Processing Math: 87%
jsMath
Differences between revisions 22 and 23
Revision 22 as of 2017-09-01 06:22:07
Size: 6622
Editor: chapoton
Comment:
Revision 23 as of 2017-09-01 06:27:18
Size: 6594
Editor: chapoton
Comment:
Deletions are marked like this. Additions are marked like this.
Line 17: Line 17:
|| 23+41+3 || || || || ||  ×    || || ||
|| 23 || || || || || s 47.2 µs    || || ||
|| ex1ex/2+1ex/21 || || || || || s 2.59 ms   || || ||
|| A(xy,yz,zx);x=z? || || || || || s  1.57 ms    || || ||
|| 23+41+3 || || || || || × || || ||
|| 23 || || || || || s 47.2 µs || || ||
|| ex1ex/2+1ex/21 || || || || || s 2.59 ms || || ||
|| A(xy,yz,zx);x=z? || || || || || s 1.57 ms || || ||
Line 29: Line 29:
|| S(e2x+2ex+1=z,x) || || || || || s 4.85 ms    || || || || S(e2x+2ex+1=z,x) || || || || || s 4.85 ms || || ||
Line 31: Line 31:
|| M1, where M=[[x,1],[y,ez]] || || || || || s  3.93 ms   || || ||
|| k=1nk3n2(n+1)24 || || || || ||  s 24.6 ms  || || ||
|| M1, where M=[[x,1],[y,ez]] || || || || || s 3.93 ms || || ||
|| k=1nk3n2(n+1)24 || || || || || s 24.6 ms || || ||
Line 34: Line 34:
|| k=1nkn! || || || || ||  s 5.82 ms   || || ||
|| limn(1+1n)ne || || || || ||   s 6.93 ms   || || ||
|| limx0sinxx1 || || || || ||      || || ||
|| k=1nkn! || || || || || s 5.82 ms || || ||
|| limn(1+1n)ne || || || || || s 6.93 ms || || ||
|| limx0sinxx1 || || || || || s 5.95 ms || || ||
Line 56: Line 56:
|| T(log(sinxx),x=0) || || || || ||  s 5.19 ms    || || at order 20 || || T(log(sinxx),x=0) || || || || || s 5.19 ms || || at order 20 ||

Problem Key

simplify

A(...)

assume ...

S(...,x)

solve ... for x

T(...,x=b)

Taylor series of ... based at b

(p.v.)

principal value

(div)

divergent

Performance Key

×

wrong answer/cannot do the problem

s sec/ms/μs

performs correctly in time s

>s sec/ms/μs

does not finish in time s

>.<,s or >.<,×

very difficult to convince system to do what you want (regardless of performance)

Problem

Maple

Mathematica

GiNaC

Maxima

Sage

Symbolics

Notes (such as code used/version etc.)

23+41+3 

×

23

s 47.2 µs

ex1ex/2+1ex/21

s 2.59 ms

A(xy,yz,zx);x=z?

s 1.57 ms

A(x>y,y>0);2x2>2y2?

cosxcos(3x)cos2x3sin2x

cosxcos(3x)2cos(2x)1

A(x,y>0);x1/ny1/n(xy)1/n0

log(tan(21x+4π))sinh1(tan(x))0

log2r+14r+4r+10

x|z|xy|z|2xxy/y

Note x=±x

2x=0+12x+1=1

S(e2x+2ex+1=z,x)

s 4.85 ms

S((x+1)(sin2x+1)2cos3(3x)=0,x)

M1, where M=[[x,1],[y,ez]]

s 3.93 ms

nk=1k34n2(n+1)2

s 24.6 ms

k=1(1k2+1k3)6π2+ζ(3)

nk=1kn!

s 5.82 ms

limn(1+n1)ne

s 6.93 ms

limx0xsinx1

s 5.95 ms

limx0x21cosx21

d2dx2y(x(t))dx2d2y(dtdx)2+dxdydt2d2x

ddx(1x3+2dx)1x3+2 

1a+bcosxdx(a<b

ddx1a+bcosxdx=1a+bcosx 

ddx|x|x|x|

|x|dx2x|x| 

x1+x+1xdx3(1+x)3/2+(1x)3/2 

21+x+1xdx3(1+x)3/2+(1x)3/2 

11x1dx0  (p.v.)

111x2dx  (div)

01x+x12dx34 

12x+x12dx348 

\int_0^2\sqrt{x + \frac1x - 2}dx \rightarrow \frac{8-\sqrt8}3

A(a>0); \int_{-\infty}^\infty\frac{\cos x}{x^2+a^2}dx \rightarrow \frac\pi ae^{-a}

A(0 < a < 1); \int_0^\infty\frac{t^{a-1}}{t+1}dt \rightarrow \frac{\pi}{\sin(\pi a)}

T(\frac1{\sqrt{1-(x/c)^2}},x=0)

T((\log x)^ae^{-bx},x=1)

T(\log(\sinh z) + \log(\cosh(z + w)))

T(\log(\frac{\sin x}{x}), x=0)

s 5.19 ms

at order 20

WesterBenchmarks (last edited 2017-09-01 06:55:22 by chapoton)