
AIM 2009 SQuaREs Proposal: Computations with Explicit Reduction Theories

Proposal Summary:
This is a proposal to gather researchers with distinct perspectives on the topic of explicit computational

methods for reduction theories and their application to study geometry, cohomology, and modular forms.
The purpose of our week-long collaboration is to:

1) Discuss/share current methods for using explicit reduction domains, and interesting open problems.
2) Lay the groundwork for creating a unified computational framework for explicit reduction theory

computations in SAGE, and discuss how to combine existing specialized projects to this end.
3) Set concrete goals for future collaborations and software development.

We also intend to meet for a second week at a later date, after the first substantial steps have been taken.

Background:

Reduction theories have played an important role in mathematics, going back to Gauss’s enumeration of
positive definite binary quadratic forms ax2+bxy+cy2 over Z by using the conditions that every SL2(Z)-orbit
has a “reduced” representative in the explicit reduction domain 0 < |b| ≤ a ≤ c.

Attempts to extend this idea of a reduced representative for SLn(Z)-orbits of positive definite quadratic
forms in n > 2 variables have led to many different notions of a reduced representative (Minkowski, Voronoi,
Hermite, Korkin-Zolotarev, etc.), all of which agree when n = 2. These ideas allow one to prove both abstract
and concrete results, though explicit computations become difficult very quickly as n grows. (Examples of
these are the finiteness of the class number of forms with given discriminant, and the enumeration of all
classes of forms with given discriminant.) Due to the increasing complexity of doing explicit computations,
most applications of reduction theory are aimed at establishing “finiteness-type” results analogous to the
finiteness of the class number for quadratic forms above. Siegel did this in his construction of Siegel domains
for reduction theories of congruence subgroups of Sp2n(Z), allowing him to show the existence of finite
volume fundamental domains for their actions.

In recent years, particularly with the increasing usefulness of computers in mathematics, there has been
interest from several directions to really push explicit reduction methods to their limits. Knowledge of explicit
reduction domains for various arithmetic groups has applications to areas of mathematics ranging from
compactifications of moduli spaces, existence of various Galois representations and cohomological modular
forms, lattice theory, and the enumeration of reduced objects up to a given bound. However fulfilling this
desire has required various researchers to invest a great deal of effort writing specialized one-time programs
to accomplish a particular task. The goal of this proposal is to bring together several of these researchers to
help establish a common platform for more easily performing computations of and with explicit reduction
theories for specific arithmetic groups, and to help focus attention on the most interesting problems that can
be solved with these methods.

Applications:

Compactifications of Moduli spaces – This is described in LNM812 by Namikawa and the book “Smooth
compactification of locally symmetric varieties” by Ash, Mumford, Rapoport and Tai. The idea is
that one can construct a very useful (but non-canonical) compactification of a locally symmetric
space relative to a choice of fundamental domain reduction cone called the toroidal compactifica-
tion which has much nicer boundary components than the more canonical Satake compactification.
This can then be used to compute interesting geometric quantities (like intersection numbers and
cohomology groups) which have boundary contributions.

Cohomological Modular forms – This application (pioneered by Avner Ash) is described in detail in the
appendix by Paul Gunnells of William Stein’s book “Modular forms, a computational approach.”
The idea is that one can compute cusp forms for congruence subgroups Γ of an arithmetic group
by looking instead at the group cohomology of Γ with various coefficient systems, and this can be
computed by essentially constructing an explicit fundamental domain for the quotient Γ\S if the
symmetric space S of G, which is done via an explicit reduction theory. (To simplify computa-
tions, one actually works with a lower-dimensional retract of this quotient.) The action of Hecke
operators can then be computed by an extension of the usual modular symbols algorithm used for
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Γ ⊆ SL2(Z), but now for non-top-dimensional cohomology (called the Sharbly complex). Here the
reduction algorithm for Sharblies is a very time consuming step of the process, and would benefit
from parallelization.

Lattice Theory (Sphere packing and covering) – These applications are described in the books “Sphere
packings, Lattices and Groups” by Conway and Sloane and “Perfect Lattices in Euclidean Space”
by Jacques Martinet. A perfect lattice is a positive definite quadratic lattice which is uniquely
determined by its minimal vectors (and their common value). Perfect lattices play a crucial role in
actually constructing explicit reduction theories for SLn because of Voronoi’s observation that the
reduction domain for positive definite quadratic forms can be described as a polyhedral cone whose
facets are indexed by perfect lattices. Voronoi gave two polyhedral reduction theories (resp. based
on enumerating perfect forms, and “types” of Delone subdivisions) that can be used to explicitly
solve the lattice sphere packing problem (done for n ≤ 8) and the lattice sphere covering problem
(done for n ≤ 5). A generalization of the first polyhedral reduction theory in the setting of a number
field was described by Koecher in 1960.

