Differences between revisions 2 and 10 (spanning 8 versions)
Revision 2 as of 2007-10-12 22:35:12
Size: 1408
Editor: SandorKovacs
Comment:
Revision 10 as of 2008-09-28 20:42:21
Size: 2717
Editor: pong
Comment:
Deletions are marked like this. Additions are marked like this.
Line 6: Line 6:
Line 10: Line 9:
Line 13: Line 13:

''italic'' '''bold''' {{{typewriter}}} 
''italic'' '''bold''' {{{typewriter}}}
Line 18: Line 17:
~+ bigger +~ ~- smaller -~ ~+bigger +~ ~-smaller -~
Line 23: Line 22:
Line 25: Line 23:

{{{#!python
{{{
#!python
Line 31: Line 29:


{{{#!java
{{{
#!java
Line 36: Line 33:
  }     }
Line 39: Line 35:

Line 42: Line 36:

HelpOnEditing MoinMoin:InterWiki 
HelpOnEditing MoinMoin:InterWiki
Line 49: Line 42:
Line 54: Line 46:
Line 58: Line 49:
Line 61: Line 51:
  1. nested and numbered
  1. numbered lists are renumbered
  1. nested and numbered
  1. numbered lists are renumbered
Line 64: Line 54:
 * third
blockquote
   deeper
 * third blockquote
  . deeper
Line 70: Line 58:
Line 75: Line 62:

''Tutta Bella'', === Mortadella Mio ===, '' '''Cogito''' '' ergo sum
Line 81: Line 65:

== A graphical illustration ==

x=var('x')
@interact
def _(x = slider(-7/10,7/10,1/20,1/2)):
    html('<h3>A graphical illustration of $\lim_{x -> 0} \sin(x)/x =1$</h3>')
    html('Below is a unit circle, so the length of the <font color=red>red line</font> is |sin(x)|')
    html('and the length of the <font color=blue>blue line</font> is |tan(x)| where x is the length of the arc.')
    html('is |sin(x)| and |tan(x)|, respectively where x is length of the arc.')
    html('From the picture, we see that |sin(x)| $\le$ |x| $\le$ |tan(x)|')
    html('and it follows easily from this that')
    html('cos(x) $\le$ sin(x)/x $\le$ 1 when x is near 0.')
    html('As $\lim_{x ->0} \cos(x) =1$, we conclude that $\lim_{x -> 0} \sin(x)/x =1$.')
    if not (x == 0):
        pretty_print("sin(x)/x = "+str(sin(float(x))/float(x)))
    elif x == 0:
        pretty_print("The limit of sin(x)/x as x tends to 0 is 1")
    C=circle((0,0),1, rgbcolor='black')
    mvp = (cos(x),sin(x));tpt = (1, tan(x))
    p1 = point(mvp, pointsize=30, rgbcolor='red'); p2 = point((1,0), pointsize=30, rgbcolor='red')
    line1 = line([(0,0),tpt], rgbcolor='black'); line2 = line([(cos(x),0),mvp], rgbcolor='red')
    line3 = line([(0,0),(1,0)], rgbcolor='black'); line4 = line([(1,0),tpt], rgbcolor='blue')
    result = C+p1+p2+line1+line2+line3+line4
    result.show(aspect_ratio=1, figsize=[3,3], axes=False)

Feel free to experiment here, after the four dashes below. Please do not create new pages without any meaningful content just to try it out!

You may want to open HelpOnEditing in a new window or tab while you edit.


Formatting

italic bold typewriter

backtick typewriter (configurable)

bigger smaller

preformatted some more
and some more lines too

   1 def syntax(highlight):
   2     print "on"
   3     return None

   1   public void main(String[] args]){
   2      System.out.println("Hello world!");
   3   }

Linking

HelpOnEditing InterWiki

http://moinmoin.wikiwikiweb.de/ [http://www.python.org/ Python]

someone@example.com

http://c2.com/sig/wiki.gif

Smileys

/!\ Alert

Lists

Bullet

  • first
    1. nested and numbered
    2. numbered lists are renumbered
  • second
  • third blockquote
    • deeper

Glossary

Term
Definition

Drawing

drawing:mytest

Heading 1

Heading 2

Heading 3

Heading 4

A graphical illustration

x=var('x') @interact def _(x = slider(-7/10,7/10,1/20,1/2)):

  • html('<h3>A graphical illustration of $\lim_{x -> 0} \sin(x)/x =1$</h3>') html('Below is a unit circle, so the length of the <font color=red>red line</font> is |sin(x)|') html('and the length of the <font color=blue>blue line</font> is |tan(x)| where x is the length of the arc.') html('is |sin(x)| and |tan(x)|, respectively where x is length of the arc.') html('From the picture, we see that |sin(x)| $\le$ |x| $\le$ |tan(x)|') html('and it follows easily from this that') html('cos(x) $\le$ sin(x)/x $\le$ 1 when x is near 0.') html('As $\lim_{x ->0} \cos(x) =1$, we conclude that $\lim_{x -> 0} \sin(x)/x =1$.') if not (x == 0):

    • pretty_print("sin(x)/x = "+str(sin(float(x))/float(x)))
    elif x == 0:
    • pretty_print("The limit of sin(x)/x as x tends to 0 is 1")
    C=circle((0,0),1, rgbcolor='black') mvp = (cos(x),sin(x));tpt = (1, tan(x)) p1 = point(mvp, pointsize=30, rgbcolor='red'); p2 = point((1,0), pointsize=30, rgbcolor='red') line1 = line([(0,0),tpt], rgbcolor='black'); line2 = line([(cos(x),0),mvp], rgbcolor='red') line3 = line([(0,0),(1,0)], rgbcolor='black'); line4 = line([(1,0),tpt], rgbcolor='blue') result = C+p1+p2+line1+line2+line3+line4 result.show(aspect_ratio=1, figsize=[3,3], axes=False)

WikiSandBox (last edited 2008-11-14 13:42:04 by anonymous)