
ELLIPTIC DIVISIBILITY SEQUENCES AND BENFORD’S LAW

1. Recurrence Sequences and Benford’s Law

A recurrence sequence is a sequence of numbers {f(n)} indexed by n ∈ Z and
satisfying some given recurrence relation. Simple examples include the integers,
which satisfy the relation

a(n) = a(n− 1) + 1,

and the Fibonacci numbers, which satisfy the relation

f(n) = f(n− 1) + f(n− 2).

Generalizing the Fibonacci relation in a natural way, we have linear recurrence
sequences, satisfying a general relation of the form

a(x+ n) = s1a(x+ n− 1) + · · ·+ sn−1a(x+ 1) + sna(x),

with x ∈ Z and the constant coefficients si in some coefficient ring.
Benford’s Law, also known as the “leading digits phenomenon,” was first ob-

served by Newcomb and later by Benford, both of whom noticed that in books of
logarithms, the earlier pages (those corresponding to smaller leading-digits) were
more worn than later pages. Benford observed the same phenomenon across many
different data sets, and he found it to be even stronger when he combined data
from many different sources.

For any integer base B and any x ∈ R+, we may write x = MB(x) · Bk where
k ∈ Z and MB(x) ∈ [1, B) is the mantissa. A sequence of positive numbers {a(n)}
is Benford base B if

(1) lim
N→∞

#{n ≤ N : 1 ≤MB (a(n)) ≤ s}
N

= logB s.

In other words, the probability that the mantissa of any element of the sequence is
in the interval [1, s] is precisely logB s.

To see a modern development / explanation of Benford’s
law in terms of probability measures, see Section 2.3 of the
file Adams Benfords-Law.pdf.

The leading digits phenomenon discovered by Newcomb and Benford amounts
to saying that many data sets are Benford base 10.

Theorem 1.1. A sequence (un) is Benford base-B if and only if the sequence
(logB un) is distributed uniformly mod 1.

Theorem 1.2 (Kronecker-Weyl Criterion). A sequence (cn2) is distributed uni-
formly mod 1 if and only if c is irrational.

Specifically, the Fibonacci sequence — along with any linear recurrence satisfying
certain conditions — are Benford base 10.
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For a proof of the Kronecker-Weyl Criterion, see the first
seven pages of the file Granville UniDistn.pdf. For proofs
about the Fibonacci sequence, see Fibonacci Benford.pdf.
For other linear recurrences, see Recursive Benford.pdf.

2. Elliptic Divisibility Sequences

Generalizing the work described in Section 1, we explore the distribution prop-
erties of more complicated recurrence sequences. We begin with some definitions.

An integral divisibility sequence is a sequence of integers {u(n)} satisfying

u(n) | u(m) whenever n | m.

An elliptic divisibility sequences is an integral divisibility sequence which satsifies
the following recurrence relation for all m ≥ n ≥ 1:

(2) u(m+ n)u(m− n)u(1)2 = u(m+ 1)u(m− 1)u(n)2 − u(n+ 1)u(n− 1)u(m)2.

We note that elliptic divisibility sequences are special cases of Somos sequences,
which satisfy more general bilinear recurrences.

It is a simple matter to check that certain sequences trivially satisfy this recur-
rence. For example:

• The sequences of integers, where u(n) = n.
• The sequence 0, 1,−1, 0, 1,−1, . . ..
• The sequence 1, 3, 8, 21, 55, 144, 377, 987, 2584, 6765, . . . (this is every-other

Fibonacci number).

However, there are many more interesting examples of elliptic divisibility se-
quences, for example:

• The sequences which begins 0, 1, 1,−1, 1, 2,−1,−3,−5, 7,−4,−28, 29, 59,
129,−314,−65, 1529,−3689,−8209,−16264, 833313, 113689,−620297, 2382785,
7869898, 7001471,−126742987,−398035821, 168705471,−7911171597, . . .. (This
is sequence A006769 in the On-Line Encyclopedia of Integer Sequences [5].)

