On the Irreducibility of Galois Representations Associated to
Elliptic Curves

Eric Larson and Dmitry Vaintrob

Abstract

Given an elliptic curve F over a number field K, and a prime number ¢, the ¢-torsion
points define a representation pg ¢ : Gal(K/K) — GLa(F,). It is a well-known theorem
of Serre that this representation is surjective — and in particular irreducible — for all
but finitely many ¢. In this paper, we prove a theorem regarding the irreducibility
(over the algebraic closure of Fy) of this representation. It follows from our theorem
that if K does not contain the class field of an imaginary quadratic field F', then for
primes £ more than a bound depending only on the field K, the representation pg ¢ is
irreducible.

From this, we can deduce a generalization of the well-known theorem of Mazur that
the degree of an isogeny E — E’ of elliptic curves defined over Q of prime degree is
bounded by an absolute constant. Namely, we prove that the degrees of prime degree
isogenies of elliptic curves defined over K are bounded by a constant depending on K
if and only if K does not contain the class field of an imaginary quadratic field F, i.e.
if and only if there is no CM curve defined over K whose CM field is contained in K.

1 Introduction

Let E be an elliptic curve over a number field K, and for each prime number /, let
pee: G =Gal(Q/K) — GL(E[(]) ~ GL2(Z/1Z)

be the associated Galois representation on ¢-torsion points. These representations reflect
many geometric properties of F, such as its primes of bad reduction and the number of
points of E over finite fields, as well as possible isogenies of E. In particular, there exists
an isogeny E — E’ of prime degree ¢ if and only if pg 4 is reducible over F,. In particular,
if pg ¢ is irreducible (over the algebraic closure of Fy), there can be no isogenies E — E’ of
prime degree £. In this paper, we study the reducibility of the representations pg ».

Definition 1. For the remainder of the paper, we say that the representation p : G —
GLy(Fy) is reducible if it is reducible over the algebraic closure of Fy.

Definition 2. The semi-simplification p of a representation p is defined to be the direct
sum of the Jordan-Holder quotients of p.



Note that When pg ¢ is reducible, then its semi-simplification pg, is abelian. The
purpose of this paper is to prove the following theorem.

Theorem 1. Let K be a number field. Then, there exists an effectively computable constant
Cgk depending only on K such that for any prime number £ > Cx and any elliptic curve
E such that the (-torsion representation pg g is reducible, there exists an elliptic curve E'
over K with CM defined over K such that

~12 12

PEL = PE ¢
Remark 1. If we start with the assumption that E has a degree ¢F cyclic isogeny then the
same analysis should give a bound on k, even when p =2 or 3.

Remark 2. If E = E' is CM curve with CM defined over K, then pg ¢ is abelian, and hence
isomorphic to its own semi-simplification.

Corollary 1. The degrees of isogenies of elliptic curves over K are bounded if and only if
K does not contain the class field of an imaginary quadratic field F.

When pg ¢ is reducible, then its semi-simplification pg is abelian; in particular it is

diagonalizable over Fy as
~ (1 0 )

i1 — G —TF ~Q/py

are the two “eigencharacters” of pg . Here, p; is a fixed prime ideal of Q lying over /,
and I is the group if ideles of K (which surjects onto G by class field theory, since pg ¢
is abelian). By the Weil pairing, the two characters satisfy ¢119 = cyc,, the cyclotomic
character defined by the extension K[(].

To prove theorem 1, we study these eigencharacters: When / is sufficiently large (more
than some constant depending only on K), we use algebraic geometry to patch together
local information about these characters, and show that up to a twist by a 12th root of
unity, these eigencharacters have a particularly simple form. Namely, for some imaginary
quadratic subfield F C K, the characters 1; are equal to Nm% (times a 12th root of unity)
and its conjugate. In particular, the norm map Cl(K) — CI(F) is zero, and hence K
contains the Hilbert class field of F'.

where

2 Action of Inertia Groups

In this section, we study the ramification of the eigencharacters 11 and 2, and explicitly
determine %12 on all inertia subgroups in terms of a certain algebraic character #°. In the



following, we will sometimes drop the subscript from v; and write just ¥ : I — F; to denote
either ¥ or 9.

If v € ¥ \ X is a place of good reduction for E, and 7, is a uniformizer at v, then we
have a well-defined value for ¥ (m,) (as py is unramified), and this means that the v;(m,)
are roots of the frobenius polynomial, i.e.

Py(¢i(m)) =0 mod ¢ where P,(z)=a2*— Trg(v)z + Nmf v

is a polynomial with integer coefficients and nonpositive discriminant.

In fact, by slightly re-defining the frobenius polynomial and twisting (m,) by 12"
roots of unity, we can make sense of this for primes v of bad reduction as well. Namely,
we have the following lemma.

