Differences between revisions 12 and 16 (spanning 4 versions)
Revision 12 as of 2009-03-01 03:16:58
Size: 2637
Comment:
Revision 16 as of 2009-03-01 14:59:58
Size: 2654
Editor: ErikJacobson
Comment:
Deletions are marked like this. Additions are marked like this.
Line 8: Line 8:
    (a) Quadratic Forms (target: Arizona Winter School Participants)<br>
    (b) Number Theory via Diophantine Equations (target: Elementary Number Theory students)
    (c) Number Theory via Primes (target: Elementary Number Theory students)
    (d) Group Theory (target: Undergraduate Math Majors) [http://abstract.ups.edu/sage-aata.html by Rob Beezer]
    (e) Differential Calculus (target: Freshmen) [http://sage.math.washington.edu/home/wdj/teaching/calc1-sage/ by David Joyner]
    (f) Integral Calculus (target: Freshmen) [http://wdjoyner.com/teach/calc2-sage/hoffman-stein-calculus.pdf by Hoffman, Joyner & Stein]
(a) Quadratic Forms (target: Arizona Winter School Participants)
Line 15: Line 10:
(b) Number Theory via Diophantine Equations (target: Elementary Number Theory students)
Line 16: Line 12:
(c) Number Theory via Primes (target: Elementary Number Theory students)

(d) Group Theory (target: Undergraduate Math Majors) [http://abstract.ups.edu/sage-aata.html by Rob Beezer]

(e) Differential Calculus (target: Freshmen) [http://sage.math.washington.edu/home/wdj/teaching/calc1-sage/ by David Joyner]

(f) Integral Calculus (target: Freshmen) [http://wdjoyner.com/teach/calc2-sage/hoffman-stein-calculus.pdf by Hoffman, Joyner & Stein]

(3) Port "Sage for Newbies" to ReST


Major Goals:

1. SAGE as a Smart Calculator (target: Freshmen)

2. SAGE Primers / Tutorials for

(a) Quadratic Forms (target: Arizona Winter School Participants)

(b) Number Theory via Diophantine Equations (target: Elementary Number Theory students)

(c) Number Theory via Primes (target: Elementary Number Theory students)

(d) Group Theory (target: Undergraduate Math Majors) [http://abstract.ups.edu/sage-aata.html by Rob Beezer]

(e) Differential Calculus (target: Freshmen) [http://sage.math.washington.edu/home/wdj/teaching/calc1-sage/ by David Joyner]

(f) Integral Calculus (target: Freshmen) [http://wdjoyner.com/teach/calc2-sage/hoffman-stein-calculus.pdf by Hoffman, Joyner & Stein]

(3) Port "Sage for Newbies" to ReST


Typesetting:

reSTRUCTUREDtext [http://docutils.sourceforge.net/rst.html]


Goals:

1) Accessible to high school math teachers and undergraduate mathematics majors.

2) Anticipated user desires

a. Content specific modules

i. Quadratic Forms

ii. Group theory

iii. Abstract algebra

iv. Calculus

v. Number theory

vi. High school algebra / trigonometry / precalculus

vii. Probability

viii. Statistics

b. Plotting 2 and 3 dimensions

c. Sage math functions (sage as calculator), sage constants

d. Generate Classroom examples

i. show (), latex()

ii. matplotlab

3) Demonstrate SAGE functionality:

a. Primes

b. Random numbers

c. Plotting

d. Interact

e. Sage data types

f. Email(?)

4) Programming

a. Types, casting, relevant Sage data types

b. Lists, tuples

c. Control operators (if, then, else, logical operators, in, srange())

d. Loops

i. For, in, srange(), range()

e. Functions

f. Recursion

5) Topics

a. Primes and factorization

i. Given a random number, is it a prime?

1. Modular division

a. random()

b. Factor()

2. Euclidean algorithm

a. Recursion

b. gcd()

3. primality testing

a. for loops

b. range()

c. is_prime()

ii. How many primes are there?

1. prime_pi()

2. plotting example

iii. Where are the primes?

1. Density of primes

2. primes()

3. Arithemtic sequences of primes

b. Diophantine equations

i. Linear Diophantine equation

1. extended euclidean algorithm

2. recursion vs iteration

ii. diagonal quadratic forms; sums of squares (ENT p. 25)

1. Pythagorean triples and generating them

2. Graphing the Pythagorean triples

3. Enumerating all triples using linear intersections

4. Elliptic curves and congruent numbers (chapter 6, stein)

iii. Pell’s Equation (?)

days13/projects/sagenewbie (last edited 2011-01-28 07:12:10 by Eviatar)