6545
Comment: Summarized #5537, #5460, #5569, #5570, #5519, #5223
|
25172
Some minor adjustments
|
Deletions are marked like this. | Additions are marked like this. |
Line 12: | Line 12: |
* FIXME: summarize ticket #5535. | * Optimized {{{is_primitive()}}} method (Ryan Hinton) -- The method {{{is_primitive()}}} in {{{sage/rings/polynomial/polynomial_element.pyx}}} is used for determining whether or not a polynomial is primitive over a finite field. Prime divisors are calculated during the test for polynomial primitivity. Where n is large, calculating those prime divisors can dominate the running time of the test. The {{{is_primitive()}}} method now has the optional argument {{{n_prime_divs}}} for providing precomputed prime divisors. This optional argument can result in a performance improvement of up to 4x. On the machine sage.math, one has the following timing statistics: {{{ sage: R.<x> = PolynomialRing(GF(2), 'x') sage: nn = 128 sage: max_order = 2^nn - 1 sage: pdivs = max_order.prime_divisors() sage: poly = R.random_element(nn) sage: while not (poly.degree()==nn and poly.is_primitive(max_order, pdivs)): ....: poly = R.random_element(nn) ....: sage: %timeit poly.is_primitive() # without n_prime_divs optional argument 10 loops, best of 3: 285 ms per loop sage: %timeit poly.is_primitive(max_order, pdivs) # with n_prime_divs optional argument 10 loops, best of 3: 279 ms per loop sage: sage: nn = 256 sage: max_order = 2^nn - 1 sage: pdivs = max_order.prime_divisors() sage: poly = R.random_element(nn) sage: while not (poly.degree()==nn and poly.is_primitive(max_order, pdivs)): ....: poly = R.random_element(nn) ....: sage: %timeit poly.is_primitive() # without n_prime_divs optional argument 10 loops, best of 3: 3.22 s per loop sage: %timeit poly.is_primitive(max_order, pdivs) # with n_prime_divs optional argument 10 loops, best of 3: 700 ms per loop }}} * Speed-up the method {{{order_from_multiple()}}} (John Cremona) -- For groups of prime order n, every non-identity element has order n. The previous implementation of the method {{{order_from_multiple()}}} computes g^n twice when g is not the identity and n is prime. Such double computation is now avoided. Now for each prime p dividing the given multiple of the order, we avoid the last multiplication/powering by p, hence saving some computation time whenever the p-exponent of the order is maximal. The new implementation of {{{order_from_multiple()}}} results in a performance improvement of up to 25%. Here are some timing statistics obtained using the machine sage.math: {{{ # BEFORE sage: F = GF(2^1279, 'a') sage: n = F.cardinality() - 1 # Mersenne prime sage: order_from_multiple(F.random_element(), n, [n], operation='*') == n True sage: %timeit order_from_multiple(F.random_element(), n, [n], operation='*') == n 10 loops, best of 3: 63.7 ms per loop # AFTER sage: F = GF(2^1279, 'a') sage: n = F.cardinality() - 1 # Mersenne prime sage: %timeit order_from_multiple(F.random_element(), n, [n], operation='*') == n 10 loops, best of 3: 47.2 ms per loop }}} |
Line 42: | Line 87: |
Furthermore, on Debian 5.0 Lenny with the following system info: {{{ kernel: 2.6.24-1-686 CPU: Intel(R) Celeron(R) 2.00GHz RAM: 1.0GB }}} here are some timing statistics: |
Furthermore, on Debian 5.0 Lenny with kernel 2.6.24-1-686, an Intel(R) Celeron(R) CPU running at 2.00GHz with 1.0GB of RAM, one has the following timing statistics: |
Line 83: | Line 122: |
* Refactor {{{dimension()}}} method for schemes (Alex Ghitza) -- Implement methods {{{dimension_absolute()}}} and {{{dimension_relative()}}}, where {{{dimension()}}} is an alias for {{{dimension_absolute()}}}. Here are some examples of using {{{dimension_absolute()}}} and {{{dimension()}}}: {{{ sage: A2Q = AffineSpace(2, QQ) sage: A2Q.dimension_absolute() 2 sage: A2Q.dimension() 2 }}} And here's an example demonstrating the use of {{{dimension_relative()}}}: {{{ sage: S = Spec(ZZ) sage: S.dimension_relative() 0 }}} * Plotting affine and projective curves (Alex Ghitza) -- Improving the plotting usability so it is now easier to plot affine and projective curves. For example, we can plot a [[attachment:5-nodal curve]] of degree 11: {{{ sage: R.<x, y> = ZZ[] sage: C = Curve(32*x^2 - 2097152*y^11 + 1441792*y^9 - 360448*y^7 + 39424*y^5 - 1760*y^3 + 22*y - 1) sage: C.plot((x, -1, 1), (y, -1, 1), plot_points=400) }}} Now we plot an [[attachment:elliptic curve]]: {{{ sage: E = EllipticCurve('101a') sage: C = Curve(E) sage: C.plot() }}} |
|
Line 86: | Line 155: |
* Speed-up in dividing a polynomial by an integer (Burcin Erocal) -- Dividing a polynomial by an integer is now up to 7x faster than previously. On the machine sage.math, one has the following timing statistics: | * Speed-up in dividing a polynomial by an integer (Burcin Erocal) -- Dividing a polynomial by an integer is now up to 6x faster than previously. On Debian 5.0 Lenny with kernel 2.6.24-1-686, an Intel(R) Celeron(R) CPU running at 2.00GHz with 1.0GB of RAM, one has the following timing statistics: |
Line 92: | Line 161: |
625 loops, best of 3: 231 µs per loop | 625 loops, best of 3: 312 µs per loop |
Line 99: | Line 168: |
625 loops, best of 3: 32.4 µs per loop }}} |