Lemma 1. Let v € X \ ¥y be any prime not dividing £. Then 12 is unramified at v and
there exists a polynomial with integer coefficients

P, =2* +ayr + ng(v) € Zlx]
such that
1. If v has potentially good reduction, then P, has nonpositive discriminant.

2. If v has potentially multiplicative reduction, then P, = (x £ 1)(x £ ng(v)).

3. There erists ( € Fy a 12th root of unity such that P,((1i(f,)) = 0 mod £.

Remark 3. Note that in the above, either a, = +(Nm(v) + 1) or P, has nonpositive
discriminant and a, < 24/Nm(v), so there are only finitely many possibilities for P, as
(E,£) varies over all curves for which pg ¢ is reducible.

Proof. Most of this proof is done in the paper [3].

First suppose v has potentially multiplicative reduction. After possibly taking a quad-
ratic extension L, of K,, we have (as a w-adic variety) E isomorphic to a Tate curve
fz, /a” where « is some element of nonzero valuation. In particular, the image of the
valuation w : E[f] — Q/w(«)Z is isomorphic to Z/¢Z with trivial G,-action. As all
semisimplifications are isomorphic, either 1 or ¥ becomes trivial after taking a quadratic
extension, and hence has values in +1. The other character then has to evaluate on (any
choice of) the uniformizer 7, to £ cyc,(m,) = = Nmgq(v) as v { £. This proves the statement
of the lemma in the potentially multiplicative case, with ( = £1. (This implies that 1/1?,
hence also ¥}? are unramified at v.)

Now suppose v has potentially good reduction. Then by [3] the image of inertia I, C G
under py is either a cyclic group ® of order 2, 3, 4, or 6, or a nonabelian group of order 8,
12 or 24 (and indeed the image under p; must be isomorphic for all primes ¢ > 5,0 # p,,.)
The last three cases are impossible when ¢ > 5 since any nonabelian subgroup of the borel



group B C GLg(F,) contains a copy of Z/¢Z (the unipotent matrices). Hence the image
® must be abelian and a subgroup of Z/12Z. Thus, there exists a (non-unique) totally
ramified local extension L,, of K, whose galois group is ® and over which p; is unramified
(this is true by local class field theory, since Gal*’(K,/K,) = K; = O} @7 noncanonically,
and so we can extend a subgroup of O} to a subgroup of K* with the same quotient.) The
prime w has good reduction for E and Nmf(“’ (w) = v. Since L,,/K, has degree dividing

v

12, we see that ]2 is unramified outside of /. O

Definition 3. Define P,i2 to be the quadratic polynomial whose roots are the 12th powers
of the roots of P,.

Remark 4. Note that P2 is equal mod ¢ to the characteristic polynomial of 1 (v)'? (the
root of unity gets absorbed in the twelfth power).

The above lemma characterized the actions of the v; on the inertia groups G, for v 1 /.
We now deal with the case v | /. Let U C I be the group of units. Suppose v € ¥y. Let I
be the set of embeddings o : K — Q, and for a subset S C I' define

QS:HUZK*H@*,

o€eSs

a map of algebraic groups over Q. We will often abuse notation, speaking of 6% both as a
map of group schemes and as the corresponding map on their Q-points, and it should be
clear from context which is meant. Note that 6 (both as a scheme and on points) factors
through the galois closure (K&)* ¢ Q.

For the remainder of the paper, we fix an ideal p, C Og extending (¢) C Z. We identify

F, with (9@/ pe and Q with the completion of Q at p,. Now given a map over Q of algebraic

groups 0 : K* — @*, we can give a map

0, : HK” — Qy.
v|l

defined by the composition

e K —=— K2Q)* 224 @oQ) —=— [@; — @; —— @

For primes v | £, we define 6, : K* — Q" to be the composition of §; with K* < L. K

Lemma 2. There is a subset S C T such that the restriction |y = (07 -€)~* where € takes
values n 2.

Proof. The case where E is semistable is done in [2], lemma 4 of section 4.2 (in which case
we can take € to be the trivial character). Here, we essentially reduce to this case.



Since we have fixed a prime ideal py of Q extending (£) C Z, we have that S is canonically
identified with va I',, where T, is the set of embeddings K, — Q,. Thus, it suffices to
show that for all v | ¢, there is some subset S, C I', and some character € : Ok, — 12
such that

W(u) = (05" (u) - e(u))™"  for u € O, .

To do this, let p # £ be an odd prime number, and let L,, be the extension of local
fields obtained by adjoining the p-torsion points of E to K,. Then, from [3], we know that
F is semistable over L,,. Therefore, using the result for the case where F is semistable and
taking norms, we have that for some subset S,, C I'y,,

Y(u) = (65%) 71 (u) for u € OF .