• The sequence which begins 1, 1,−3, 11, 38, 249,−2357, 8767, 496036,−3769372,
−299154043,−12064147359, . . ..

These sequences have been studied extensively, beginning with Morgan Ward’s
work [6], and continuing now because of their use in cryptography, in particular
their application to the elliptic curve discrete log problem (see [3], for example).
Ward showed that the first three examples above are degenerate examples of elliptic
divisibility sequences, in that they are all either the integers or Lucas sequences of
the form

u(n) =
an − bn

a− b
where a+ b ∈ Z and ab = 1,

(so they satisfy a simpler recurrence as well).
Ward also showed that all examples of elliptic divisibility sequences which are not

linear arise from elliptic division polynomials (see [4, Exercise 3.7]) in the following
way. For an elliptic curve given by

(3) E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, ai ∈ Q
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we define the quantities

b2 = a21 + 4a2,

b4 = 2a4 + a1a3,

b6 = a23 + 4a6,

b8 = a21a6 + 4a2a6 − a1a3a4 + a2a+ 32 − a24.

Define a sequence of polynomials (ψn) in Q[x, y] by:

ψ0 = 0,

ψ1 = 1,

ψ2 = 2y + a1x+ a3,

ψ3 = 3x4 + b2x
3 + 3b4x

2 + 3b6x+ b8,

ψ4 = ψ2

(
2x6 + b2x

5 + 5b4x
4 + 10b6x

3 + 10b8x
2 + (b2b8 − b4b6)x+ b4b8 − b26

)
.

The recurrence, for n ≥ 2 is given by

ψ2n+1 = ψn+2ψ
3
n − ψn−1ψ

3
n+1,

ψ2nψ2 = ψn

(
ψn+2ψ

2
n−1 − ψn−2ψ

2
n+1

)
.

The polynomial ψn has

• zeroes at the n-torsion points of E and
• a pole supported on O ∈ E.

Furthermore, we have the property that if P ∈ E(Q) is given by

P = (x, y) , then [n]P =

(
φn(P )

ψn(P )
,
ωn(P )

ψn(P )

)
.

Theorem 2.1 (M. Ward, 1948). With the definitions above, let P = (x, y) be a
non-torsion rational point on the elliptic curve E. Then

u(n) := ψn(P )

forms an elliptic divisibility sequence. Furthermore, every non-linear elliptic divis-
ibility sequence satisfying u(1) = 1 and u(2)u(3) 6= 0 arises in this way.

In this construction, the intuition is as follows. Beginning with a point P ∈ E(Q),
we may form the sequence of multiples of P :

(4) P, 2P, 3P, 4P, . . .

These points are also in E(Q), and if P is not a torsion point, then this forms an
infinite sequence. So instead of the sequence in (4), we may instead consider the
sequence (ψn(P )).

Ward’s theorem says that every nontrivial elliptic divisibility sequence is exactly
this kind of sequence of denominators, where the convention that u(1) = 1 means
that we start with a non-torsion integral point on some elliptic curve. The particular
sequences is determined by both the curve and the initial point.

Note: Fix a rational point P ∈ E. The point [n]P = (φn(P )/ψn(P ), ωn(P )/ψn(P ))
may not be written in lowest terms. Specifically, gcd (φn(P ), ψn(P )) is supported
on the primes dividing the discriminant of the curve E. So an elliptic divisibility
sequence is almost (but not quite) the sequence of denominators of [n]P , where P
is a non-torsion rational point.
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For a more comprehensive introduction to elliptic divisibil-
ity sequences, including a proof of Ward’s correspondence,
see the file KateThesisCh2.

3. Canonical Heights

Let K be a number field with [K : Q] = d and α ∈ K. Further, let MK be the
set of valuations of K with each valuation corresponding to the absolute value | · |v.
The naive height h(α) is, in essence, a measure of the arithmetic complexity of α.
It is defined by

h(α) =
1

d

∑
v∈MK

ln max{1, |α|v}.

