Processing Math: 59%
No jsMath TeX fonts found -- using unicode fonts instead.
This may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath
Differences between revisions 17 and 18
Revision 17 as of 2017-09-01 06:09:30
Size: 6455
Editor: chapoton
Comment:
Revision 18 as of 2017-09-01 06:10:19
Size: 6463
Editor: chapoton
Comment:
Deletions are marked like this. Additions are marked like this.
Line 34: Line 34:
|| k=1nkn! || || || || || || || || || k=1nkn! || || || || || s 5.82 ms || || ||

Problem Key

simplify

A(...)

assume ...

S(...,x)

solve ... for x

T(...,x=b)

Taylor series of ... based at b

(p.v.)

principal value

(div)

divergent

Performance Key

×

wrong answer/cannot do the problem

s sec/ms/μs

performs correctly in time s

>s sec/ms/μs

does not finish in time s

>.<,s or >.<,×

very difficult to convince system to do what you want (regardless of performance)

Problem

Maple

Mathematica

GiNaC

Maxima

Sage

Symbolics

Notes (such as code used/version etc.)

23+41+3 

23

s 47.2 µs

ex1ex/2+1ex/21

s 2.59 ms

A(xy,yz,zx);x=z?

A(x>y,y>0);2x2>2y2?

cosxcos(3x)cos2x3sin2x

cosxcos(3x)2cos(2x)1

A(x,y>0);x1/ny1/n(xy)1/n0

log(tan(21x+4π))sinh1(tan(x))0

log2r+14r+4r+10

x|z|xy|z|2xxy/y

Note x=±x

2x=0+12x+1=1

S(e2x+2ex+1=z,x)

s 4.85 ms

S((x+1)(sin2x+1)2cos3(3x)=0,x)

M1, where M=[[x,1],[y,ez]]

s 3.93 ms

nk=1k34n2(n+1)2

s 24.6 ms

k=1(1k2+1k3)6π2+ζ(3)

nk=1kn!

s 5.82 ms

\lim_{n\rightarrow\infty}(1 + \frac{1}{n})^n \rightarrow e

\lim_{x\rightarrow 0}\frac{\sin x}{x} \rightarrow 1

\lim_{x\rightarrow 0}\frac{1-\cos x}{x^2} \rightarrow \frac{1}{2}

\frac{d^2}{dx^2}y(x(t)) \rightarrow \frac{d^2y}{dx^2}(\frac{dx}{dt})^2 + \frac{dy}{dx}\frac{d^2x}{dt^2}

\frac{d}{dx}(\int\frac{1}{x^3+2}dx) \rightarrow \frac{1}{x^3+2}

\int\frac{1}{a+b\cos x}dx (a < b)

\frac{d}{dx}\int\frac{1}{a+b\cos x}dx = \frac{1}{a+b\cos x}

\frac{d}{dx}|x| \rightarrow \frac{x}{|x|}

\int|x|dx \rightarrow \frac{x|x|}{2}

\int\frac{x}{\sqrt{1+x}+\sqrt{1-x}}dx \rightarrow \frac{(1+x)^{3/2}+(1-x)^{3/2}}{3}

\int\frac{\sqrt{1+x}+\sqrt{1-x}}{2}dx \rightarrow \frac{(1+x)^{3/2}+(1-x)^{3/2}}{3}

\int_{-1}^1\frac{1}{x}dx \rightarrow 0 (p.v.)

\int_{-1}^1\frac{1}{x^2}dx \rightarrow (div)

\int_0^1\sqrt{x + \frac1x - 2}dx \rightarrow \frac43

\int_1^2\sqrt{x + \frac1x - 2}dx \rightarrow \frac{4-\sqrt8}3

\int_0^2\sqrt{x + \frac1x - 2}dx \rightarrow \frac{8-\sqrt8}3

A(a>0); \int_{-\infty}^\infty\frac{\cos x}{x^2+a^2}dx \rightarrow \frac\pi ae^{-a}

A(0 < a < 1); \int_0^\infty\frac{t^{a-1}}{t+1}dt \rightarrow \frac{\pi}{\sin(\pi a)}

T(\frac1{\sqrt{1-(x/c)^2}},x=0)

T((\log x)^ae^{-bx},x=1)

T(\log(\sinh z) + \log(\cosh(z + w)))

T(\log(\frac{\sin x}{x}), x=0)

WesterBenchmarks (last edited 2017-09-01 06:55:22 by chapoton)