Now, we claim that the character 95}“ factors through taking norm down to K,. To see
this, it suffices to examine the construction given in [2] of the the set S, in the case where
FE is semistable: Whether we take f € S,, is determined by the reduction type of E at w,
and if the reduction type is supersingular, by how f : L,, — Qy embedds the unique degree
2 subfield (i.e. the unique subfield isomorphic to Fj2) of the residue field of L,, into the
residue field of Q,. By [2], proposition 12d of section 1.11, if E has supersingular reduction,
then the residue field of K, must be of even degree, since pg ¢ is abelian. Therefore, whether
we take f € S, depends only the restriction of f to K,. Thus, the character 85 factors
through taking norm down to K,. In other words, for some subset S, C I';,, we have

Y(u) = (657) 7 (u) for u € Nmf{f 01,

Now, we can finish the proof of this lemma using local class field theory. By the norm
limitation theorem, we have

Nmbiw 0% = NmZ® o
Ky YLy — K, “Lap
where L2P is the abelianization of L,,, viewed as an extension of K,. This gives

Oy, : Nmk» ogw} - [O}U : NmA ;ZP] = (Lg})/Kv) < |r®

where I2P is the abelianization of the inertia subgroup I, C Gal(L,/K,) at v. By the
explicit description of the possible inertia subgroups I, of p-division fields, it follows that
|12P| divides 12, and hence that v (u) equals (65°)~!(u) on an index 12 subgroup of Ok, -
Therefore, taking their quotient gives a character € : Of. — p12, completing the proof. [

Remark 1. When the image of pp g is contained in a Borel subgroup, it follows from
arguments in [2] that all primes v | £ have either potentially multiplicative or potentially
good and non-supersingular reduction. Using this, when pg ¢ is contained in a Borel
subgroup, we can extend the congruence of characters in the above lemma to hold modulo
% as opposed to just modulo £.



Definition 4. We will say that the set S C I' (and the corresponding algebraic character
0 : K* — Q) are associated to the prime ¢ and the elliptic curve E.

Definition 5. For an idele z, we define x4 and z; to be the ideéles whose components at v

v if 1 if
e=1" U and =gt LY
1 ifoutd x, ifvfl

are given by

We also use this notation when = € K* (consider x as a principal idele).

Corollary 1. Let x € K* be relatively prime to £. Then, for some character € which takes
values in w12, we have

Y(p) = 0% (z) - e(x) mod py

We will show now that for ¢ suffiently large, we must have in fact
0% e {1,Nm6,Nmf§,Nm§}

where F' is some imaginary quadratic subfield whose class field is contained in K.

3 Proof of Theorem 1

For the rest of this section, we fix K and one of the 2" possible subsets S C I'(K). Here we
will give ineffective bounds; we will make these arguments effective in an upcoming version
of this paper.

Definition 6. We adopt the notation “/ sufficiently large” to mean “¢ bounded by a
constant depending only on K.”

Lemma 3. For ¢ sufficiently large, the image 6°(K)'? C Q is contained in a quadratic
subfield F C K.

Proof. Define © = ()12, Suppose the image of © is not contained in a single quadratic
field. Then since K* is an irreducible variety, there must be an element x € K* such that
O(x) is not contained in any imaginary quadratic field.

By the Chebotarev density theorem, we know that generators of prime ideals are Zariski
dense in K*. Since O is algebraic, we can assume that z generates a prime ideal v. But
by the Hasse bound, w(xz)u = 9(v)'? can assume only finitely many possible values as
FE ranges over all elliptic curves, and all of these values lie in some imaginary quadratic
field. Also, by corollary 1, it follows that ©(z) is congruent modulo py to w(xz)u. Thus,
¢ must divide the norm of their difference, which is nonzero. For ¢ sufficiently large this is
impossible, which concludes the proof. ]



Corollary 2. For ¢ as above, we must either have 8° =1, 5 = ng, or 0° = Nm? or
its conjugate for some imaginary quadratic subfield FF C K.

Proof. Since that the o € T' are algebraically independent over Q, any element of Gal(Q/Q)
which fixes (0)12 must fix the set S (under the evident action of Gal(Q/Q) on T'). Thus,
the set S must be fixed by the action of Gal(Q/F), implying the corollary. O

In particular, if K has no imaginary quadratic subfields and ¢ is sufficiently large, we
must have §° € {ng ,1}. We will show that this is also the case if K does not contain
the class field of any imaginary quadratic subfield.

Lemma 4. Suppose F' C K is an imaginary quadratic subfield. Then for sufficiently large
¢, we can have 65 = Nm¥% only if the Hilbert class field Hp C K.

