Primer on the OMS code

Robert Harron

Last updated: January 23, 2013

Contents
1__Introduction| 1
2 Current code structurel 2
2.1 Overconvergent modular symbols|o o000 2
[2.1.1 The ManinMap class and tund_domain.py| 2
[2.1.2 Suggestions| e 3
[2.2 Spaces of overconvergent modular symbols|.o o000 3
2.3 Distributionslo 3
2.3.1 WeightKAction| 3
[2.3.2 Suggestions| Lo 3
[2.4 Spaces of distributions| 4

1 Introduction

The goal of the OMS code is to implement the overconvergent modular symbols of Pollack—Stevens.
So, here’s a (very) brief description of what that involves. An overconvergent modular symbol is
just a certain type of modular symboﬂ and thus is just a certain type of map from Div’ P1(Q) to
some Hecke module. The type of Hecke module in question is what makes the modular symbols
of interest “overconvergent”. Specifically, these are modules of p-adic distributions. This already
gives us an idea of what needs to be implemented:

e A class for modular symbols which carries the data of the map. In view of the Sage coercion
model, we’ll also want a Sage parentﬂ for spaces of modular symbols. A modular symbol is
determined by its value on finitely many elements of Div® P!(Q) and thus are stored as lists
of p-adic distributions.

Unfortunately, “modular symbol” is an overloaded term. Here, as we’ll see, we mean the type of thing returned
by EllipticCurve.modular_symbol(), not what ModularSymbol creates.

I'll use the term “Sage parent” to refer to the notion of parent in the sense of Sage’s coercion model. This is
not the notion of parent in the sense of class inheritance; rather it is generally some class representing a space of
elements.

e A class for p-adic distributions and, as above, a Sage parent for spaces of p-adic distributions.
The distributions are approximated by their moments, i.e. their values on the monomials z"
for n running from 0 to some fixed bound. As such, they are represented by lists.

The following sections go more into detail (though not much more!) on the current structure of the
code.

Note that the overconvergent modular symbols can be used to compute p-adic L-functions of
modular forms and that that code is part of the OMS code, but won’t be discussed in this primer
(at least not yet).

There’s also more recent work of Rob Pollack, Evan Dummit, Marci Hablicsek, Lalit Jain,
Daniel Ross, and myself (Rob Harron) on families of overconvergent modular symbols. These
can be thought of as modular symbols whose target Hecke module is a space of families of p-
adic distributions and so the current OMS code should be able to accommodate these with minor
modifications. Some changes are suggested below.

2 Current code structure

2.1 Overconvergent modular symbols

This section describes the implementation of the overconvergent modular symbols themselves. In
the file modsym.py, there is an abstract class PSModularSymbolElement (which inherits from
ModuleElement) that serves as the abstract implementation of overconvergent modular symbols
(the PS in front stands for Pollack—Stevens). The main data stored is the attribute ._.map, which is
a ManinMap object. The class ManinMap is implemented in the file manin_map.py and it is im-
portant to note that most of what happens with the modular symbols is going on in the ManinMap
class. Since PSModularSymbolElement functions as an abstract class, one must create derived
classes and the idea is to create one for each type of Hecke module one wants to use. Thus, the
file modsym.py contains two derived classes PSModularSymbolElement_symk and PSMod-
ularSymbolElement_dist. The former is for the Hecke module of homogeneous polynomials of
degree k (i.e. this gives a new implementation of “classical” modular symbols) while the latter is
for overconvergent modular symbols.

2.1.1 The ManinMap class and fund_domain.py

The ManinMap has three main data: ._codomain, which is a space of distributions (really a Dis-
tributions_abstract object, see a subsequent section for a discussion of this class), ._dict, which
contains the (finitely many) values that determine the map, ._.manin, which is a ManinRelations
object. And this is a great segue to talk about the ManinRelations class and what’s going on in
fund_domain.py. Basically, Pollack and Stevens figured out a way to find a minimal number of
elements of Div’ P1(Q) on which one must know the value of a modular symbol in order to know
all other values. This involves computing explicit fundamental domains for I'g(N) and related stuff.
In the end, all this data is stored in a ManinRelations object. In particular, this object contains
the list of elements of Div’ P1(Q) on which one needs to know the value of the modular symbol,
as well as the data involved in determining all other (infinitely many) values from this finite set of
values. So, the ._manin attribute allows the ManinMap object to have meaning.

2.1.2 Suggestions

To implement families, one should create a third derived class PSModularSymbolElement_fam,
say. Also, the current way to distinguish between the two types of modular symbols is the imple-
mentation of a function .is_symk() in each derived class. This needs to be changed to allow for
more than two derived classes.

2.2 Spaces of overconvergent modular symbols

This section describes the implementation of spaces of overconvergent modular symbols. The class
PSModularSymbolSpace in the file space.py implements the Sage parent of PSModularSym-
bolElement. There’s a bit of a complication that those not so familiar with how Sage implements
such things might find confusing (not much more confusing than this sentence). Here’s the idea:
if I create a space of modular symbols of some weight, level, and Hecke module and then you
come along and create a space of the same weight, level, and Hecke module, then Sage should
know not to actually create a new space, but rather it should simply return the space I already
created. This is implemented through the Sage class UniqueFactory. What one does here is to
create a class called PSModularSymbolSpace_constructor (also in space.py), which inher-
its from UniqueFactory, and manages a cache of already created modular symbol spaces. Then,
one instantiates a PSModularSymbolSpace_constructor object called PSModularSymbols. So, if
you want create a space of modular symbols, you don’t call the class PSModularSymbolSpace,
nor even PSModularSymbolSpace_constructor, rather you would call PSModularSymbols(whatever
parameters). Note that PSModularSymbols is not a class, it is a specific instance of the class
PSModularSymbolSpace_constructor.

2.3 Distributions

This section describes the implementation of p-adic distributions. Distributions are currently im-
plemented in the cython file dist.pyx. There is an abstract class called Dist, which inherits from
ModuleElement, as well as two derived classes Dist_vector and Dist_long. The latter is a C
implementation that can be used in certain cases to speed up computations. The global function
get_dist_classes in dist.pyx determines if Dist_long can/should be used.

2.3.1 WeightKAction

The Sage coercion model might again create some confusion here with the way the action of GL(2)
is implemented. In the file dist.pyx, you will also find an abstract class Weight K Action, which
inherits from the Sage class Action, as well as two derived classes WeightK Action_vector and
WeightKAction_long. These classes help the Sage coercion model figure out what multiplying a
distribution by something else might mean. The actual place where these classes are registered in
the coercion mechanism is in the init function of Sage parent of Dist.

2.3.2 Suggestions

In order to implement families of p-adic distributions, one would need to create two new derived
classes: Dist_fam, inheriting from Dist, and Weight K Action_fam, inheriting from WeightKAc-

tion.

2.4 Spaces of distributions

This section describes the implementation of spaces of p-adic distributions. In the file distribu-
tions.py, you’ll find an abstract class Distributions_abstract, which inherits from module, as
well as two derived classes Symk_class and Distributions_class. Each of the latter two has
an associated constructor class inheriting from UniqueFactory: Symk_factory and Distribu-
tions_factory, respectively. The associated instances of these constructor classes are called Symk
and Distributions, respectively.

	Introduction
	Current code structure
	Overconvergent modular symbols
	The ManinMap class and fund_domain.py
	Suggestions

	Spaces of overconvergent modular symbols
	Distributions
	WeightKAction
	Suggestions

	Spaces of distributions

