Processing Math: 74%
jsMath
Differences between revisions 5 and 6
Revision 5 as of 2008-08-12 11:40:01
Size: 1330
Editor: RobertMiller
Comment:
Revision 6 as of 2008-08-12 12:16:36
Size: 4853
Editor: RobertMiller
Comment:
Deletions are marked like this. Additions are marked like this.
Line 1: Line 1:
||<-2> Problem Key ||
|| || simplify ||
|| A(...) || assume ... ||
||<-2> Problem Key                    ||
|| || simplify          ||
|| A(...)      || assume ...        ||
|| S(...,x) || solve ... for x ||
|| (p.v.) || principal value ||
Line 5: Line 7:
||<-2> Performance Key ||
|| × || wrong answer/cannot do the problem ||
|| s sec/ms/μs || performs correctly in time s ||
|| >s sec/ms/μs || does not finish in time s ||
||<-2> Performance Key                                           ||
|| ×                || wrong answer/cannot do the problem ||
|| s sec/ms/μs   || performs correctly in time s     ||
|| >s sec/ms/μs   || does not finish in time s        ||
Line 11: Line 13:
|| Problem || Maple || Mathematica || GiNaC || Maxima || Sage || Symbolics || Notes (such as code used/version etc.) ||
|| 23+41+3 || || || || || || || ||
|| 23 || || || || || || || ||
|| ex1ex/2+1ex/21 || || || || || || || ||
|| A(xy,yz,zx);x=z? || || || || || || || ||
|| A(x>y,y>0);2x2>2y2? || || || || || || || ||
|| cos(3x)cosxcos2x3sin2x || || || || || || || ||
|| cos(3x)cosx2cos(2x)1 || || || || || || || ||
|| A(x,y>0);x1/ny1/n(xy)1/n0 || || || || || || || ||
|| log(tan(12x+π4))sinh1(tan(x))0 || || || || || || || ||
|| log2r+14r+4r+10 || || || || || || || ||
|| Problem || Maple || Mathematica || GiNaC || Maxima || Sage || Symbolics || Notes (such as code used/version etc.) ||
|| 23+41+3 || || || || || || || ||
|| 23 || || || || || || || ||
|| ex1ex/2+1ex/21 || || || || || || || ||
|| A(xy,yz,zx);x=z? || || || || || || || ||
|| A(x>y,y>0);2x2>2y2? || || || || || || || ||
|| cos(3x)cosxcos2x3sin2x || || || || || || || ||
|| cos(3x)cosx2cos(2x)1 || || || || || || || ||
|| A(x,y>0);x1/ny1/n(xy)1/n0 || || || || || || || ||
|| log(tan(12x+π4))sinh1(tan(x))0 || || || || || || || ||
|| log2r+14r+4r+10 || || || || || || || ||
|| xy|z|2x|z|xyxy || || || || || || || Note x=±x ||
|| x=02+1x2+1=1 || || || || || || || ||
|| S(e2x+2ex+1=z,x) || || || || || || || ||
|| S((x+1)(sin2x+1)2cos3(3x)=0,x) || || || || || || || ||
|| M1, where M=[[x,1],[y,ez]] || || || || || || || ||
|| k=1nk3n2(n+1)24 || || || || || || || ||
|| k=1(1k2+1k3)π26+ζ(3) || || || || || || || ||
|| k=1nkn! || || || || || || || ||
|| limn(1+1n)ne || || || || || || || ||
|| limx0sinxx1 || || || || || || || ||
|| limx01cosxx212 || || || || || || || ||
|| d2dx2y(x(t))d2ydx2(dxdt)2+dydxd2xdt2 || || || || || || || ||
|| ddx(1x3+2dx)1x3+2 || || || || || || || ||
|| 1a+bcosxdx(a<b) || || || || || || || ||
|| ddx1a+bcosxdx=1a+bcosx|| || || || || || || ||
|| ddx|x|x|x| || || || || || || || ||
|| |x|dxx|x|2 || || || || || || || ||
|| x1+x+1xdx(1+x)3/2+(1x)3/23 || || || || || || || ||
|| 1+x+1x2dx(1+x)3/2+(1x)3/23 || || || || || || || ||
|| 111xdx0(p.v.) || || || || || || || ||




Problem Key

simplify

A(...)

assume ...

S(...,x)

solve ... for x

(p.v.)

principal value

Performance Key

×

wrong answer/cannot do the problem

s sec/ms/μs

performs correctly in time s

>s sec/ms/μs

does not finish in time s

>.<,s or >.<,×

very difficult to convince system to do what you want (regardless of performance)

Problem

Maple

Mathematica

GiNaC

Maxima

Sage

Symbolics

Notes (such as code used/version etc.)

23+41+3 

23

ex1ex/2+1ex/21

A(xy,yz,zx);x=z?

A(x>y,y>0);2x2>2y2?

cosxcos(3x)cos2x3sin2x

cosxcos(3x)2cos(2x)1

A(x,y>0);x1/ny1/n(xy)1/n0

log(tan(21x+4π))sinh1(tan(x))0

log2r+14r+4r+10

x|z|xy|z|2xxy/y

Note x=±x

2x=0+12x+1=1

S(e2x+2ex+1=z,x)

S((x+1)(sin2x+1)2cos3(3x)=0,x)

M1, where M=[[x,1],[y,ez]]

nk=1k34n2(n+1)2

k=1(1k2+1k3)6π2+ζ(3)

nk=1kn!

limn(1+n1)ne

\lim_{x\rightarrow 0}\frac{\sin x}{x} \rightarrow 1

\lim_{x\rightarrow 0}\frac{1-\cos x}{x^2} \rightarrow \frac{1}{2}

\frac{d^2}{dx^2}y(x(t)) \rightarrow \frac{d^2y}{dx^2}(\frac{dx}{dt})^2 + \frac{dy}{dx}\frac{d^2x}{dt^2}

\frac{d}{dx}(\int\frac{1}{x^3+2}dx) \rightarrow \frac{1}{x^3+2}

\int\frac{1}{a+b\cos x}dx (a < b)

\frac{d}{dx}\int\frac{1}{a+b\cos x}dx = \frac{1}{a+b\cos x}

\frac{d}{dx}|x| \rightarrow \frac{x}{|x|}

\int|x|dx \rightarrow \frac{x|x|}{2}

\int\frac{x}{\sqrt{1+x}+\sqrt{1-x}}dx \rightarrow \frac{(1+x)^{3/2}+(1-x)^{3/2}}{3}

\int\frac{\sqrt{1+x}+\sqrt{1-x}}{2}dx \rightarrow \frac{(1+x)^{3/2}+(1-x)^{3/2}}{3}

\int_{-1}^1\frac{1}{x}dx \rightarrow 0(p.v.)

WesterBenchmarks (last edited 2017-09-01 06:55:22 by chapoton)