
FINDING NEW CURVES USING TORSION FAMILIES AND

TWISTING

BEN LEVEQUE

At the moment we have no fast, guaranteed way to find new curves from ap values or
any other known data, but two methods that have proven effective to a certain extent
are searching through families of curves with given torsion structures and using quadratic
twists on curves already known. It is unlikely that the two methods together will find all
of our missing curves, but their implementation has been both instructive and somewhat
successful. At the moment, up to Galois conjugate pairs they have produced 33 of the 76
missing curves (see the last page for a list). This report will briefly describe twisting and
torsion families in more detail and then give a summary of how they were used to find new
curves. For proofs of the facts presented, consult Ian Connell’s Elliptic Curve Handbook,
which can be found online at http://www.ucm.es/BUCM/mat/doc8354.pdf. Connell’s
book, Silverman’s The Arithmetic of Elliptic Curves, and Kubert’s Universal Bounds on
the Torsion of Elliptic Curves are the primary resources used throughout.

1. Quadratic Twists (and a bit of background on isomorphisms)

If E is an elliptic curve defined over K (in our case Q(
√

5)), then a twist E′ of E is a
curve isomorphic to E over some extension of K. One way to create such isomorphisms
is by defining four-parameter maps: τ = [r, s, t, u], where r, s, t ∈ K and u ∈ K∗. These
maps act on the space E of non-singular elliptic curves by:

τ : [a1, a2, a3, a4, a6] 7→ [a′1, a
′
2, a
′
3, a
′
4, a
′
6],

where:
a′1 = u−1(a1 + 2s),
a′2 = u−2(a2 − sa1 + 3r − s2),
a′3 = u−3(a3 + ra1 + 2t),
a4 = u−4(a4 − sa3 + 2ra2 − (t+ rs)a1 + 3r2 − 2st),
a′6 = u−6(a6 + ra4 + r2a2 + r3 − ta3 − t2 − rta1)

The set of these maps τ form a group (G) under composition, and all isomorphisms between
curves over K may be given by elements in G. Therefore, two elliptic curves are isomorphic
iff they are in the same G-orbit of E . Conventionally, a G-orbit of E is called an abstract
elliptic curve, while a specific curve within an orbit is referred to as a model. It is worth
noting that there is an explicit formula for the image of a given point (c, d) ∈ E under the
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action of the map τ ∈ G:

τ : (c, d) 7→ (u−2(c− r), u−3(d− sc+ sr − t))
For example, the map [−1], which sends every point on E to its negative, is given by
the map σ: [0,−a1,−a3,−1] (quick sanity check: we see that if our curve is in short
Weierstrass form (in particular a1 = a3 = 0), σ indeed maps a point (c, d) to its negative
(c,−d)). We also note that the degree of an isomorphism of curves τ = [r, s, t, u] is equal
to [K(r, s, t, u) : K]. A quadratic twist of a curve E is therefore a curve E′ isomorphic to
E by a map of degree 1 or 2. If we consider E in the form

E : y2 = x3 + ax2 + bx+ c,

then the quadratic twist of E by d, for any element d ∈ K∗, is given by the equation

(1) Ed : dy2 = x3 + ax2 + bx+ c.

We can easily transform (1) to Weierstrass form by multiplying through by d3 and making
the substitutions y′ = d2y and x′ = dx. Finally, if E : [a1, a2, a3, a4, a6] is our curve, we

can give the isomorphism from E to Ed by the map τd = [0, a1(
r−1
2 ), a3(

r3−1
2 ), r], where r

is a root of r2 = 1
d . In fact the map from K∗ to G given by d 7→ τd is a homomorphism.

2. Torsion Families

We know that for any elliptic curve E/K,

E(K) ∼= Zr × E(K)tors,

and the structure of the torsion subgroup E(K)tors is an important characteristic of E.
Sheldon Kamienny and Filip Najman have shown that over K = Q(

√
5), the torsion

subgroup will be isomorphic to one of the 16 groups below, with the last case appearing
only once:

Z/mZ, 1 ≤ m ≤ 10, m = 12,
Z/2Z⊕ Z/2mZ, 1 ≤ m ≤ 4,
Z/15Z.

Over Q, these families have explicit parametrizations (given on page 217 of Daniel Ku-
bert’s Universal Bounds on the Torsion of Elliptic Curves). Over Q(

√
5), these parametriza-

tions are not guaranteed to produce all curves with a given torsion structure, but they are
a good place to start when searching for such curves.

