
Chapter 2

Basic properties of elliptic divisibility
sequences

Our purpose in this chapter is to give an overview of the classical theory and methods of elliptic divis-
ibility sequences. As such, we will include especially those proofs that give a flavour of the methods,
and omit much of the tedium. Citations are given wherever details are missing.

2.1 Making the curve-sequence relation explicit

Ward, in relating sequences and curves in Theorem 1.2.1, gives explicit formulæ for the coefficients of
the Weierstrass equation of the curve and the coordinates of the point, in terms of the initial terms of
the sequence. Christine Swart gives a cleaner collection of equations for this, and it is her version we
describe here. Also, although Ward concerns himself with integer sequences, his formulae and those
of Swart work equally well for rationals. As in the introduction, define a change of variables of a cubic
curve in Weierstrass form to be unihomothetic if it is of the form

x 0 = x+ r,
y0 = y+ sx+ t.

Proposition 2.1.1 ([68, Thm 4.5.3]). Let W : Z! Q be an elliptic divisibility sequence with W (1) =
1 and W (2)W (3) 6= 0. Then the family of curve-point pairs (C,P) such that W = WC,P is three
dimensional. These are the curve and point

C : y2 +a1xy+a3y = x3 +a2x
2 +a4x+a6, P = (0,0)

where

a1 =
W (4)+W (2)5�2W (2)W (3)

W (2)2W (3)

a2 =
W (2)W (3)2 +W (4)+W (2)5�W (2)W (3)

W (2)3W (3)
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a3 =W (2), a4 = 1, a6 = 0

or any image of these under a unihomothetic change of coordinates.

Proof. See Section 8.2.

If we apply a change of variables of the form

x u2x, y u3y

to the curve E defined by
y2 +a1xy+a3y = x3 +a22 +a4x+a6 (2.1)

and point P = (x,y) 2 E to obtain a new curve E 0 and point P 0, then the associated elliptic divisibility
sequences satisfy

WE 0,P 0(n) = un2�1WE ,P(n). (2.2)

This is called by some an equivalence of elliptic divisibility sequences. We set our own terminology
later.

2.2 Relations to the group law on the elliptic curve

Suppose we define some auxiliary polynomials fm and wm by

fm = xY2
m�Ym+1Ym�1, (2.3)

4ywm = Ym+2Y2
m�1�Ym�2Y2

m+1. (2.4)

Then, one can check that on the curve (2.1),

[m]P =
✓

fm(P)
Ym(P)2

,
wm(P)

Ym(P)3

◆

. (2.5)

In particular, when working overQ, and in the case of an integer sequence, whenever fm(P) and Ym(P)
are relatively prime, the denominator of the x-coordinate of [m]P will be exactly WE ,P(m)2. The
numerators and denominators in (2.5) may involve cancellation. There is no cancellation if P = (0,0),
a6 = 0 and gcd(a3,a4) = 1 [61, §4.4].1

2.3 More on division polynomials

The division polynomials Yn have a special form.
1This has led some to remark that the ‘correct’ definition of elliptic divisibility sequences is by denominators in such a fashion.
We will not join that camp.
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Proposition 2.3.1 ([63, Ex 3.7] or [74, V.14]). The division polynomials Yn have a representation as
polynomials in x and y with coefficients in Z[a1,a2,a3,a4,a6]. In particular, they are of the form

Yn(x,y) =

8

<

:

nx n2�1
2 + . . . n odd

y(nx n2�4
2 + . . .) n even

.

Therefore, their squares Y2
n are polynomials of degree n2�1 in the variable x alone, with coefficients

in Z[a1,a2,a3,a4,a6], and leading coefficient n2. The roots of this polynomial Y2
n are exactly the x-

coordinates of all n2�1 non-zero n-torsion points on the associated elliptic curve.

2.4 Induction properties

Proposition 2.4.1. Let W : Z ! R be an elliptic divisibility sequence that is nonzero at the first
four terms. ThenW (�z) = �W (z) for any z 2 Z. In particular W (0) = 0. Furthermore, any two
elliptic divisibility sequencesW ,W 0 : Z!R that agree and are non-zero at 1,2,3 and 4, must agree
everywhere.

Proof. Our first step is to show the last statement for positively indexed terms (i.e., all positively
indexed terms agree). Two particular instances of the elliptic net equation (3.1) are

W (2n)W (2)W (1)2 =W (n)
⇣

W (n+2)W (n�1)2�W (n�2)W (n+1)2
⌘

, (2.6)

W (2n+1)W (1)3 =W (n+2)W (n)3�W (n�1)W (n+1)3. (2.7)

By induction on these equations, every subsequent positive indexed term is determined by W (1),
W (2),W (3),W (4).

