Differences between revisions 2 and 32 (spanning 30 versions)
Revision 2 as of 2009-02-28 23:33:13
Size: 1882
Editor: ErikJacobson
Comment:
Revision 32 as of 2009-03-02 05:37:56
Size: 1741
Comment:
Deletions are marked like this. Additions are marked like this.
Line 1: Line 1:
Describe days13/projects/sagenewbiew here.
LINKS:
http://docutils.sourceforge.net/rst.html
= Sage for Newbies =
Line 5: Line 3:
Sage Tutorial <<TableOfContents>>
Line 7: Line 5:
Goals: == Done ==
Line 9: Line 7:
1) Accessible to high school math teachers and undergraduate mathematics majors.     * 0. Front Matter
Line 11: Line 9:
2) Anticipated user desires     * 1. Basics
Line 13: Line 11:
a. Content specific modules           o 1.1. Primer Template: An Example [[attachment:primer_template\example.sws]] [[attachment:primer_design_principles.rtf]]
Line 15: Line 13:
i. Quadratic Forms           o 1.2. Sage as a Smart Calculator [[attachment:sage_as_a_smart_calculator.sws]]
Line 17: Line 15:
ii. Group theory     * 2. Calculus
Line 19: Line 17:
iii. Abstract algebra           o 2.1. Differential Calculus [[attachment:differential_calculus.sws]]
Line 21: Line 19:
iv. Calculus     * 4. Abstract Algebra
Line 23: Line 21:
v. Number theory           o 4.1. Group Theory [[attachment:group_theory.sws]] (by Robert Beezer)
Line 25: Line 23:
vi. High school algebra / trigonometry / precalculus     * 5. Number Theory
Line 27: Line 25:
vii. Probability           o 5.1. Elementary Number Theory I [[attachment: number_theory.primes_0.1.sws]]
Line 29: Line 27:
viii. Statistics           o 5.5. Quadratic Forms [[attachment: quadratic_forms.sws]]
Line 31: Line 29:
b. Plotting 2 and 3 dimensions     * 9. About this document ...
Line 33: Line 31:
c. Sage math functions (sage as calculator), sage constants
Line 35: Line 32:
d. Generate Classroom examples
Line 37: Line 33:
i. show (), latex() == To Do ==
Line 39: Line 35:
ii. matplotlab     * 1. Basics
Line 41: Line 37:
3) Demonstrate SAGE functionality:           o 1.3. Programming in Sage
Line 43: Line 39:
a. Primes           o 1.4. Sage Devel Basics
Line 45: Line 41:
b. Random numbers     * 2. Calculus
Line 47: Line 43:
c. Plotting           o 2.2. Integral Calculus
Line 49: Line 45:
d. Interact           o 2.3. Multivariate Calculus
Line 51: Line 47:
e. Sage data types           o 2.4. Taylor Series and Infinite Sums
Line 53: Line 49:
f. Email(?)           o 2.5. Differential Equations
Line 55: Line 51:
4) Programming     * 3. Linear Algebra
Line 57: Line 53:
a. Types, casting, relevant Sage data types           o 3.1. Matrix Algebra
Line 59: Line 55:
b. Lists, tuples           o 3.2. Vector Spaces
Line 61: Line 57:
c. Control operators (if, then, else, logical operators, in, srange())     * 4. Abstract Algebra
Line 63: Line 59:
d. Loops           o 4.2. Rings and Fields
Line 65: Line 61:
i. For, in, srange(), range()     * 5. Number Theory
Line 67: Line 63:
e. Functions           o 5.2. Elementary Number Theory II
Line 69: Line 65:
f. Recursion           o 5.3. Cryptography
Line 71: Line 67:
5) Topics           o 5.4. Elliptic Curves
Line 73: Line 69:
a. Primes and factorization           o 5.6. Automorphic Forms
Line 75: Line 71:
i. Given a random number, is it a prime?           o 5.7. Quaternion Algebra
Line 77: Line 73:
1. Modular division           o 5.8. Modular Forms
Line 79: Line 75:
a. random()     * 6. Combinatorics
Line 81: Line 77:
b. Factor()           o 6.1. Counting
Line 83: Line 79:
2. Euclidean algorithm           o 6.2. Graph Theory
Line 85: Line 81:
a. Recursion     * 7. Geometry
Line 87: Line 83:
b. gcd()     * 8. Statistics
Line 89: Line 85:
3. primality testing           o 8.1. Statistical Methods
Line 91: Line 87:
a. for loops           o 8.2. Probability
Line 93: Line 89:
b. range()

c. is_prime()

ii. How many primes are there?

1. prime_pi()

2. plotting example

iii. Where are the primes?

1. Density of primes

2. primes()

3. Arithemtic sequences of primes

b. Diophantine equations

i. Linear Diophantine equation

1. extended euclidean algorithm

2. recursion vs iteration

ii. diagonal quadratic forms; sums of squares (ENT p. 25)

1. Pythagorean triples and generating them

2. Graphing the Pythagorean triples

3. Enumerating all triples using linear intersections

4. Elliptic curves and congruent numbers (chapter 6, stein)

iii. Pell’s Equation (?)
          o 8.3. Finance

Sage for Newbies

Done

To Do

  • 1. Basics
    • o 1.3. Programming in Sage o 1.4. Sage Devel Basics
  • 2. Calculus
    • o 2.2. Integral Calculus o 2.3. Multivariate Calculus o 2.4. Taylor Series and Infinite Sums o 2.5. Differential Equations
  • 3. Linear Algebra
    • o 3.1. Matrix Algebra o 3.2. Vector Spaces
  • 4. Abstract Algebra
    • o 4.2. Rings and Fields
  • 5. Number Theory
    • o 5.2. Elementary Number Theory II o 5.3. Cryptography o 5.4. Elliptic Curves o 5.6. Automorphic Forms o 5.7. Quaternion Algebra o 5.8. Modular Forms
  • 6. Combinatorics
    • o 6.1. Counting o 6.2. Graph Theory
  • 7. Geometry
  • 8. Statistics
    • o 8.1. Statistical Methods o 8.2. Probability o 8.3. Finance

days13/projects/sagenewbie (last edited 2011-01-28 07:12:10 by Eviatar)