625 loops, best of 3: 48.3 µs per loop }}} * New {{{fast_float}}} supports more datatypes with improved performance (Carl Witty) -- A rewrite of {{{fast_float}}} to support multiple types. Here, we get accelerated evaluation over {{{RealField(k)}}} as well as {{{RDF}}}, real double field. As compared with the previous {{{fast_float}}}, improved performance can range from 2% faster to more than 2x as fast. An extended list of benchmark details is available at [[http://trac.sagemath.org/sage_trac/ticket/5093|ticket 5093]]. * Complex double fast callable interpreter (Robert Bradshaw) -- Support for complex double floating point (CDF). The new interpreter is implemented in the class {{{CDFInterpreter}}} of {{{sage/ext/gen_interpreters.py}}}. * Speed-up the function {{{solve_mod()}}} (Wilfried Huss) -- Performance improvement for the function {{{solve_mod()}}} is now up to 5x when solving an equation or a list of equations modulo a given integer modulus. On the machine sage.math, we have the following timing statistics: {{{ # BEFORE sage: x, y = var('x,y') sage: time solve_mod([x^2 + 2 == x, x^2 + y == y^2], 14) CPU times: user 0.01 s, sys: 0.02 s, total: 0.03 s Wall time: 0.18 s [(4, 2), (4, 6), (4, 9), (4, 13)] sage: sage: x,y,z = var('x,y,z') sage: time solve_mod([x^5 + y^5 == z^5], 3) CPU times: user 0.01 s, sys: 0.00 s, total: 0.01 s Wall time: 0.10 s [(0, 0, 0), (0, 1, 1), (0, 2, 2), (1, 0, 1), (1, 1, 2), (1, 2, 0), (2, 0, 2), (2, 1, 0), (2, 2, 1)] # AFTER sage: x, y = var('x,y') sage: time solve_mod([x^2 + 2 == x, x^2 + y == y^2], 14) CPU times: user 0.03 s, sys: 0.01 s, total: 0.04 s Wall time: 0.16 s [(4, 2), (4, 6), (4, 9), (4, 13) sage: sage: x,y,z = var('x,y,z') sage: time solve_mod([x^5 + y^5 == z^5], 3) CPU times: user 0.01 s, sys: 0.01 s, total: 0.02 s Wall time: 0.02 s [(0, 0, 0), (0, 1, 1), (0, 2, 2), (1, 0, 1), (1, 1, 2), (1, 2, 0), (2, 0, 2), (2, 1, 0), (2, 2, 1)] }}} * Optimized binomial function when an input is real or complex floating point (Dan Drake, William Stein) -- The function {{{binomial()}}} for returning the binomial coefficients is now much faster. In some cases, speed efficiency can be up to 4000x. Here are some timing statistics obtained using the machine sage.math: {{{ # BEFORE sage: x, y = 1140000.78, 420000 sage: %timeit binomial(x, y) 10 loops, best of 3: 1.19 s per loop sage: sage: x, y = RR(pi^5), 10 sage: %timeit binomial(x, y) 10000 loops, best of 3: 28.2 µs per loop sage: sage: x, y = RR(pi^15), 500 sage: %timeit binomial(x, y) 1000 loops, best of 3: 799 µs per loop sage: sage: x, y = RealField(500)(1729000*sqrt(2)), 17000 sage: %timeit binomial(x, y) 10 loops, best of 3: 34.4 ms per loop # AFTER sage: x, y = 1140000.78, 420000 sage: %timeit binomial(x, y) 1000 loops, best of 3: 297 µs per loop sage: sage: x, y = RR(pi^5), 10 sage: %timeit binomial(x, y) 10000 loops, best of 3: 189 µs per loop sage: sage: x, y = RR(pi^15), 500 sage: %timeit binomial(x, y) 1000 loops, best of 3: 335 µs per loop sage: sage: x, y = RealField(500)(1729000*sqrt(2)), 17000 sage: %timeit binomial(x, y) 1000 loops, best of 3: 692 µs per loop }}} * Enhanced {{{nth_root()}}} in {{{ZZ}}} and {{{QQ}}} and related utilities (John Cremona) -- Some consistency in the method {{{nth_root()}}} of {{{ZZ}}} and {{{QQ}}}. There are also some new utility methods for the rational numbers: 1. {{{prime_to_S_part(self, S=[])}}} -- Returns {{{self}}} with all powers of all primes in S removed. 1. {{{is_nth_power(self, int n)}}} -- Returns {{{True}}} if {{{self}}} is an n-th power; else {{{False}}}. 1. {{{is_S_integral(self, S=[])}}} -- Determine if the rational number is S-integral. 1. {{{is_S_unit(self, S=None)}}} -- Determine if the rational number is an S-unit. |
Line 109: | Line 283: |
* Deprecate the calling of symbolic functions with unnamed arguments (Carl Witty, Michael Abshoff) -- Previous releases of Sage supported symbolic functions with "no arguments". This style of constructing symbolic functions is now deprecated. For example, previously Sage allowed for defining a symbolic function in the following way {{{ f2 = 5 - x^2 # bad; this is deprecated }}} But users are encouraged to explicitly declare the variables used in a symolic function. For instance, the following is encouraged: {{{ sage: x,y = var("x, y") # explicitly declare your variables sage: f(x, y) = x^2 + y^2 # this syntax is encouraged }}} |
|
Line 113: | Line 299: |
* Enhancements to the {{{Subsets}}} and {{{Subwords}}} modules (Florent Hivert) -- Numerous enhancements to the modules {{{Subsets}}} and {{{Subwords}}} include: 1. An implementation of subsets for finite multisets, i.e. sets with repetitions. 1. Adding the method {{{__contains__}}} for {{{Subsets}}} and {{{Subwords}}}. Here's an example for working with multisets: {{{ sage: S = Subsets([1, 2, 2], submultiset=True); S SubMultiset of [1, 2, 2] sage: S.list() [[], [1], [2], [1, 2], [2, 2], [1, 2, 2]] sage: Set([1,2]) in S # this uses __contains__ in Subsets True sage: Set([]) in S True sage: Set([3]) in S False }}} And here's an example of using {{{__contains__}}} with {{{Subwords}}}: {{{ sage: [] in Subwords([1,2,3,4,3,4,4]) True sage: [2,3,3,4] in Subwords([1,2,3,4,3,4,4]) True sage: [2,3,3,1] in Subwords([1,2,3,4,3,4,4]) False }}} * Fix and enhancements to permutations (Sebastien Labbe) -- This corrects the Robinson-Schensted algorithm on trivial permutations. It implements the inverse Robinson-Schensted algorithm: {{{ sage: Permutation((Tableau([[1,2,4],[3]]), Tableau([[1,3,4],[2]]))) [3, 1, 2, 4] sage: Permutation(([[1,2,4],[3]], [[1,3,4],[2]])) [3, 1, 2, 4] }}} And it works for arbitrary words (with semi-standard tableaux): {{{ sage: Permutation(([[1,2,2],[3]], [[1,3,4],[2]])) [3, 1, 2, 2] }}} * First pass of cleanup of the interface of combinatorial classes (Florent Hivert) -- Before the patch, the interface of combinatorial classes had two problems: 1. There were two redundant ways to get the number of elements {{{len(C)}}} and {{{C.count()}}}. Moreover {{{len}}} must return a plain {{{int}}} where we want an arbitrary large number and even {{{infinity}}}; 1. There were two redundant ways to get an iterator for the elements {{{C.iterator()}}} and {{{iter(C)}}} (allowing for {{{for c in C: ...