3. Finding New Curves

Our implementation of twisting to find new elliptic curves is fairly straightforward: loop
through values of i and j up to a certain bound and twist the inputted curve E by ia+ j.
The advantage of this system is that the result of a quadratic twist by ia+j can have vastly
different coefficients than the original curve, including much larger values that likely would
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not be recovered by a search similar to the one that found our first list of matched curves
(http://wstein.org/Tables/hmf/sqrt5/finding weierstrass equations/matched.txt). One dis-
advantage is that we are still looping through values, which is very slow, especially since we
must check each potential new curve against the table to see if it is isomorphic or isogenous
to any known curve of the same norm conductor. However, there is an intuitive bound on
how high the norm of d should be (if we are twisting by d): the norm conductor of Ed

(denote as |cond(Ed)|) seems to be divisible by |d ·cond(E)|, so we need not consider twists
by elements of norm too large for our table of curves with N ≤ 1000.

Our implementation of the torsion family method began by looking at the parametriza-
tions of curves that have 2-, 3-, and 7-torsion points. Our approach has included using the
ap values for our unknown curves in conjunction with our isogeny code to identify unknown
curves Eun with given p-isogenies. These curves can be likely candidates for curves with
p-torsion points (in the case p = 2, these are the curves with p-torsion points), so we can
use the parametrizations to find curves that share norm conductor with Eun in hopes of
recovering the Weierstrass equation for Eun. Also helpful was Jon Bober’s list of curves
including predicted torsion points, as it allowed us to find such curves as:

E : y2 + xy = x3 + (121a− 211)x+ 619a− 1006

which has a 6-torsion point. The search was fairly successful for the 2-, 3-, 5-, and 7-torsion
families, and was extended to accommodate the rest of the possible torsion structures listed
in §2. As was the case in our search using twists, this search was quite slow, but it was
similarly effective in that it produced curves with large and diverse a-invariants.
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4. Curves Found*

1 --- (0, -1, a, -108*a - 67, 684*a + 423)

2 --- (0, 0, 1, 1652*a - 2673, -38652*a + 62540)

3 --- (0, 0, 0, -17*a - 12, -43*a - 26)

4 --- (0, -a - 1, 0, 8*a - 12, 11*a - 18)

5 --- (0, a + 1, 0, -6*a - 5, -18*a - 12)

6 --- (0, 0, 0, -16*a - 16, 44*a + 33)

7 --- (1, 0, 0, 121*a - 211, 619*a - 1006)

8 --- (a + 1, -a, 0, 7*a - 23, -24*a + 20)

9 --- (a, 0, 0, -7*a - 16, 24*a - 4)

10 -- (1, -1, a, -44*a - 27, -215*a - 133)

11 -- (a, -a - 1, 0, 0, -40*a - 25)

12 -- (0, -1, a + 1, 108*a - 175, -685*a + 1107)

13 -- (a, -a + 1, 0, 202*a - 329, -1553*a + 2514)

14 -- (a + 1, 0, 1, -1103*a - 682, 20454*a + 12641)

15 -- (1, 0, 1, 21*a - 40, -66*a + 101)

16 -- (0, a + 1, a + 1, -226*a - 140, 1772*a + 1095)

17 -- (a, 0, a + 1, -3*a - 5, 5*a - 3)

18 -- (18*a - 28, -105*a + 170, -105*a + 170, 0, 0)

19 -- (24*a - 38, -165*a + 267, -165*a + 267, 0, 0)

20 -- (a + 1, -1, a, -54*a - 33, -63*a - 39)

21 -- (a + 1, a - 1, a, 7*a - 12, -a + 2)

22 -- (0, -a, 0, -53*a - 33, -126*a - 78)

23 -- (a + 1, 1, a + 1, 27*a + 17, 27*a + 17)

24 -- (1, -1, 1, 1, 43*a + 26)

25 -- (a + 1, -a + 1, 0, 308*a - 498, -2948*a + 4770)

26 -- (a, a - 1, a + 1, 9*a + 3, -17*a - 6)

27 -- (1, -1, 1, a, -20*a - 12)

28 -- (a + 1, a, a + 1, -10*a + 13, 19*a - 32)

29 -- (a + 1, -a, a, a - 7, -6*a + 3)

30 -- (0, 1, a, 32*a - 54, -100*a + 159)

31 -- (1, a + 1, 0, -13*a - 13, 216*a + 128)

32 -- (1, -a, 1, -734*a - 454, -11114*a - 6869)

33 -- (0, a, a + 1, -223*a - 138, -2071*a - 1280)

34 -- (0, a, a, -43*a - 28, -203*a - 126)

35 -- (0, -a, a, -133*a - 83, -820*a - 507)

36 -- (0, -a, a + 1, -133*a - 83, 242*a + 149)

37 -- (0, -a, 1, -42*a - 53, -192*a - 140)

38 -- (0, a - 1, 1, 42*a - 95, 192*a - 332)

39 -- (0, 0, a, 112510*a - 182045, 21727126*a - 35155229)

*Note: This list currently contains six Galois-conjugate pairs