Now we show the first statement. Assume without loss of generality thatW (1) = 1 (since we can
scaleW by a constant). First we show thatW (0) = 0. For, consider n =m = 0: in this case (1.2) states
thatW (0)2 = 0. Now we consider the statement �W (z) =W (�z). SupposeW (z+ 2) 6= 0. Setting
n = 1,m = z+ 1 in (1.2), we obtainW (z+ 2)W (�z) = �W (z+ 2)W (z), whenceW (�z) = �W (z)
since W (z+ 2) 6= 0. We have now shown the symmetry for z = 0,1,2, hence W (�1) and W (�2)
are nonzero, and so we’ve shown it for z = �3,�4 also. Therefore we’ve shown it for z = 0,1,2,3,4.
Thus, by the first part, the sequencesW 0(z) = �W (�z) andW (z) agree on the first four terms and
therefore agree everywhere.

Finally, by the symmetry property just shown, the terms indexed by non-positive integers are also
determined uniquely byW (1),W (2),W (3) andW (4).

Proposition 2.4.2 ([74, Lemma 4.1]). IfW is an elliptic divisibility sequence satisfyingW (1) = 1 and
W (2)W (3) 6= 0, and if two consecutive terms vanish, thenW (n) = 0 for n � 4.

Proof. See [74, Lemma 4.1].
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2.5 The integer case

From Proposition 2.3.1, any rational elliptic divisibility sequence can be made into an integer sequence
by an appropriate equivalence of the form (2.2), clearing the denominators.

Proposition 2.5.1 ([74, Thm 4.1]). SupposeW is an elliptic divisibility sequence satisfyingW (1) = 1,
W (2)W (3) 6= 0 andW (2)|W (4), andW (i)2Z for i = 1,2,3,4. Then, the sequence is entirely integer
and for all n,m 2 Z,

n|m =) W (n)|W (m).

Proof. We provide a sketch. For a complete proof, see [74, Thm 4.1]. Recall equations (2.6) and (2.7):

W (2n)W (2)W (1)2 =W (n)
⇣

W (n+2)W (n�1)2�W (n�2)W (n+1)2
⌘

,

W (2n+1)W (1)3 =W (n+2)W (n)3�W (n�1)W (n+1)3.

A first induction shows that all terms are integers, and W (2)|W (2n) for every n. Then, a second
induction shows the divisibility property in general: for this, we use the following equations (the first
in the case that m is even, the second in the case that it is odd):

W (nm)W (2) =W
�nm

2
�

⇣

W
�nm

2 +2
�

W
�nm

2 �1
�2�W

�nm
2 �2

�

W
�nm

2 +1
�2

⌘

, (2.8)

W (nm)W (n) =W
⇣

n(m+1)
2 +1

⌘

W
⇣

n(m+1)
2 �1

⌘

W
⇣

n(m�1)
2

⌘2
(2.9)

�W
⇣

n(m�1)
2 +1

⌘

W
⇣

n(m�1)
2 �1

⌘

W
⇣

n(m+1)
2

⌘2
. (2.10)

This second induction uses Proposition 2.4.2.

2.6 Periodicity modulo p

Definition 2.6.1. For an integer elliptic divisibility sequence W , let r denote the smallest positive
integer such thatW (r)⌘ 0 mod p. The integer r is called the rank of apparition ofW with respect
to p.

Proposition 2.6.1 ([74, Thm 5.1]). For any integer elliptic divisibility sequence and prime p, the rank
of apparition r with respect to p exists and satisfies

1 r  2p+1.

Proof. Without loss of generality, we may assume r � p+3. Then consider the p values

W (r�1)W (r +1)
W (r)2

,
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each of which is a non-zero value modulo p. By the pigeonhole principle2, two must coincide, and we
have for some 1 n < m  p�1,

W (m�1)W (m+1)
W (m)2

⌘W (n�1)W (n+1)
W (n)2

mod p.

Then, the elliptic divisibility sequence recurrence (1.2) implies

W (m+n)W (m�n)⌘ 0 mod p.

By our assumption that r � p+ 3, and the fact that m�n  p� 2, we conclude that W (m�n) 6⌘ 0
mod p, and so

W (m+n)⌘ 0 mod p.

