_{1}=x_{2}=x_{3}=1 \\
x_{n}=\left(x_{n-1} x_{n-3}+x_{n-2}^{2}\right) / x_{n-4}
\end{gathered}
$$

$\ldots, 2,3,7,23,59,314,1529,8209,83313,620297,7869898$, 126742987, 1687054711, 47301104551, 1123424582771, 32606721084786, 1662315215971057, 61958046554226593, 4257998884448335457, ...

$$
x_{18}=\frac{47301104551 \cdot 126742987+1687054711^{2}}{7869898}
$$

Integrality

Theorem: x_{n} is an integer for all $n \in \mathbf{Z}$
Proof:
a. All x_{n} are nonzero.
b. Define auxiliary quantities y_{n} and z_{n} :

$$
y_{n}=\left(x_{n} x_{n+3}^{2}+x_{n+2}^{3}\right) / x_{n+1}, \quad z_{n}=\left(x_{n}^{2} x_{n+4}+x_{n+1}^{3}\right) / x_{n+2}
$$

c. Prove by simultaneous induction that:
(1) $x_{n}, x_{n+1}, x_{n+2}, x_{n+3}, y_{n}, z_{n} \in \mathbf{Z}$
(2) $x_{n}, x_{n+1}, x_{n+2}, x_{n+3}$ are pairwise coprime

Reverend Charles Dodgson

Jacobi's identity

Jacobi (and others): If A is an $n \times n$ matrix over your favorite ring, and $D_{i ; j}$ is the determinant of the matrix obtained from A by excising the i-th row and j-th column then:

$$
\operatorname{det}(A) \cdot D_{1, n ; 1, n}=D_{n ; n} D_{1 ; 1}-D_{1 ; n} D_{n ; 1}
$$

Jacobi's identity

Jacobi (and others): If A is an $n \times n$ matrix over your favorite ring, and $D_{i ; j}$ is the determinant of the matrix obtained from A by excising the i-th row and j-th column then:

$$
\operatorname{det}(A) \cdot D_{1, n ; 1, n}=D_{n ; n} D_{1 ; 1}-D_{1 ; n} D_{n ; 1}
$$

Outer \cdot Inner $=N W \cdot S E-N E \cdot S W$

Proof of Jacobi's identity

a. WLOG, the matrix entries are indeterminates.
b. Adding a multiple of an inner row (resp., column) to any other row (resp., column) leaves all 6 determinants unchanged.
c. WLOG

$$
A=\left[\begin{array}{ccccc}
a & 0 & \ldots & 0 & b \\
0 & e_{1} & & & 0 \\
\vdots & & \ddots & & \vdots \\
0 & & & e_{n-2} & 0 \\
c & 0 & \ldots & 0 & d
\end{array}\right]
$$

and

$$
(a d E-b c E) E=a E \cdot E d-b E \cdot E c
$$

$\begin{array}{llll}6 & 4 & 1 & 0\end{array}$

4	8	6	1

2
6
9
3
$\begin{array}{llll}1 & 3 & 9 & 9\end{array}$

Sage Days, UCSD, 20 Feb 2012
6
4
1
0
4
8
6
1
2
6
9
3
13
9
9

8 4 1
2
3
0 3 9

4

p-adic Integrality

N.B.: p-adics \equiv any DVR

If $x_{1}, x_{2}, x_{3}, x_{4}$ are p-adic units, and the Somos-4 recursion never hits zero, then for all n

$$
v\left(x_{n}\right) \geq 0
$$

i.e., x_{n} is a p-adic integer, despite the division in the recursion.

Proof: as above.

Laurent phenomenon

Theorem: If $x_{1}, x_{2}, x_{3}, x_{4}$ are indeterminates and the Somos-4 recursion is used to calculate

$$
x_{n}=x_{n}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)
$$

then every x_{n} lies in the Laurent ring

$$
\mathbf{Z}\left[x_{1}^{ \pm}, x_{2}^{ \pm}, x_{3}^{ \pm}, x_{4}^{ \pm}\right]
$$

Proof: As above (except that step a. is unnecessary).

Laurent phenomenon, cont.

Sergey Fomin and Andrei Zelevinsky prove many instances of the Laurent phenomenon in their 2001 paper The Laurent Phenomenon, using the Caterpillar Lemma

This was one of the origins of the theory of Cluster Algebras

A p-adic "computational framework"

You have a memory with n locations that can store values in a p-adic ring.
Each step of the computation must be of the following form: pick a location with value x and replace the value with a polynomial of the other locations divided by x, i.e.,

$$
x_{\text {new }}=P(\text { other locations }) / x_{\text {old }}
$$

The polynomial P is called an exchange polynomial. We do not allow consecutive steps to target the same location.

p-adic stability

Let c be a positive integer. A computational framework as above satisfies the " p-adic Robbins- c property" (or is p-adic Robbins- c stable, or is an instance of the p-adic Robbins- c phenomenon) if

$$
v\left(x-x^{\prime}\right) \geq r-c \cdot e
$$

where

- x is the result of the p-adic computation,
- x^{\prime} is the result of some p-adic computation with relative precision r,
- e is the maximum valuation of the divisors in the computation, and
- we assume that $c \cdot e \leq r$.

