Processing Math: 87%
jsMath

Problem Key

simplify

A(...)

assume ...

S(...,x)

solve ... for x

T(...,x=b)

Taylor series of ... based at b

(p.v.)

principal value

(div)

divergent

Performance Key

×

wrong answer/cannot do the problem

s sec/ms/μs

performs correctly in time s

>s sec/ms/μs

does not finish in time s

>.<,s or >.<,×

very difficult to convince system to do what you want (regardless of performance)

Problem

Maple

Mathematica

GiNaC

Maxima

Sage

Symbolics

Notes (such as code used/version etc.)

23+41+3 

×

23

s 47.2 µs

ex1ex/2+1ex/21

s 2.59 ms

A(xy,yz,zx);x=z?

s 1.57 ms

A(x>y,y>0);2x2>2y2?

cosxcos(3x)cos2x3sin2x

cosxcos(3x)2cos(2x)1

A(x,y>0);x1/ny1/n(xy)1/n0

log(tan(21x+4π))sinh1(tan(x))0

log2r+14r+4r+10

x|z|xy|z|2xxy/y

s 2.11 ms

Note x=±x

2x=0+12x+1=1

S(e2x+2ex+1=z,x)

s 4.85 ms

S((x+1)(sin2x+1)2cos3(3x)=0,x)

M1, where M=[[x,1],[y,ez]]

s 3.93 ms

nk=1k34n2(n+1)2

s 24.6 ms

k=1(1k2+1k3)6π2+ζ(3)

nk=1kn!

s 5.82 ms

limn(1+n1)ne

s 6.93 ms

limx0xsinx1

s 5.95 ms

limx0x21cosx21

d2dx2y(x(t))dx2d2y(dtdx)2+dxdydt2d2x

ddx(1x3+2dx)1x3+2 

1a+bcosxdx(a<b

ddx1a+bcosxdx=1a+bcosx 

ddx|x|x|x|

|x|dx2x|x| 

x1+x+1xdx3(1+x)3/2+(1x)3/2 

21+x+1xdx3(1+x)3/2+(1x)3/2 

11x1dx0  (p.v.)

111x2dx  (div)

01x+x12dx34 

12x+x12dx348 

\int_0^2\sqrt{x + \frac1x - 2}dx \rightarrow \frac{8-\sqrt8}3

A(a>0); \int_{-\infty}^\infty\frac{\cos x}{x^2+a^2}dx \rightarrow \frac\pi ae^{-a}

A(0 < a < 1); \int_0^\infty\frac{t^{a-1}}{t+1}dt \rightarrow \frac{\pi}{\sin(\pi a)}

T(\frac1{\sqrt{1-(x/c)^2}},x=0)

T((\log x)^ae^{-bx},x=1)

T(\log(\sinh z) + \log(\cosh(z + w)))

T(\log(\frac{\sin x}{x}), x=0)

s 5.19 ms

at order 20