This Sage worksheet was developed for the MAA PREP Workshop "Sage: Using Open-Source Mathematics Software with Undergraduates" (funding provided by NSF DUE 0817071).
In Sage, vectors are primarly linear algebra objects, but they are slowly becoming simultaneously analytic continuous functions. (Mostly due to the efforts of Jason Grout.)
Intersect $x-2y-7z=6$ with $\frac{x-3}{2}=\frac{y+4}{-3}=\frac{z-1}{1}$
{{{id=6| # designed with intersection at t = 2, i.e. (7, -10, 3) var('t, x, y') line = parametric_plot3d([2*t+3, -3*t-4, t+1], (t, 0, 4),color='red') plane = plot3d((1/5)*(-12+x-2*y), (x, 4, 10), (y, -13,-7), opacity=0.5) intersect=point3d([7,-10,3],color='black') line+plane+intersect /// }}}Notice: the syntax is not numerical_integral(f(t), (t, 0, 1)).
{{{id=14| arc_length = numerical_integral(rprime.norm(), 0,1) arc_length /// }}}Vvolume under $f(x,y)=x^2y$ above the triangle bounded by $y=0$, $x=3$ and $y=4x$.
{{{id=39| var('x y') f(x,y)=x^2*y /// }}} {{{id=37| # dy dx integrate( integrate(f(x,y), (y, 0, 4*x)), (x, 0, 3) ) /// }}} {{{id=35| # dx dy integrate( integrate(f(x,y), (x, y/4, 3)), (y, 0, 12) ) /// }}} {{{id=31| var('u v') surface = plot3d(f(x,y), (x, 0, 3.2), (y, 0, 12.3), color = 'blue', opacity=0.3) domain = parametric_plot3d([3*u, 4*(3*u)*v,0], (u, 0, 1), (v, 0,1), color = 'green', opacity = 0.75) image = parametric_plot3d([3*u, 4*(3*u)*v, f(3*u, 12*u*v)], (u, 0, 1), (v, 0,1), color = 'green', opacity = 1.00) surface+domain+image /// }}}