Size: 6455
Comment:
|
Size: 6463
Comment:
|
Deletions are marked like this. | Additions are marked like this. |
Line 34: | Line 34: |
|| |
|| |
Problem Key |
|
|
simplify |
|
assume ... |
|
solve ... for |
|
Taylor series of ... based at b |
(p.v.) |
principal value |
(div) |
divergent |
Performance Key |
|
|
wrong answer/cannot do the problem |
|
performs correctly in time |
|
does not finish in time |
>.<, |
very difficult to convince system to do what you want (regardless of performance) |
Problem |
Maple |
Mathematica |
GiNaC |
Maxima |
Sage |
Symbolics |
Notes (such as code used/version etc.) |
|
|
|
|
|
|
|
|
|
|
|
|
|
s 47.2 µs |
|
|
|
|
|
|
|
s 2.59 ms |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Note |
|
|
|
|
|
|
|
|
|
|
|
|
|
s 4.85 ms |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
s 3.93 ms |
|
|
|
|
|
|
|
s 24.6 ms |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
s 5.82 ms |
|
|
\lim_{n\rightarrow\infty}(1 + \frac{1}{n})^n \rightarrow e |
|
|
|
|
|
|
|
\lim_{x\rightarrow 0}\frac{\sin x}{x} \rightarrow 1 |
|
|
|
|
|
|
|
\lim_{x\rightarrow 0}\frac{1-\cos x}{x^2} \rightarrow \frac{1}{2} |
|
|
|
|
|
|
|
\frac{d^2}{dx^2}y(x(t)) \rightarrow \frac{d^2y}{dx^2}(\frac{dx}{dt})^2 + \frac{dy}{dx}\frac{d^2x}{dt^2} |
|
|
|
|
|
|
|
\frac{d}{dx}(\int\frac{1}{x^3+2}dx) \rightarrow \frac{1}{x^3+2} |
|
|
|
|
|
|
|
\int\frac{1}{a+b\cos x}dx (a < b) |
|
|
|
|
|
|
|
\frac{d}{dx}\int\frac{1}{a+b\cos x}dx = \frac{1}{a+b\cos x} |
|
|
|
|
|
|
|
\frac{d}{dx}|x| \rightarrow \frac{x}{|x|} |
|
|
|
|
|
|
|
\int|x|dx \rightarrow \frac{x|x|}{2} |
|
|
|
|
|
|
|
\int\frac{x}{\sqrt{1+x}+\sqrt{1-x}}dx \rightarrow \frac{(1+x)^{3/2}+(1-x)^{3/2}}{3} |
|
|
|
|
|
|
|
\int\frac{\sqrt{1+x}+\sqrt{1-x}}{2}dx \rightarrow \frac{(1+x)^{3/2}+(1-x)^{3/2}}{3} |
|
|
|
|
|
|
|
\int_{-1}^1\frac{1}{x}dx \rightarrow 0 (p.v.) |
|
|
|
|
|
|
|
\int_{-1}^1\frac{1}{x^2}dx \rightarrow (div) |
|
|
|
|
|
|
|
\int_0^1\sqrt{x + \frac1x - 2}dx \rightarrow \frac43 |
|
|
|
|
|
|
|
\int_1^2\sqrt{x + \frac1x - 2}dx \rightarrow \frac{4-\sqrt8}3 |
|
|
|
|
|
|
|
\int_0^2\sqrt{x + \frac1x - 2}dx \rightarrow \frac{8-\sqrt8}3 |
|
|
|
|
|
|
|
A(a>0); \int_{-\infty}^\infty\frac{\cos x}{x^2+a^2}dx \rightarrow \frac\pi ae^{-a} |
|
|
|
|
|
|
|
A(0 < a < 1); \int_0^\infty\frac{t^{a-1}}{t+1}dt \rightarrow \frac{\pi}{\sin(\pi a)} |
|
|
|
|
|
|
|
T(\frac1{\sqrt{1-(x/c)^2}},x=0) |
|
|
|
|
|
|
|
T((\log x)^ae^{-bx},x=1) |
|
|
|
|
|
|
|
T(\log(\sinh z) + \log(\cosh(z + w))) |
|
|
|
|
|
|
|
T(\log(\frac{\sin x}{x}), x=0) |
|
|
|
|
|
|
|