|
Size: 1882
Comment:
|
Size: 1741
Comment:
|
| Deletions are marked like this. | Additions are marked like this. |
| Line 1: | Line 1: |
| Describe days13/projects/sagenewbiew here. LINKS: http://docutils.sourceforge.net/rst.html |
= Sage for Newbies = |
| Line 5: | Line 3: |
| Sage Tutorial | <<TableOfContents>> |
| Line 7: | Line 5: |
| Goals: | == Done == |
| Line 9: | Line 7: |
| 1) Accessible to high school math teachers and undergraduate mathematics majors. | * 0. Front Matter |
| Line 11: | Line 9: |
| 2) Anticipated user desires | * 1. Basics |
| Line 13: | Line 11: |
| a. Content specific modules | o 1.1. Primer Template: An Example [[attachment:primer_template\example.sws]] [[attachment:primer_design_principles.rtf]] |
| Line 15: | Line 13: |
| i. Quadratic Forms | o 1.2. Sage as a Smart Calculator [[attachment:sage_as_a_smart_calculator.sws]] |
| Line 17: | Line 15: |
| ii. Group theory | * 2. Calculus |
| Line 19: | Line 17: |
| iii. Abstract algebra | o 2.1. Differential Calculus [[attachment:differential_calculus.sws]] |
| Line 21: | Line 19: |
| iv. Calculus | * 4. Abstract Algebra |
| Line 23: | Line 21: |
| v. Number theory | o 4.1. Group Theory [[attachment:group_theory.sws]] (by Robert Beezer) |
| Line 25: | Line 23: |
| vi. High school algebra / trigonometry / precalculus | * 5. Number Theory |
| Line 27: | Line 25: |
| vii. Probability | o 5.1. Elementary Number Theory I [[attachment: number_theory.primes_0.1.sws]] |
| Line 29: | Line 27: |
| viii. Statistics | o 5.5. Quadratic Forms [[attachment: quadratic_forms.sws]] |
| Line 31: | Line 29: |
| b. Plotting 2 and 3 dimensions | * 9. About this document ... |
| Line 33: | Line 31: |
| c. Sage math functions (sage as calculator), sage constants | |
| Line 35: | Line 32: |
| d. Generate Classroom examples | |
| Line 37: | Line 33: |
| i. show (), latex() | == To Do == |
| Line 39: | Line 35: |
| ii. matplotlab | * 1. Basics |
| Line 41: | Line 37: |
| 3) Demonstrate SAGE functionality: | o 1.3. Programming in Sage |
| Line 43: | Line 39: |
| a. Primes | o 1.4. Sage Devel Basics |
| Line 45: | Line 41: |
| b. Random numbers | * 2. Calculus |
| Line 47: | Line 43: |
| c. Plotting | o 2.2. Integral Calculus |
| Line 49: | Line 45: |
| d. Interact | o 2.3. Multivariate Calculus |
| Line 51: | Line 47: |
| e. Sage data types | o 2.4. Taylor Series and Infinite Sums |
| Line 53: | Line 49: |
| f. Email(?) | o 2.5. Differential Equations |
| Line 55: | Line 51: |
| 4) Programming | * 3. Linear Algebra |
| Line 57: | Line 53: |
| a. Types, casting, relevant Sage data types | o 3.1. Matrix Algebra |
| Line 59: | Line 55: |
| b. Lists, tuples | o 3.2. Vector Spaces |
| Line 61: | Line 57: |
| c. Control operators (if, then, else, logical operators, in, srange()) | * 4. Abstract Algebra |
| Line 63: | Line 59: |
| d. Loops | o 4.2. Rings and Fields |
| Line 65: | Line 61: |
| i. For, in, srange(), range() | * 5. Number Theory |
| Line 67: | Line 63: |
| e. Functions | o 5.2. Elementary Number Theory II |
| Line 69: | Line 65: |
| f. Recursion | o 5.3. Cryptography |
| Line 71: | Line 67: |
| 5) Topics | o 5.4. Elliptic Curves |
| Line 73: | Line 69: |
| a. Primes and factorization | o 5.6. Automorphic Forms |
| Line 75: | Line 71: |
| i. Given a random number, is it a prime? | o 5.7. Quaternion Algebra |
| Line 77: | Line 73: |
| 1. Modular division | o 5.8. Modular Forms |
| Line 79: | Line 75: |
| a. random() | * 6. Combinatorics |
| Line 81: | Line 77: |
| b. Factor() | o 6.1. Counting |
| Line 83: | Line 79: |
| 2. Euclidean algorithm | o 6.2. Graph Theory |
| Line 85: | Line 81: |
| a. Recursion | * 7. Geometry |
| Line 87: | Line 83: |
| b. gcd() | * 8. Statistics |
| Line 89: | Line 85: |
| 3. primality testing | o 8.1. Statistical Methods |
| Line 91: | Line 87: |
| a. for loops | o 8.2. Probability |
| Line 93: | Line 89: |
| b. range() c. is_prime() ii. How many primes are there? 1. prime_pi() 2. plotting example iii. Where are the primes? 1. Density of primes 2. primes() 3. Arithemtic sequences of primes b. Diophantine equations i. Linear Diophantine equation 1. extended euclidean algorithm 2. recursion vs iteration ii. diagonal quadratic forms; sums of squares (ENT p. 25) 1. Pythagorean triples and generating them 2. Graphing the Pythagorean triples 3. Enumerating all triples using linear intersections 4. Elliptic curves and congruent numbers (chapter 6, stein) iii. Pell’s Equation (?) |
o 8.3. Finance |
Sage for Newbies
Contents
Done
- 0. Front Matter
- 1. Basics
o 1.1. Primer Template: An Example primer_template\example.sws primer_design_principles.rtf
o 1.2. Sage as a Smart Calculator sage_as_a_smart_calculator.sws
- 2. Calculus
o 2.1. Differential Calculus differential_calculus.sws
- 4. Abstract Algebra
o 4.1. Group Theory group_theory.sws (by Robert Beezer)
- 5. Number Theory
o 5.1. Elementary Number Theory I number_theory.primes_0.1.sws
o 5.5. Quadratic Forms quadratic_forms.sws
- 9. About this document ...
To Do
- 1. Basics
- o 1.3. Programming in Sage o 1.4. Sage Devel Basics
- 2. Calculus
- o 2.2. Integral Calculus o 2.3. Multivariate Calculus o 2.4. Taylor Series and Infinite Sums o 2.5. Differential Equations
- 3. Linear Algebra
- o 3.1. Matrix Algebra o 3.2. Vector Spaces
- 4. Abstract Algebra
- o 4.2. Rings and Fields
- 5. Number Theory
- o 5.2. Elementary Number Theory II o 5.3. Cryptography o 5.4. Elliptic Curves o 5.6. Automorphic Forms o 5.7. Quaternion Algebra o 5.8. Modular Forms
- 6. Combinatorics
- o 6.1. Counting o 6.2. Graph Theory
- 7. Geometry
- 8. Statistics
- o 8.1. Statistical Methods o 8.2. Probability o 8.3. Finance
