Processing Math: 88%
jsMath
Differences between revisions 12 and 13
Revision 12 as of 2008-11-14 13:42:12
Size: 6415
Editor: anonymous
Comment: converted to 1.6 markup
Revision 13 as of 2017-09-01 06:02:11
Size: 6424
Editor: chapoton
Comment:
Deletions are marked like this. Additions are marked like this.
Line 18: Line 18:
|| 23 || || || || || || || || || 23 || || || || || s 47.2 µs || || ||

Problem Key

simplify

A(...)

assume ...

S(...,x)

solve ... for x

T(...,x=b)

Taylor series of ... based at b

(p.v.)

principal value

(div)

divergent

Performance Key

×

wrong answer/cannot do the problem

s sec/ms/μs

performs correctly in time s

>s sec/ms/μs

does not finish in time s

>.<,s or >.<,×

very difficult to convince system to do what you want (regardless of performance)

Problem

Maple

Mathematica

GiNaC

Maxima

Sage

Symbolics

Notes (such as code used/version etc.)

23+41+3 

23

s 47.2 µs

ex1ex/2+1ex/21

A(xy,yz,zx);x=z?

A(x>y,y>0);2x2>2y2?

cosxcos(3x)cos2x3sin2x

cosxcos(3x)2cos(2x)1

A(x,y>0);x1/ny1/n(xy)1/n0

log(tan(21x+4π))sinh1(tan(x))0

log2r+14r+4r+10

x|z|xy|z|2xxy/y

Note x=±x

2x=0+12x+1=1

S(e2x+2ex+1=z,x)

S((x+1)(sin2x+1)2cos3(3x)=0,x)

M1, where M=[[x,1],[y,ez]]

nk=1k34n2(n+1)2

k=1(1k2+1k3)6π2+ζ(3)

nk=1kn!

limn(1+n1)ne

limx0xsinx1

limx0x21cosx21

d2dx2y(x(t))dx2d2y(dtdx)2+dxdydt2d2x

ddx(1x3+2dx)1x3+2 

1a+bcosxdx(a<b

ddx1a+bcosxdx=1a+bcosx 

ddx|x|x|x|

|x|dx2x|x| 

x1+x+1xdx3(1+x)3/2+(1x)3/2 

21+x+1xdx3(1+x)3/2+(1x)3/2 

11x1dx0  (p.v.)

111x2dx  (div)

01x+x12dx34 

12x+x12dx348 

02x+x12dx388 

A(a>0); \int_{-\infty}^\infty\frac{\cos x}{x^2+a^2}dx \rightarrow \frac\pi ae^{-a}

A(0 < a < 1); \int_0^\infty\frac{t^{a-1}}{t+1}dt \rightarrow \frac{\pi}{\sin(\pi a)}

T(\frac1{\sqrt{1-(x/c)^2}},x=0)

T((\log x)^ae^{-bx},x=1)

T(\log(\sinh z) + \log(\cosh(z + w)))

T(\log(\frac{\sin x}{x}), x=0)

WesterBenchmarks (last edited 2017-09-01 06:55:22 by chapoton)