Processing Math: Done
No jsMath TeX fonts found -- using unicode fonts instead.
This may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

*-combinat Days Project Idea Page

Implement a generic FactoredElement class

PEOPLE: Burcin Erocal

An example of adding a new basis to an algebra

PEOPLE: Franco Saliola, CoryBrunson

Try out Nathann Cohen new interface to Mixed Integer Linear Programming software

PEOPLE Nicolas Thiéry

Bug squashing!

PEOPLE: Franco Saliola, Jason Bandlow, Florent Hivert, Peter McNamara

Categories

100% doctest and review for all patches up to sagecombinat 4.1

Functorial constructions: subquotient, cartesian_product

FlorentHivert, FrancoSaliola, AnneSchilling, NicolasThiéry

Categorification of RootSystems and Crystals

And application to parabolic subroot-systems

NicolasBorie, AnneSchilling, NicolasThiéry, CoryBrunson

graph layout using graphviz / dot2tex optional package

Anne Schilling, FrancoSaliola, NicolasThiéry

Quickref card for sage.combinat

JasonBandlow, FrancoSaliola, NicolasThiéry

Refactoring of symmetric functions

JasonBandlow, CoryBrunson

Improve Nonsymmetric Macdonald polynomials

== Setup the framework for MultivariatePolynomials with several bases

        Let us work over `F=\QQ(q,t)` (will be needed for Macdonald polynomials)::

            sage: F = QQ['q,t']; (q,t) = F.gens(); F.rename('QQ(q,t)')

    We construct an (abstract) ring of multivariate polynomials over F::

        sage: P = AbstractPolynomialRing(F, 'x0,x1,x2'); P
        The abstract ring of multivariate polynomials in x0, x1, x2 over QQ(q,t)

    This ring has several bases, starting with the usual monomial basis::

        sage: m = P.m
        Multivariate Polynomial Ring in x0, x1, x2 over QQ(q,t)

        sage:: m is MultivariatePolynomialRing(F, 'x0,x1,x2')
        True
        
    



        sage: Macdo = P.MacdonaldPolynomials(q, t)
        sage: E = Macdo.E(pi = [3,1,2]); E
        Multivariate Polynomial Ring in x0, x1, x2 over QQ(q,t), in the Macdonald E basis, with basement [3,1,2]
        sage: E[1,0,0]
        E[1,0,0]
        sage: m(E[1,0,0])
        x0

People: Jeff

Module for generate integer list up to the action of a permutation group

NicolasBorie