Somos-4 example

Let x_{n} be a Somos-4 in the p-adics, and let x_{n}^{\prime} be a sequence with the the same four initial terms, but with all calculations done with with relative p-adic precision r. Define

$$
e:=\max _{4 \leq k \leq n-4} v\left(x_{k}\right)
$$

Theorem: If $e<r$, then

$$
v\left(x_{n}-x_{n}^{\prime}\right) \geq r-e
$$

In other words, Somos-4 is p-adic Robbins stable.
Robbins conjectured that the Dodgson recursion also has this property.

Cluster Algebras

A (skew-symmetric, geometric) cluster algebra (without coefficients) starts with

- n memory locations, initialized with indeterminates, and
- a skew-symmetric integer matrix M.

A cluster computation (a) changes a given x_{k} by "binomial" exchange polynomials

$$
x_{k, \text { old }} x_{k, \text { new }}=\left[x^{M(k)}\right]_{+}+\left[x^{-M(k)}\right]_{+}
$$

where $M(k)$ is the k-th row of M (so that $\left.\operatorname{row}(k)_{k}=0\right)$ and

$$
\left[x^{v}\right]_{+}=\prod_{v_{i}>0} x_{i}^{v_{i}}
$$

and (b) mutates the matrix M according to a specific rule.
We conjecture that cluster algebra computations are p-adically Robbins stable.

Algebraic Formulation of p-adic stability

A (re)formulation of relative p-adic precision r :
An adversary/devil/pixie is allowed to secretly multiply any stored value x by an r-unit, i.e., an element of the form $1+\varepsilon$ where $v(\varepsilon) \geq r$.

The Somos-4 recursion with errors is then

$$
x_{n} x_{n-4}=\left(1+\varepsilon_{0, n}\right) x_{n-1} x_{n-3}+\left(1+\varepsilon_{1, n}\right) x_{n+2}^{2}
$$

Algebraic Formulation of p-adic stability

A (re)formulation of relative p-adic precision r :
An adversary/devil/pixie is allowed to secretly multiply any stored value x by an r-unit, i.e., an element of the form $1+\varepsilon$ where $v(\varepsilon) \geq r$.

The Somos-4 recursion with errors is then

$$
x_{n} x_{n-4}=\left(1+\varepsilon_{0, n}\right) x_{n-1} x_{n-3}+\left(1+\varepsilon_{1, n}\right) x_{n+2}^{2}
$$

Now let the $\varepsilon_{i, n}$ be indeterminates!

Somos-4

Theorem: If x_{n} is computed with the Somos-4 recursion with errors then x_{n} lies in the ring

$$
\mathbf{Z}\left[x_{1}^{ \pm}, x_{2}^{ \pm}, x_{3}^{ \pm}, x_{4}^{ \pm}, \frac{\varepsilon_{i, j, k}}{x_{k}}\right]
$$

where the (i, j, k) range over the set $\{(i, j, k): i=0,1, \quad|j-k| \leq 1, \quad 4 \leq k \leq n-4\}$.
We say that Somos-4 satisfies the Robbins phenomenon.

The Robbins phenomenon

The proof of the above theorem is motivated by the earlier proof, but is significantly more elaborate.

A computational framework satisfies the (algebraic) Robbins phenomenon if each final memory location lies in an analogous enlarged Laurent ring.

We conjecture that frameworks coming from cluster algebras satisfy this property.

Examples

- $x_{0} x_{4}=x_{1} x_{3}+x_{2}^{2}$ is provably Laurent and Robbins
- $x_{0} x_{5}=x_{1} x_{4}+x_{2} x_{3}$ is Laurent (though we know of no easy proof) and Robbins
- $x_{0} x_{6}=x_{1} x_{5}+x_{2} x_{4}$ is Laurent and (experimentally) Robbins
- $x_{0} x_{7}=x_{1} x_{6}+x_{2} x_{5}$ ditto
- $x_{0} x_{6}=x_{1} x_{5}+x_{3}^{2}+x_{2} x_{4}$ is Laurent and not Robbins, but it is (experimentally) Robbins-2 and (provably) Robbins-5
- The Dodgson recurrence is (experimentally) Robbins, and (provably) Robbins-3

Examples, cont.

p prime, $k \geq 3$ and $c \in \mathbf{Z}$. Consider

$$
x_{k} x_{0}=x_{1}^{2}+\cdots+x_{k-1}^{2}+c \sum_{0<i<j<k} x_{i} x_{j} .
$$

over \mathbf{Z}_{p} This is Laurent. Let $N R$ denote the assertion that $c^{2}-4$ is a quadratic nonresidue mod p. Experimental results for $k=4$:

- Robbins-2 for all p, and $|c|<6$.
- For $c=0$ and $c=2$, Robbins for all p.
- For $c=1, c= \pm 3$, and $c= \pm 4$, Robbins for $p=2$ or $N R$.
- For $c= \pm 5$, Robbins for $p=2,5$, or $N R$.

For fixed c, it seems that the correction factor can grow roughly linearly with p.