But m+n  2p+1.

By the nice properties of the division polynomials (Proposition 2.3.1), we can reduce them modulo
a prime p, and the reduced division polynomials will correspond to the elliptic curve and point reduced
modulo the same prime. In particular, it will still be the case that Yn(P) ⌘ 0 modulo p if and only if
[n] eP = eO on the reduced curve. So, if W is such that W (1) = 1, W (2)W (3) 6= 0 and W (2)|W (4),
then the sequence arises from some curve E and point P (by Theorem 1.2.1). In this case Shipsey [61,
§4.7.2] observes that Hasse’s bound on the number of points of a curve over a finite field implies that
for most primes p, the rank of apparition satisfies the stronger bound

r  p+1+2
p
p.

Ward proves a very interesting and important ‘symmetry’ or ‘partial periodicity’ property.

Theorem 2.6.2 ([74, Thm 9.2]). LetW be an integer elliptic divisibility sequence such thatW (1) = 1
and W (2)|W (4). Let p be an odd prime and suppose W (2)W (3) 6⌘ 0 mod p. Let r be the rank
of apparition of W with respect to p. Then there exist integers a,b such that for all non-negative
integers k and s, we have

W (k+ sr)⌘ aksbs
2
W (k) mod p.

Furthermore, the integers a and b satisfy

a ⌘ W (r�2)
W (r�1)W (2)

, b ⌘W (r�1)2W (2)
W (r�2)

mod p.

The proof uses the periodicity of the Weierstrass sigma function, and the reader is encouraged to
look ahead to Chapter 5, especially equation (5.1).

Proof. By Theorem 1.2.1,W is associated to some curve E and point P . Let z be the complex coordi-
nate of the point P , so that P = (√(z),√0(z)). The roots of Y2

n(x) = 0 over C are of the form

z =√(w/n)
2My advisor is fond of boosting the confidence of his struggling graduate students by asserting that his own thesis consisted
in large part of a single application of pigeonhole principle. For this, and his rumoured – but surely feigned – occasional
confusion over the correct definition of a topology, we are ever grateful.
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where w is a period of the Weierstrass √ function. By Proposition 2.3.1, the polynomial Y2
n(x) has

leading coefficient n2 and coefficients in Z[a1,a2,a3,a4,a6]. Hence, Y2
n(x) is a well-defined polynomial

of degree n2 modulo p for any p - n.
Now, assume for the moment that p - r .
Let K be the number field obtained by adjoining all the roots of Y2

r(x) and let p be a prime of K
that divides p. Then Y2

r splits in the finite field K/p. Since its value at P is zero,√(z) is a root modulo
p, i.e.,

√(z)⌘√(w/r) mod p

for some period w . Thus, the sequence W under consideration agrees modulo p with the sequence
W 0

n = Yn(w/r). SinceW modulo p reduces to integers modulo p (i.e., its image is in Q/(p)⇢K/p), it
suffices to replaceW in our consideration withW 0 and show the formulæ of the theorem modulo p.

The formula of the Theorem now results from a calculation using the period relation (5.1) of the
Weierstrass s function:

Yk+sr
�w
r
�

Yk
�w
r
� =

s
�

(k+ sr)w
r
�

s
�

kw
r
� s

�w
r
��2rsk�r2s2

= l (sw)eh(sw)(k sw
r +s w

2 )s
�w
r
��2rsk�r2s2

=
⇣

s
�w
r
��2r eh(w) w

r
⌘ks

✓

l (w)s
�w
r
��r2 eh(w) w

2

◆s2

.

For the case when p|r , there are some additional difficulties, and the reader should consult [74, Thm
9.2]. Finally, note that the final statement of the theorem (the formulæ for a and b) follows immediately
from the existence of a and b.

Ayad and Swart generalise partial periodicity to the case of prime power moduli [2, Thm C] [68,
Thm 5.1.3]. Their proofs have the additional attraction that they require only the recurrence relation
and not the underlying elliptic curve relationship.

Our interest in Ward’s original proof is to demonstrate a strategy that we will apply later: first,
show that the functions in question (in this case the division polynomials) have a nice form (i.e., they
are defined with Z coefficients and reduce modulo p without becoming trivial); second, verify the
property of interest (in this case the periodicity property) in the complex analytic case; third, using
the information from step one, transport the property to the finite field (or other field) case.

For a wealth of periodicity properties of elliptic divisibility sequences modulo primes and powers
of primes, see Swart [68].