}}}) via {{{C.__iter__}}}. The patch standardize those issues to: 1. {{{C.cardinality()}}} which is more explicit and consistent with many other Sage libraries; 1. {{{iter(C)}}} / {{{for x in C:}}} via {{{C.__iter__}}} which is clearly more Pythonic. The functions {{{iterator()}}} and {{{count()}}} are deprecated (with a warning), but will be removed in a later release. On the other hand, there was no way to keep backward compatibility for {{{len}}}. Indeed, many of function such as {{{list / filter / map}}} try silently to call {{{len}}}, which would have caused miriads of warnings to be issued in seemingly unrelated places. So it was decided to simply remove it and issue an error, suggesting to call {{{cardinality}}} instead. * New class {{{IntegerListLex}}} for generating integer lists (Nicolas M. Thiery, Florent Hivert) -- The new class provides a Constant Amortized Time iterator through the combinatorial classes of integer lists. For example, we create the combinatorial class of lists of length 3 and sum 2 as follows: {{{ sage: C = IntegerListsLex(2, length=3); C Integer lists of sum 2 satisfying certain constraints sage: C.count() 6 sage: [p for p in C] [[2, 0, 0], [1, 1, 0], [1, 0, 1], [0, 2, 0], [0, 1, 1], [0, 0, 2]] }}} Here's the list of all compositions of 4: {{{ sage: list(IntegerListsLex(4, min_part = 1)) [[4], [3, 1], [2, 2], [2, 1, 1], [1, 3], [1, 2, 1], [1, 1, 2], [1, 1, 1, 1]] }}} * Cleanup of crystal code (Anne Schilling, Nicolas M. Thiery) -- Cartan type is now implemented as the method {{{cartan_type}}}, rather than an attribute as was previously the case. * Deprecate the function {{{RestrictedPartitions()}}} (Dan Drake) -- The function {{{RestrictedPartitions()}}} in {{{sage/combinat/partition.py}}} is now deprecated and will be removed in a future release. Users are advised to instead consider the function {{{Partitions()}}} with the {{{parts_in}}} keyword, which is functionally equivalent to {{{RestrictedPartitions()}}} but is more memory and time efficient. The timing improvement in {{{Partitions()}}} is up to 5x faster than {{{RestrictedPartitions()}}}. The following memory and timing statistics are produced using the machine sage.math: {{{ # BEFORE sage: get_memory_usage() 721.26171875 sage: ps = RestrictedPartitions(100, ([1,6..100] + [4,9..100])) sage: %time sum(1 for p in ps) CPU times: user 27.26 s, sys: 1.06 s, total: 28.32 s Wall time: 28.99 s 74040 sage: get_memory_usage() 1807.03515625 sage: get_memory_usage() 721.265625 sage: ps = RestrictedPartitions(3000, [10,50,100,500,1000]) sage: %time sum(1 for p in ps) CPU times: user 5.60 s, sys: 0.21 s, total: 5.81 s Wall time: 5.95 s 3506 sage: get_memory_usage() 962.54296875 # AFTER sage: get_memory_usage() 719.3984375 sage: ps = Partitions(100, parts_in=([1,6..100] + [4,9..100])) sage: %time sum(1 for p in ps) CPU times: user 5.09 s, sys: 0.01 s, total: 5.10 s Wall time: 5.10 s 74040 sage: get_memory_usage() 719.3984375 sage: get_memory_usage() 719.3984375 sage: ps = Partitions(3000, parts_in=[10,50,100,500,1000]) sage: %time sum(1 for p in ps) CPU times: user 1.12 s, sys: 0.01 s, total: 1.13 s Wall time: 1.13 s 3506 sage: get_memory_usage() 719.3984375 }}} * Speed-up the {{{weyl_characters.py}}} module (Mike Hansen, Daniel Bump, Michael Abshoff) -- The timing efficiency is between 4x to 10x, depending on the operations involved. Here are some timing statistics produced using the machine sage.math: {{{ # BEFORE sage: R = WeylCharacterRing(['B',3], prefix = "R") sage: %time r = R(1,1,0) CPU times: user 0.14 s, sys: 0.00 s, total: 0.14 s Wall time: 0.14 s sage: sage: R = WeylCharacterRing(['B',3], prefix = "R") sage: %time [R(w) for w in R.lattice().fundamental_weights()] CPU times: user 0.25 s, sys: 0.00 s, total: 0.25 s Wall time: 0.25 s [R(1,0,0), R(1,1,0), R(1/2,1/2,1/2)] sage: sage: A2 = WeylCharacterRing(['A',2]) sage: %time [A2(0,0,0)+A2(2,1,0), A2(2,1,0)+A2(0,0,0), - A2(0,0,0)+2*A2(0,0,0), -2*A2(0,0,0)+A2(0,0,0), -A2(2,1,0)+2*A2(2,1,0)-A2(2,1,0)] CPU times: user 0.18 s, sys: 0.00 s, total: 0.18 s Wall time: 0.19 s [A2(0,0,0) + A2(2,1,0), A2(0,0,0) + A2(2,1,0), A2(0,0,0), -A2(0,0,0), 0] sage: sage: A2 = WeylCharacterRing(['A',2]) sage: %timeit [-x for x in [A2(0,0,0), 2*A2(0,0,0), -A2(0,0,0), -2*A2(0,0,0)]] 10 loops, best of 3: 20 ms per loop sage: sage: A2 = WeylCharacterRing(['A',2]) sage: chi = A2(0,0,0)+2*A2(1,0,0)+3*A2(2,0,0) sage: mu = 3*A2(0,0,0)+2*A2(1,0,0)+A2(2,0,0) sage: %timeit chi - mu 100 loops, best of 3: 8.16 ms per loop sage: sage: A2 = WeylCharacterRing(['A',2]) sage: chi = A2(1,0,0) sage: %time [chi^k for k in range(6)] CPU times: user 1.05 s, sys: 0.02 s, total: 1.07 s Wall time: 1.07 s [A2(0,0,0), A2(1,0,0), A2(1,1,0) + A2(2,0,0), A2(1,1,1) + 2*A2(2,1,0) + A2(3,0,0), 3*A2(2,1,1) + 2*A2(2,2,0) + 3*A2(3,1,0) + A2(4,0,0), 5*A2(2,2,1) + 6*A2(3,1,1) + 5*A2(3,2,0) + 4*A2(4,1,0) + A2(5,0,0)] # AFTER sage: R = WeylCharacterRing(['B',3], prefix = "R") sage: %time r = R(1,1,0) CPU times: user 0.03 s, sys: 0.00 s, total: 0.03 s Wall time: 0.03 s sage: sage: R = WeylCharacterRing(['B',3], prefix = "R") sage: %time [R(w) for w in R.lattice().fundamental_weights()] CPU times: user 0.05 s, sys: 0.00 s, total: 0.05 s Wall time: 0.05 s [R(1,0,0), R(1,1,0), R(1/2,1/2,1/2)] sage: sage: A2 = WeylCharacterRing(['A',2]) sage: %time [A2(0,0,0)+A2(2,1,0), A2(2,1,0)+A2(0,0,0), - A2(0,0,0)+2*A2(0,0,0), -2*A2(0,0,0)+A2(0,0,0), -A2(2,1,0)+2*A2(2,1,0)-A2(2,1,0)] CPU times: user 0.04 s, sys: 0.00 s, total: 0.04 s Wall time: 0.04 s [A2(0,0,0) + A2(2,1,0), A2(0,0,0) + A2(2,1,0), A2(0,0,0), -A2(0,0,0), 0] sage: sage: A2 = WeylCharacterRing(['A',2]) sage: %timeit [-x for x in [A2(0,0,0), 2*A2(0,0,0), -A2(0,0,0), -2*A2(0,0,0)]] 100 loops, best of 3: 3.33 ms per loop sage: sage: A2 = WeylCharacterRing(['A',2]) sage: chi = A2(0,0,0)+2*A2(1,0,0)+3*A2(2,0,0) sage: mu = 3*A2(0,0,0)+2*A2(1,0,0)+A2(2,0,0) sage: %timeit chi - mu 1000 loops, best of 3: 771 µs per loop sage: sage: A2 = WeylCharacterRing(['A',2]) sage: chi = A2(1,0,0) sage: %time [chi^k for k in range(6)] CPU times: user 0.20 s, sys: 0.00 s, total: 0.20 s Wall time: 0.20 s [A2(0,0,0), A2(1,0,0), A2(1,1,0) + A2(2,0,0), A2(1,1,1) + 2*A2(2,1,0) + A2(3,0,0), 3*A2(2,1,1) + 2*A2(2,2,0) + 3*A2(3,1,0) + A2(4,0,0), 5*A2(2,2,1) + 6*A2(3,1,1) + 5*A2(3,2,0) + 4*A2(4,1,0) + A2(5,0,0)] }}} |
|
Line 132: | Line 527: |
* FIXME: summarize #5146 * FIXME: summarize #5353 * FIXME: summarize #3812 |
|
Line 138: | Line 542: |
* FIXME: summarize #5318 |
|
Line 143: | Line 550: |
* Improved enumeration of vertices and 0-dimensional faces of LatticePolytope's. There was an inconsistency between indicies of vertices, i.e. columns of the .vertices() matrix, and indicies of 0-dimensional faces, i.e. objects returned by .faces(dim=0). E.g. the 5-th 0-dimensional face could be generated by the 7-th vertex etc. Now the i-th 0-dimensional face is generated by the i-th vertex. (The reason for the old behaviour was the output of the underlying software package PALP, now there is extra sorting.) | |
Line 147: | Line 555: |
* FIXME: summarize #5623 |
|
Line 148: | Line 559: |
* FIXME: summarize #5606 * FIXME: summarize #5450 |
|
Line 173: | Line 589: |
* FIXME: summarize #5264 |
|
Line 188: | Line 607: |
* Speed-up in calculating determinants of matrices (John H. Palmieri, William Stein) -- For matrices over {{{Z/nZ}}} with {{{n}}} composite, calculating their determinants is now up to 1.5% faster. On the machine sage.math, one can see the following improvement in computation time: {{{ # BEFORE sage: mat = random_matrix(Integers(256), 30) sage: timeit("Integers(256)(mat.lift().det())") 25 loops, best of 3: 9.53 ms per loop sage: sage: mat = random_matrix(Integers(256), 200) sage: timeit("Integers(256)(mat.lift().det())") 5 loops, best of 3: 779 ms per loop sage: sage: mat = random_matrix(Integers(2^20), 500) sage: timeit("Integers(256)(mat.lift().det())") 5 loops, best of 3: 13.5 s per loop # AFTER sage: mat = random_matrix(Integers(256), 30) sage: timeit("Integers(256)(mat.lift().det())") 25 loops, best of 3: 10 ms per loop sage: sage: mat = random_matrix(Integers(256), 200) sage: timeit("Integers(256)(mat.lift().det())") 5 loops, best of 3: 762 ms per loop sage: sage: mat = random_matrix(Integers(2^20), 500) sage: timeit("Integers(256)(mat.lift().det())") 5 loops, best of 3: 13.3 s per loop }}} |
* Speed-up in calculating determinants of matrices (John H. Palmieri, William Stein) -- For matrices over {{{Z/nZ}}} with {{{n}}} composite, calculating their determinants is now up to 1500x faster. On Debian 5.0 Lenny with kernel 2.6.24-1-686, an Intel(R) Celeron(R) 2.00GHz CPU with 1.0GB of RAM, one has the following timing statistics: {{{ # BEFORE sage: time random_matrix(Integers(26), 10).determinant() CPU times: user 15.52 s, sys: 0.02 s, total: 15.54 s Wall time: 15.54 s 13 sage: time random_matrix(Integers(256), 10).determinant() CPU times: user 15.38 s, sys: 0.00 s, total: 15.38 s Wall time: 15.38 s 144 # AFTER sage: time random_matrix(Integers(26), 10).determinant() CPU times: user 0.01 s, sys: 0.00 s, total: 0.01 s Wall time: 0.01 s 23 sage: time random_matrix(Integers(256), 10).determinant() CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s Wall time: 0.00 s }}} * FIXME: summarize #5715 |
Line 222: | Line 637: |
* FIXME: summarize #5638 * FIXME: summarize #5386 |
|
Line 225: | Line 645: |
* FIXME: summarize #5520 * FIXME: summarize #5648 * FIXME: summarize #5180 |
|
Line 228: | Line 655: |
FIXME: A number of tickets related to UTF-8 text got merged and should definitely be mentioned! #4547, #5211; #2896 and #1477 got fixed by those tickets. There's also #5564, which may not get merged for 3.4.1 but should get in soon; it pulls together a whole bunch of UTF-8 fixes and improvements. * FIXME: summarize #5681 |
|
Line 231: | Line 664: |
* FIXME: summarize #5518 * FIXME: summarize #5508 * FIXME: summarize #793 * FIXME: summarize #4667 * FIXME: summarize #5159 * FIXME: summarize #4990 * FIXME: summarize #3081 * FIXME: summarize #4724 * FIXME: summarize #5673 |
|
Line 234: | Line 686: |
== Optional Packages == |
|
Line 240: | Line 689: |
* FIXME: summarize #4987 * FIXME: summarize #4881 * FIXME: summarize #4880 * FIXME: summarize #4876 * FIXME: summarize #5672 * FIXME: summarize #5240 * FIXME: summarize #5738 * FIXME: summarize #5696 * FIXME: summarize #4987 * FIXME: summarize #5697 * FIXME: summarize #5823 |
|
Line 245: | Line 717: |
* FIXME: summarize #5737 |
Sage 3.4.1 Release Tour
Sage 3.4.1 was released on FIXME. For the official, comprehensive release note, please refer to sage-3.4.1.txt. A nicely formatted version of this release tour can be found at FIXME. The following points are some of the foci of this release:
- Merging improvements during the Sage Days 13 coding sprint.