Enumeration of reduced objects with fixed invariants – Aside from Gauss’s enumeration of integral binary
forms, knowledge of explicit reduction inequalities have been used by Brandt-Intrau, Townes, and
Nipp to make tables of ternary and quaternary positive definite quadratic forms. However even the
most recent table (of Nipp in 1991) is quite old by computational standards, and would do well to
be checked and extended to the setting of Hermitian forms over a number field.

K-theory –The Sharby method used by Gunnells and Yasaki to compute cohomological modular forms
have their origins in the 1978 paper of Lee and Szczarba to compute K3(Z). Recently, shortly
after Rognes had shown that K4(Z) is trivial (2000), Elbaz-Vincent, Gangl and Soulé computed
the Voronoi cell complex for certain modular groups which enabled them as a corollary to prove
that K5(Z) = Z and K6(Z) has only 3-torsion (2002), as well as a recent similar result for K7(Z)
(no p-torsion for p > 7). Important progress by Voevodsky and Rost, still unpublished, would
imply the same (in fact many more) results from a completely different angle but their methods
do not apply for K4n(Z). Hence it would be desirable to push the Voronoi method further for the
case of K8(Z) which incidentally has implications for the famous Kummer–Vandiver Conjecture.
This would require extensive computational work on reduction theories which could also be used to
compute Kn(OF ) for small n, where OF is the ring of integers of a small degree number field F .

Computing special values of zeta functions – It is a very useful computational fact that the special values
of the Riemann zeta function ζ(s) and its quadratic twists can be described explicitly in terms of
Bernoulli numbers. For arithmetic applications it would be very desirable to be able to find special
values of more general Dedekind zeta functions ζF (s) in a similar way. This can be done via a
more general formula for the special values of Shintani zeta functions, which are defined relative to
a product of linear forms and a rational polyhedral cone, which could be computed explicitly given
the reduction domain for the action of the units of F on the product of all archimedean completions
of F . This can be thought of concretely as giving a reduction theory of integral quadratic forms in
one variable over F .

Researchers:

Dan Yasaki – was a student of Leslie Saper at Duke University whose thesis work was on spines for Q-
rank 1 groups. He has written several papers on computing the cohomology of the Picard modular
group (over Z[i]) and has also worked with Paul Gunnells to extend these techniques to locally
symmetric spaces attached to GL2 over real quadratic and totally complex quartic fields. He has
written specialized software to use these ideas to compute the action of Hecke operators on these
cohomology groups with the goal of explicitly exhibiting new cohomological modular forms. He is
currently a tenure-track assistant professor at UNC Greensboro.

Paul Gunnells – is an expert in using the Sharbly method to compute interesting cohomological modular
forms for higher rank groups, and has worked with Ash and McConnell to compute the cohomology
of subgroups of SL4(Z). He has written many papers on various aspects of computing cohomology
of arithmetic groups other than SL2(Z) and is particularly interested in using explicit (toroidal)
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compactifications and reduction theories to compute the action of Hecke operators on cohomology.
He is an associate professor at the University of Massachusetts at Amherst.

Achill Schürmann – is an expert in explicit computations with several different reduction theories for
positive definite quadratic forms (see his new AMS book “Computational Geometry of Positive Def-
inite Quadratic Forms – Polyhedral Reduction Theories, Algorithms, and Applications”). Together
with Dutour-Sikirić and Vallentin, he designed specialized C++ software (e.g. the “secondary cone
cruiser”) to compute Voronoi reduction domains which was used to classify all perfect lattices in
dimensions n ≤ 8, which were used to find the best known covering lattices in many cases. He is
currently an assistant professor at the Delft University of Technology in the Netherlands.

Mathieu Dutour-Sikirić – Together with Schürmann and Vallentin, he designed specialized C++ software
(e.g. the “secondary cone cruiser”) to compute Voronoi reduction domains which was used to
classify all perfect lattices in dimensions n ≤ 8, which were used to find the best known covering
lattices in many cases. He has also authored the GAP package “polyhedral”, which performs many
useful polyhedral cone related computations (e.g. computations of dual descriptions, face-lattices,
automorphism groups, volumes, Wythoff constructions and group resolutions). He is currently a
Researcher of Mathematics at Institut Rudjer Boskovic in Zagreb.

Jonathan Hanke – is interested in explicit computations with quadratic forms and with automorphic
forms on algebraic groups. He has experience developing software in C++ and in the freely available
open-source SAGE computer algebra system. He has developed algorithms and code to compute the
exact numbers represented by a positive definite quadratic form in n ≥ 4 variables, and has worked
with Bhargava to prove Conway’s 290-Conjecture. He is currently a tenure-track assistant professor
at the University of Georgia at Athens (in the US).

Herbert Gangl – has worked with Soulé and Elbaz-Vincent to find the homology ranks of certain Voronoi
complexes, which computes K5(Z) and K6(Z) as a consequence. He is interested in using compu-
tational methods to understand questions related to polylogarithms and K-theory, especially the
homology of the general linear group, configuration and moduli spaces, combinatorial Hopf alge-
bras, multiple zeta values or (quasi-)modular forms and has written code in Pari/GP to explore
these topics. He is currently a lecturer at Durham University in the UK.
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