Proof. Assume to the contrary that Hp is not contained in K. Then the composite Hp - K
is a nontrivial extension of K. Therefore, by the Chebotarev density theorem, we can find
a prime ideal v € K which does not split totally in the composite Hr - K. Moreover, we
can take this prime to be of degree 1, not lie over ¢, and unramified in K/Q. (Since the
set of primes which do not have degree 1, which lie over ¢, or which are ramified in K/Q
has density zero.)

Now, the ideal v"% = (z) is principal. Therefore, for any choice of Frobenius element
fv at v, corollary 1 implies

V()" = (Nmf 2)'  mod pq

Hence /¢ divides the norm of their difference. By the Hasse bound and lemma 1, there are
only finitely many possibilities for the left-hand side as E ranges over all elliptic curves.
So if £ is sufficiently large, we have

Y(fo) 2 = p(f)"? = (N 2)*

By lemma 1, we can choose the Frobenius element f, so that ¢(f,) belongs to some
quadratic field F’. Since v was an unramified prime of degree 1, no power of its norm down
to F' can be generated by an element of Q. Thus, we conclude that the right-hand side lies
in F but not in Q. Since the left-hand side lies in the quadratic field F’, it follows that
F = F'. Therefore, we have an equality of ideals of F:

(¥(fo)) 2" = (Nm 2)'? = (Nmis v) 126
Because the group of fractional ideals is torsion-free, this implies

(¥(fy)) = Nmj v

By assumption, v did not totally split in the composite Hgr - K and is of degree 1; hence,
Nmﬁf v does not totally split in Hg, and is therefore a non-principal ideal of F. However,
the left-hand side is a principal ideal, which is a contradiction. O



Thus unless K contains the Hilbert class field of an imaginary quadratic subfield, the
map 6° must be either 1 or ng . Suppose 0° ¢ {1,Nm5 }. Recall that we’'ve chosen
¥ = 1p; for i = 1 or 2. Thus in fact we have two algebraic maps, 65,65 : K* — Q" By
the Weil pairing, we have

Yiolu = cye, = (Nmfy)e = {0°,0%} = {1,Nm{j }

for £ sufficiently large. Now we prove the following lemma, as a straightforward application
of the result of Merel, [1].

Lemma 5. If £ is sufficiently large, we cannot have {05,052} = {1, ng}

Proof. Assume {051,602} = {l,Nm(g}. Fix i € {1,2} so that #% = 1. This means
that ¥;|y = €, for some character € : U — 2. The kernel kere C U C I/K* defines an
extension M of K of degree dividing 12hx. By construction, the galois group Gal(K?2P /M)
is killed by €, so when we consider E as a curve over M, the character v; is trivial. Thus,
we have a galois-invariant subspace V' C E[f] such that either V is pointwise fixed by
Gy = Gal(K /M), or the quotient E[¢]/V is pointwise fixed by Gps. In the first case, E
has an /-torsion point defined over M, and in the second case, the isogenous curve E/V
has an ¢-torsion point defined over M. Thus, by Merel’s theorem [1], we have

Y < n?\;?w < (12nKhK)432n%(h§(
where ny; < 12nghg is the degree of M. This completes the proof of this lemma. O

Theorem 1. Let K be a number field. Then, there exists an effectively computable constant
Ck depending only on K such that for any prime number £ > Cg and any elliptic curve
E such that the {-torsion representation pg g is reducible, there exists an elliptic curve E'
over K with CM defined over K such that

~12 . 12
PEL = PE ¢

Proof. By corollary 2, lemma 4, and lemma 5, for ¢ sufficiently large, we have
{951,982} = {ng,Nmf}

for some imaginary quadratic field F' such that K contains the Hilbert class field of F'.
We let E' be the CM curve defined by C/Op. By corollary 1, the 12th powers of the
eigencharacters of E and E’ agree on frobenius elements for prime ideals which are principal,
and hence by Chebotarev density agree on Gal(K/Hg). Now, suppose that their 12th
powers do not agree on the frobenius element for a prime ideal w. Then, since they agree
on Gal(K/Hf), it follows that they do not agree for the frobenius element at any other
prime ideal v in the same ideal class as w. Choosing v to be the smallest prime ideal



not lying over £ which represents the given ideal class, they do not agree for the frobenius
element of a prime v of degree 1 not lying over ¢ and not ramified in K/Q, whose norm
is bounded independent of E. Then, the same argument as in lemma 4 implies that
(¥(f,)) = NmE v, which is a contradiction. O

References

[1] Merel. Bournes pour la Torsion des Courbes Elliptiques sur les Corps de Nombres.
Inventionnes Mathematicae Volume 124, pp. 437-449.

[2] Serre. Propriétés Galoisiennes des Points d’Ordre Fini des Courbes Elliptiques. Inven-
tionnes Mathematicae Volume 15, pp. 259-331.

[3] Serre and Tate. Good Reduction of Abelian Varieties. The Annals of Mathematics
Volume 88, pp. 492-517.