- Other bug fixes post Sage 3.4.
Algebra
Optimized is_primitive() method (Ryan Hinton) -- The method is_primitive() in sage/rings/polynomial/polynomial_element.pyx is used for determining whether or not a polynomial is primitive over a finite field. Prime divisors are calculated during the test for polynomial primitivity. Where n is large, calculating those prime divisors can dominate the running time of the test. The is_primitive() method now has the optional argument n_prime_divs for providing precomputed prime divisors. This optional argument can result in a performance improvement of up to 4x. On the machine sage.math, one has the following timing statistics:
sage: R.<x> = PolynomialRing(GF(2), 'x') sage: nn = 128 sage: max_order = 2^nn - 1 sage: pdivs = max_order.prime_divisors() sage: poly = R.random_element(nn) sage: while not (poly.degree()==nn and poly.is_primitive(max_order, pdivs)): ....: poly = R.random_element(nn) ....: sage: %timeit poly.is_primitive() # without n_prime_divs optional argument 10 loops, best of 3: 285 ms per loop sage: %timeit poly.is_primitive(max_order, pdivs) # with n_prime_divs optional argument 10 loops, best of 3: 279 ms per loop sage: sage: nn = 256 sage: max_order = 2^nn - 1 sage: pdivs = max_order.prime_divisors() sage: poly = R.random_element(nn) sage: while not (poly.degree()==nn and poly.is_primitive(max_order, pdivs)): ....: poly = R.random_element(nn) ....: sage: %timeit poly.is_primitive() # without n_prime_divs optional argument 10 loops, best of 3: 3.22 s per loop sage: %timeit poly.is_primitive(max_order, pdivs) # with n_prime_divs optional argument 10 loops, best of 3: 700 ms per loop
Speed-up the method order_from_multiple() (John Cremona) -- For groups of prime order n, every non-identity element has order n. The previous implementation of the method order_from_multiple() computes g^n twice when g is not the identity and n is prime. Such double computation is now avoided. Now for each prime p dividing the given multiple of the order, we avoid the last multiplication/powering by p, hence saving some computation time whenever the p-exponent of the order is maximal. The new implementation of order_from_multiple() results in a performance improvement of up to 25%. Here are some timing statistics obtained using the machine sage.math:
# BEFORE sage: F = GF(2^1279, 'a') sage: n = F.cardinality() - 1 # Mersenne prime sage: order_from_multiple(F.random_element(), n, [n], operation='*') == n True sage: %timeit order_from_multiple(F.random_element(), n, [n], operation='*') == n 10 loops, best of 3: 63.7 ms per loop # AFTER sage: F = GF(2^1279, 'a') sage: n = F.cardinality() - 1 # Mersenne prime sage: %timeit order_from_multiple(F.random_element(), n, [n], operation='*') == n 10 loops, best of 3: 47.2 ms per loop
Speed-up in irreducibility test (Ryan Hinton) -- For polynomials over the finite field GF(2), the test for irreducibility is now up to 40,000 times faster than previously. On a 64-bit Debian/squeeze machine with Core 2 Duo running at 2.33 GHz, one has the following timing improvements:
# BEFORE sage: P.<x> = GF(2)[] sage: f = P.random_element(1000) sage: %timeit f.is_irreducible() 10 loops, best of 3: 948 ms per loop sage: sage: f = P.random_element(10000) sage: %time f.is_irreducible() # gave up because it took minutes! # AFTER sage: P.<x> = GF(2)[] sage: f = P.random_element(1000) sage: %timeit f.is_irreducible() 10000 loops, best of 3: 22.7 µs per loop sage: sage: f = P.random_element(10000) sage: %timeit f.is_irreducible() 1000 loops, best of 3: 394 µs per loop sage: sage: f = P.random_element(100000) sage: %timeit f.is_irreducible() 100 loops, best of 3: 10.4 ms per loop
Furthermore, on Debian 5.0 Lenny with kernel 2.6.24-1-686, an Intel(R) Celeron(R) CPU running at 2.00GHz with 1.0GB of RAM, one has the following timing statistics:# BEFORE sage: P.<x> = GF(2)[] sage: f = P.random_element(1000) sage: %timeit f.is_irreducible() 10 loops, best of 3: 1.14 s per loop sage: sage: f = P.random_element(10000) sage: %time f.is_irreducible() CPU times: user 4972.13 s, sys: 2.83 s, total: 4974.95 s Wall time: 5043.02 s False # AFTER sage: P.<x> = GF(2)[] sage: f = P.random_element(1000) sage: %timeit f.is_irreducible() 10000 loops, best of 3: 40.7 µs per loop sage: sage: f = P.random_element(10000) sage: %timeit f.is_irreducible() 1000 loops, best of 3: 930 µs per loop sage: sage: sage: f = P.random_element(100000) sage: %timeit f.is_irreducible() 10 loops, best of 3: 27.6 ms per loop
Algebraic Geometry
Refactor dimension() method for schemes (Alex Ghitza) -- Implement methods dimension_absolute() and dimension_relative(), where dimension() is an alias for dimension_absolute(). Here are some examples of using dimension_absolute() and dimension():
sage: A2Q = AffineSpace(2, QQ) sage: A2Q.dimension_absolute() 2 sage: A2Q.dimension() 2
And here's an example demonstrating the use of dimension_relative():
sage: S = Spec(ZZ) sage: S.dimension_relative() 0
Plotting affine and projective curves (Alex Ghitza) -- Improving the plotting usability so it is now easier to plot affine and projective curves. For example, we can plot a 5-nodal curve of degree 11:
sage: R.<x, y> = ZZ[] sage: C = Curve(32*x^2 - 2097152*y^11 + 1441792*y^9 - 360448*y^7 + 39424*y^5 - 1760*y^3 + 22*y - 1) sage: C.plot((x, -1, 1), (y, -1, 1), plot_points=400)
Now we plot an elliptic curve:
sage: E = EllipticCurve('101a') sage: C = Curve(E) sage: C.plot()
Basic Arithmetic
- Speed-up in dividing a polynomial by an integer (Burcin Erocal) -- Dividing a polynomial by an integer is now up to 6x faster than previously. On Debian 5.0 Lenny with kernel 2.6.24-1-686, an Intel(R) Celeron(R) CPU running at 2.00GHz with 1.0GB of RAM, one has the following timing statistics:
# BEFORE sage: R.<x> = ZZ["x"] sage: f = 389 * R.random_element(1000) sage: timeit("f//389") 625 loops, best of 3: 312 µs per loop # AFTER sage: R.<x> = ZZ["x"] sage: f = 389 * R.random_element(1000) sage: timeit("f//389") 625 loops, best of 3: 48.3 µs per loop
New fast_float supports more datatypes with improved performance (Carl Witty) -- A rewrite of fast_float to support multiple types. Here, we get accelerated evaluation over RealField(k) as well as RDF, real double field. As compared with the previous fast_float, improved performance can range from 2% faster to more than 2x as fast. An extended list of benchmark details is available at ticket 5093.