For a K-rational point P on a elliptic curve, we set h(P ) to be the height of the
x-coordinate of P , and h(P ) = 0 for the point at infinity. For two points P and Q
on an elliptic curve, the naive height satisfies an almost-parallelogram law:

h(P +Q) + h(P −Q) = 2h(P ) + 2h(Q) +O(1).

Tate defined a global canonical height for points on elliptic curves as follows:

ĥ(P ) =
1

2
lim
n→∞

4−nh(2nP ).

The canonical height satisfies:

(1) ĥ(P ) = 0 if and only if P is a torsion point of E(K),

(2) ĥ(P + Q) + ĥ(P − Q) = 2ĥ(P ) + 2ĥ(Q) (true parallelogram law), so in
particular

(3) ĥ(nP ) = n2ĥ(P ), and finally

(4) ĥ(P ) = h(P ) +O(1).

The global canonical height is fundamental in the study of the arithmetic of
elliptic curves, and is a part of major conjectures such as the Birch-Swinnerton-
Dyer Conjecture and the Elliptic Lehmer Problem. It is interesting to note that it
is unknown, for even a single non-torsion point on a single elliptic curve, whether
canonical heights of rational points are rational or irrational. See [4] for more
background on heights.

4. Math Project

It should be the case that an elliptic divisibility sequence is Benford base b for
almost all b. Here’s a heuristic argument:

• It’s well-known that elliptic divisibility sequences satisfy a growth condition

like ψn(P ) ≈ cn2

where the constant c depends on the arithmetic height of
the point P and on the curve E.
• Weyl’s theorem tells us that {nkα} is uniform distributed mod 1 iff α 6∈ Q.
• So we should at least be able to conclude that a given EDS is Benford base
b for almost every b.
• But: There is some subtlety in the error term.

Let Bn = cn
2

for some constant c. Then the argument above applies to this

sequence. But we have ψn(P ) = cn
2

+O(1). Though the error term is bounded, it
could still mess things up. It could be just enough to make your original sequence
periodic mod 1, for example.
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I recently had the following correspondence with Noam Elkies about the question,
which gives me hope that there’s something we can prove here:

“Anyway, of course n2(ĥ(P )/ log b) + O(1) need not be equidis-
tributed mod 1 in general, but here we know more than that for-
mula, because there’s a closed form for the “elliptic divisibility se-
quence” in terms of theta functions that gives that O(1) correction
as a periodic function of n plus an almost-periodic function s(n),
and s(n) depends smoothly on [n]P modulo the real period Omega
of the curve, except for a logarithmic singularity at multiples of
Omega. Now the Weyl equidistribution criterion can be used to
show that the joint distribution of (cn2, rn) mod Z× Z is asymp-
totically uniform as long as c and r are both irrational (which we

conjecture is true for c = ĥ(P )/ log(b), and know is true for r be-
cause P is non-torsion). The desired result soon follows; to deal
with the logarithmic singularity, ignore n for which rn is within ε
of the nearest integer (which in the limit account for only 2ε of all
n values), proof equidistribution for the rest, and then note that ε
can be taken arbitrarily small.”

I don’t totally understand this argument, but my hope is that we can unwind it
and fill in the details and prove the result about elliptic divisibility sequences.

In the case where we take the base b = e (so we are taking natural logarithms
and asking if the resulting sequence is uniform mod 1), we actually have

lnψn(P ) ∼ n2ĥ(P ).

So the elliptic divisibility sequence given by P should be Benford base-e iff the

canonical height ĥ(P ) is irrational. This isn’t known for any single rational point
on any elliptic curve. (Though it’s certainly likely given the way the canonical
height is defined.) It would be interesting to show particularly good (or bad?) fits
to a Benford distribution for lots of points on lots of elliptic curves to provide more
solid evidence of the irrationality of canonical heights of rational points on elliptic
curves.

I suspect the problems on division polynomials in Silver-
man’s Arithmetic of Elliptic Curves will be helpful. (See
problems 3.7, 3.35, and especially 6.15 and 6.16.) The
stuff about Weierstrass σ in Silverman’s Advanced Top-
ics. . . book might also be of use.
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