Complex double fast callable interpreter (Robert Bradshaw) -- Support for complex double floating point (CDF). The new interpreter is implemented in the class CDFInterpreter of sage/ext/gen_interpreters.py.
Speed-up the function solve_mod() (Wilfried Huss) -- Performance improvement for the function solve_mod() is now up to 5x when solving an equation or a list of equations modulo a given integer modulus. On the machine sage.math, we have the following timing statistics:
# BEFORE sage: x, y = var('x,y') sage: time solve_mod([x^2 + 2 == x, x^2 + y == y^2], 14) CPU times: user 0.01 s, sys: 0.02 s, total: 0.03 s Wall time: 0.18 s [(4, 2), (4, 6), (4, 9), (4, 13)] sage: sage: x,y,z = var('x,y,z') sage: time solve_mod([x^5 + y^5 == z^5], 3) CPU times: user 0.01 s, sys: 0.00 s, total: 0.01 s Wall time: 0.10 s [(0, 0, 0), (0, 1, 1), (0, 2, 2), (1, 0, 1), (1, 1, 2), (1, 2, 0), (2, 0, 2), (2, 1, 0), (2, 2, 1)] # AFTER sage: x, y = var('x,y') sage: time solve_mod([x^2 + 2 == x, x^2 + y == y^2], 14) CPU times: user 0.03 s, sys: 0.01 s, total: 0.04 s Wall time: 0.16 s [(4, 2), (4, 6), (4, 9), (4, 13) sage: sage: x,y,z = var('x,y,z') sage: time solve_mod([x^5 + y^5 == z^5], 3) CPU times: user 0.01 s, sys: 0.01 s, total: 0.02 s Wall time: 0.02 s [(0, 0, 0), (0, 1, 1), (0, 2, 2), (1, 0, 1), (1, 1, 2), (1, 2, 0), (2, 0, 2), (2, 1, 0), (2, 2, 1)]
Optimized binomial function when an input is real or complex floating point (Dan Drake, William Stein) -- The function binomial() for returning the binomial coefficients is now much faster. In some cases, speed efficiency can be up to 4000x. Here are some timing statistics obtained using the machine sage.math:
# BEFORE sage: x, y = 1140000.78, 420000 sage: %timeit binomial(x, y) 10 loops, best of 3: 1.19 s per loop sage: sage: x, y = RR(pi^5), 10 sage: %timeit binomial(x, y) 10000 loops, best of 3: 28.2 µs per loop sage: sage: x, y = RR(pi^15), 500 sage: %timeit binomial(x, y) 1000 loops, best of 3: 799 µs per loop sage: sage: x, y = RealField(500)(1729000*sqrt(2)), 17000 sage: %timeit binomial(x, y) 10 loops, best of 3: 34.4 ms per loop # AFTER sage: x, y = 1140000.78, 420000 sage: %timeit binomial(x, y) 1000 loops, best of 3: 297 µs per loop sage: sage: x, y = RR(pi^5), 10 sage: %timeit binomial(x, y) 10000 loops, best of 3: 189 µs per loop sage: sage: x, y = RR(pi^15), 500 sage: %timeit binomial(x, y) 1000 loops, best of 3: 335 µs per loop sage: sage: x, y = RealField(500)(1729000*sqrt(2)), 17000 sage: %timeit binomial(x, y) 1000 loops, best of 3: 692 µs per loop
Enhanced nth_root() in ZZ and QQ and related utilities (John Cremona) -- Some consistency in the method nth_root() of ZZ and QQ. There are also some new utility methods for the rational numbers:
prime_to_S_part(self, S=[]) -- Returns self with all powers of all primes in S removed.
is_nth_power(self, int n) -- Returns True if self is an n-th power; else False.
is_S_integral(self, S=[]) -- Determine if the rational number is S-integral.
is_S_unit(self, S=None) -- Determine if the rational number is an S-unit.
Build
Calculus
- Deprecate the calling of symbolic functions with unnamed arguments (Carl Witty, Michael Abshoff) -- Previous releases of Sage supported symbolic functions with "no arguments". This style of constructing symbolic functions is now deprecated. For example, previously Sage allowed for defining a symbolic function in the following way
f2 = 5 - x^2 # bad; this is deprecated
But users are encouraged to explicitly declare the variables used in a symolic function. For instance, the following is encouraged:sage: x,y = var("x, y") # explicitly declare your variables sage: f(x, y) = x^2 + y^2 # this syntax is encouraged
Coercion
Combinatorics
Enhancements to the Subsets and Subwords modules (Florent Hivert) -- Numerous enhancements to the modules Subsets and Subwords include:
- An implementation of subsets for finite multisets, i.e. sets with repetitions.
Adding the method __contains__ for Subsets and Subwords.
sage: S = Subsets([1, 2, 2], submultiset=True); S SubMultiset of [1, 2, 2] sage: S.list() [[], [1], [2], [1, 2], [2, 2], [1, 2, 2]] sage: Set([1,2]) in S # this uses __contains__ in Subsets True sage: Set([]) in S True sage: Set([3]) in S False
And here's an example of using __contains__ with Subwords:
sage: [] in Subwords([1,2,3,4,3,4,4]) True sage: [2,3,3,4] in Subwords([1,2,3,4,3,4,4]) True sage: [2,3,3,1] in Subwords([1,2,3,4,3,4,4]) False
- Fix and enhancements to permutations (Sebastien Labbe) -- This corrects the Robinson-Schensted algorithm on trivial permutations. It implements the inverse Robinson-Schensted algorithm:
sage: Permutation((Tableau([[1,2,4],[3]]), Tableau([[1,3,4],[2]]))) [3, 1, 2, 4] sage: Permutation(([[1,2,4],[3]], [[1,3,4],[2]])) [3, 1, 2, 4]
And it works for arbitrary words (with semi-standard tableaux):sage: Permutation(([[1,2,2],[3]], [[1,3,4],[2]])) [3, 1, 2, 2]
- First pass of cleanup of the interface of combinatorial classes (Florent Hivert) -- Before the patch, the interface of combinatorial classes had two problems:
There were two redundant ways to get the number of elements len(C) and C.count(). Moreover len must return a plain int where we want an arbitrary large number and even infinity;
There were two redundant ways to get an iterator for the elements C.iterator() and iter(C) (allowing for for c in C: ...) via C.__iter__.
C.cardinality() which is more explicit and consistent with many other Sage libraries;
iter(C) / for x in C: via C.__iter__ which is clearly more Pythonic.
The functions iterator() and count() are deprecated (with a warning), but will be removed in a later release. On the other hand, there was no way to keep backward compatibility for len. Indeed, many of function such as list / filter / map try silently to call len, which would have caused miriads of warnings to be issued in seemingly unrelated places. So it was decided to simply remove it and issue an error, suggesting to call cardinality instead.
New class IntegerListLex for generating integer lists (Nicolas M. Thiery, Florent Hivert) -- The new class provides a Constant Amortized Time iterator through the combinatorial classes of integer lists. For example, we create the combinatorial class of lists of length 3 and sum 2 as follows:
sage: C = IntegerListsLex(2, length=3); C Integer lists of sum 2 satisfying certain constraints sage: C.count() 6 sage: [p for p in C] [[2, 0, 0], [1, 1, 0], [1, 0, 1], [0, 2, 0], [0, 1, 1], [0, 0, 2]]
Here's the list of all compositions of 4:sage: list(IntegerListsLex(4, min_part = 1)) [[4], [3, 1], [2, 2], [2, 1, 1], [1, 3], [1, 2, 1], [1, 1, 2], [1, 1, 1, 1]]
Cleanup of crystal code (Anne Schilling, Nicolas M. Thiery) -- Cartan type is now implemented as the method cartan_type, rather than an attribute as was previously the case.
Deprecate the function RestrictedPartitions() (Dan Drake) -- The function RestrictedPartitions() in sage/combinat/partition.py is now deprecated and will be removed in a future release. Users are advised to instead consider the function Partitions() with the parts_in keyword, which is functionally equivalent to RestrictedPartitions() but is more memory and time efficient. The timing improvement in Partitions() is up to 5x faster than RestrictedPartitions(). The following memory and timing statistics are produced using the machine sage.math:
# BEFORE sage: get_memory_usage() 721.26171875 sage: ps = RestrictedPartitions(100, ([1,6..100] + [4,9..100])) sage: %time sum(1 for p in ps) CPU times: user 27.26 s, sys: 1.06 s, total: 28.32 s Wall time: 28.99 s 74040 sage: get_memory_usage() 1807.03515625 sage: get_memory_usage() 721.265625 sage: ps = RestrictedPartitions(3000, [10,50,100,500,1000]) sage: %time sum(1 for p in ps) CPU times: user 5.60 s, sys: 0.21 s, total: 5.81 s Wall time: 5.95 s 3506 sage: get_memory_usage() 962.54296875 # AFTER sage: get_memory_usage() 719.3984375 sage: ps = Partitions(100, parts_in=([1,6..100] + [4,9..100])) sage: %time sum(1 for p in ps) CPU times: user 5.09 s, sys: 0.01 s, total: 5.10 s Wall time: 5.10 s 74040 sage: get_memory_usage() 719.3984375 sage: get_memory_usage() 719.3984375 sage: ps = Partitions(3000, parts_in=[10,50,100,500,1000]) sage: %time sum(1 for p in ps) CPU times: user 1.12 s, sys: 0.01 s, total: 1.13 s Wall time: 1.13 s 3506 sage: get_memory_usage() 719.3984375
Speed-up the weyl_characters.py module (Mike Hansen, Daniel Bump, Michael Abshoff) -- The timing efficiency is between 4x to 10x, depending on the operations involved. Here are some timing statistics produced using the machine sage.math:
# BEFORE sage: R = WeylCharacterRing(['B',3], prefix = "R") sage: %time r = R(1,1,0) CPU times: user 0.14 s, sys: 0.00 s, total: 0.14 s Wall time: 0.14 s sage: sage: R = WeylCharacterRing(['B',3], prefix = "R") sage: %time [R(w) for w in R.lattice().fundamental_weights()] CPU times: user 0.25 s, sys: 0.00 s, total: 0.25 s Wall time: 0.25 s [R(1,0,0), R(1,1,0), R(1/2,1/2,1/2)] sage: sage: A2 = WeylCharacterRing(['A',2]) sage: %time [A2(0,0,0)+A2(2,1,0), A2(2,1,0)+A2(0,0,0), - A2(0,0,0)+2*A2(0,0,0), -2*A2(0,0,0)+A2(0,0,0), -A2(2,1,0)+2*A2(2,1,0)-A2(2,1,0)] CPU times: user 0.18 s, sys: 0.00 s, total: 0.18 s Wall time: 0.19 s [A2(0,0,0) + A2(2,1,0), A2(0,0,0) + A2(2,1,0), A2(0,0,0), -A2(0,0,0), 0] sage: sage: A2 = WeylCharacterRing(['A',2]) sage: %timeit [-x for x in [A2(0,0,0), 2*A2(0,0,0), -A2(0,0,0), -2*A2(0,0,0)]] 10 loops, best of 3: 20 ms per loop sage: sage: A2 = WeylCharacterRing(['A',2]) sage: chi = A2(0,0,0)+2*A2(1,0,0)+3*A2(2,0,0) sage: mu = 3*A2(0,0,0)+2*A2(1,0,0)+A2(2,0,0) sage: %timeit chi - mu 100 loops, best of 3: 8.16 ms per loop sage: sage: A2 = WeylCharacterRing(['A',2]) sage: chi = A2(1,0,0) sage: %time [chi^k for k in range(6)] CPU times: user 1.05 s, sys: 0.02 s, total: 1.07 s Wall time: 1.07 s [A2(0,0,0), A2(1,0,0), A2(1,1,0) + A2(2,0,0), A2(1,1,1) + 2*A2(2,1,0) + A2(3,0,0), 3*A2(2,1,1) + 2*A2(2,2,0) + 3*A2(3,1,0) + A2(4,0,0), 5*A2(2,2,1) + 6*A2(3,1,1) + 5*A2(3,2,0) + 4*A2(4,1,0) + A2(5,0,0)] # AFTER sage: R = WeylCharacterRing(['B',3], prefix = "R") sage: %time r = R(1,1,0) CPU times: user 0.03 s, sys: 0.00 s, total: 0.03 s Wall time: 0.03 s sage: sage: R = WeylCharacterRing(['B',3], prefix = "R") sage: %time [R(w) for w in R.lattice().fundamental_weights()] CPU times: user 0.05 s, sys: 0.00 s, total: 0.05 s Wall time: 0.05 s [R(1,0,0), R(1,1,0), R(1/2,1/2,1/2)] sage: sage: A2 = WeylCharacterRing(['A',2]) sage: %time [A2(0,0,0)+A2(2,1,0), A2(2,1,0)+A2(0,0,0), - A2(0,0,0)+2*A2(0,0,0), -2*A2(0,0,0)+A2(0,0,0), -A2(2,1,0)+2*A2(2,1,0)-A2(2,1,0)] CPU times: user 0.04 s, sys: 0.00 s, total: 0.04 s Wall time: 0.04 s [A2(0,0,0) + A2(2,1,0), A2(0,0,0) + A2(2,1,0), A2(0,0,0), -A2(0,0,0), 0] sage: sage: A2 = WeylCharacterRing(['A',2]) sage: %timeit [-x for x in [A2(0,0,0), 2*A2(0,0,0), -A2(0,0,0), -2*A2(0,0,0)]] 100 loops, best of 3: 3.33 ms per loop sage: sage: A2 = WeylCharacterRing(['A',2]) sage: chi = A2(0,0,0)+2*A2(1,0,0)+3*A2(2,0,0) sage: mu = 3*A2(0,0,0)+2*A2(1,0,0)+A2(2,0,0) sage: %timeit chi - mu 1000 loops, best of 3: 771 µs per loop sage: sage: A2 = WeylCharacterRing(['A',2]) sage: chi = A2(1,0,0) sage: %time [chi^k for k in range(6)] CPU times: user 0.20 s, sys: 0.00 s, total: 0.20 s Wall time: 0.20 s [A2(0,0,0), A2(1,0,0), A2(1,1,0) + A2(2,0,0), A2(1,1,1) + 2*A2(2,1,0) + A2(3,0,0), 3*A2(2,1,1) + 2*A2(2,2,0) + 3*A2(3,1,0) + A2(4,0,0), 5*A2(2,2,1) + 6*A2(3,1,1) + 5*A2(3,2,0) + 4*A2(4,1,0) + A2(5,0,0)]
Commutative Algebra
New function weil_restriction() on multivariate ideals (Martin Albrecht) -- The new function weil_restriction() computes the Weil restriction of a multivariate ideal over some extension field. A Weil restriction is also known as a restriction of scalars. Here's an example on computing a Weil restriction:
sage: k.<a> = GF(2^2) sage: P.<x,y> = PolynomialRing(k, 2) sage: I = Ideal([x*y + 1, a*x + 1]) sage: I.variety() [{y: a, x: a + 1}] sage: J = I.weil_restriction() sage: J Ideal (x1*y0 + x0*y1 + x1*y1, x0*y0 + x1*y1 + 1, x0 + x1, x1 + 1) of Multivariate Polynomial Ring in x0, x1, y0, y1 over Finite Field of size 2
- FIXME: summarize #5146
- FIXME: summarize #5353
- FIXME: summarize #3812
Distribution
Doctest
- FIXME: summarize #5318
Documentation
Geometry
Improved enumeration of vertices and 0-dimensional faces of LatticePolytope's. There was an inconsistency between indicies of vertices, i.e. columns of the .vertices() matrix, and indicies of 0-dimensional faces, i.e. objects returned by .faces(dim=0). E.g. the 5-th 0-dimensional face could be generated by the 7-th vertex etc. Now the i-th 0-dimensional face is generated by the i-th vertex. (The reason for the old behaviour was the output of the underlying software package PALP, now there is extra sorting.)
Graph Theory
- FIXME: summarize #5623
Graphics
- FIXME: summarize #5606
- FIXME: summarize #5450
Group Theory
- Speed-up in comparing elements of a permutation group (Robert Bradshaw, John H. Palmieri, Rob Beezer) -- For elements of a permutation group, comparison between those elements is now up to 13x faster. On Mac OS X 10.4 with Intel Core 2 duo running at 2.33 GHz, one has the following improvement in timing statistics:
# BEFORE sage: a = SymmetricGroup(20).random_element() sage: b = SymmetricGroup(10).random_element() sage: timeit("a == b") 625 loops, best of 3: 3.19 µs per loop # AFTER sage: a = SymmetricGroup(20).random_element() sage: b = SymmetricGroup(10).random_element() sage: time v = [a == b for _ in xrange(2000)] CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s Wall time: 0.00 s sage: timeit("a == b") 625 loops, best of 3: 240 ns per loop
- FIXME: summarize #5264
Interfaces
Linear Algebra
Deprecate the function invert() (John H. Palmieri) -- The function invert() for calculating the inverse of a dense matrix with rational entries is now deprecated. Instead, users are now advised to use the function inverse(). Here's an example of using the function inverse():
sage: a = matrix(QQ, 2, [1, 5, 17, 3]) sage: a.inverse() [-3/82 5/82] [17/82 -1/82]
Speed-up in calculating determinants of matrices (John H. Palmieri, William Stein) -- For matrices over Z/nZ with n composite, calculating their determinants is now up to 1500x faster. On Debian 5.0 Lenny with kernel 2.6.24-1-686, an Intel(R) Celeron(R) 2.00GHz CPU with 1.0GB of RAM, one has the following timing statistics:
# BEFORE sage: time random_matrix(Integers(26), 10).determinant() CPU times: user 15.52 s, sys: 0.02 s, total: 15.54 s Wall time: 15.54 s 13 sage: time random_matrix(Integers(256), 10).determinant() CPU times: user 15.38 s, sys: 0.00 s, total: 15.38 s Wall time: 15.38 s 144 # AFTER sage: time random_matrix(Integers(26), 10).determinant() CPU times: user 0.01 s, sys: 0.00 s, total: 0.01 s Wall time: 0.01 s 23 sage: time random_matrix(Integers(256), 10).determinant() CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s Wall time: 0.00 s
- FIXME: summarize #5715
Miscellaneous
- FIXME: summarize #5638
- FIXME: summarize #5386
Modular Forms
- FIXME: summarize #5520
- FIXME: summarize #5648
- FIXME: summarize #5180
Notebook
FIXME: A number of tickets related to UTF-8 text got merged and should definitely be mentioned! #4547, #5211; #2896 and #1477 got fixed by those tickets. There's also #5564, which may not get merged for 3.4.1 but should get in soon; it pulls together a whole bunch of UTF-8 fixes and improvements.
- FIXME: summarize #5681
Number Theory
- FIXME: summarize #5518
- FIXME: summarize #5508
- FIXME: summarize #793
- FIXME: summarize #4667
- FIXME: summarize #5159
- FIXME: summarize #4990
- FIXME: summarize #3081
- FIXME: summarize #4724
- FIXME: summarize #5673
Numerical
Packages
- FIXME: summarize #4987
- FIXME: summarize #4881
- FIXME: summarize #4880
- FIXME: summarize #4876
- FIXME: summarize #5672
- FIXME: summarize #5240
- FIXME: summarize #5738
- FIXME: summarize #5696
- FIXME: summarize #4987
- FIXME: summarize #5697
- FIXME: summarize #5823
Quadratic Forms
Symbolics
- FIXME: summarize #5737
User Interface