Differences between revisions 2 and 37 (spanning 35 versions)
Revision 2 as of 2009-02-28 23:33:13
Size: 1882
Editor: ErikJacobson
Comment:
Revision 37 as of 2009-03-02 19:01:04
Size: 1963
Editor: ErikJacobson
Comment:
Deletions are marked like this. Additions are marked like this.
Line 1: Line 1:
Describe days13/projects/sagenewbiew here.
LINKS:
http://docutils.sourceforge.net/rst.html
= Sage Primers =
Line 5: Line 3:
Sage Tutorial <<TableOfContents>>
Line 7: Line 5:
Goals: == Done / In Progress ==
Line 9: Line 7:
1) Accessible to high school math teachers and undergraduate mathematics majors.     * 0. Front Matter
Line 11: Line 9:
2) Anticipated user desires     * 1. Basics
Line 13: Line 11:
a. Content specific modules           * 1.1. Primer Template: An Example [[attachment:primer_template\example.sws]] [[attachment:primer_design_principles.rtf]]
Line 15: Line 13:
i. Quadratic Forms           * 1.2. Sage as a Smart Calculator [[attachment:sage_as_a_smart_calculator.sws]]
Line 17: Line 15:
ii. Group theory           * 1.3. Sage Devel Basics [Erik, Aly]
Line 19: Line 17:
iii. Abstract algebra           * 1.4. 2D and 3D Plotting in Sage [Erik]
Line 21: Line 19:
iv. Calculus           * 1.5. Interact in Sage [Erik]
Line 23: Line 21:
v. Number theory     * 2. Calculus
Line 25: Line 23:
vi. High school algebra / trigonometry / precalculus           * 2.1. Differential Calculus [[attachment:differential_calculus.sws]]
Line 27: Line 25:
vii. Probability           * 2.2. Integral Calculus [Sourav]
Line 29: Line 27:
viii. Statistics     * 3. Linear Algebra
Line 31: Line 29:
b. Plotting 2 and 3 dimensions           * 3.1. Matrix Algebra [Sourav]
Line 33: Line 31:
c. Sage math functions (sage as calculator), sage constants     * 4. Abstract Algebra
Line 35: Line 33:
d. Generate Classroom examples           * 4.1. Group Theory [[attachment:group_theory.txt]] (by Robert Beezer)
Line 37: Line 35:
i. show (), latex()     * 5. Number Theory
Line 39: Line 37:
ii. matplotlab           * 5.1. Elementary Number Theory I [[attachment: number_theory.primes_0.1.sws]]
Line 41: Line 39:
3) Demonstrate SAGE functionality:           * 5.2. Elementary Number Theory II [Erik]
Line 43: Line 41:
a. Primes           * 5.5. Quadratic Forms [[attachment: quadratic_forms.sws]]
Line 45: Line 43:
b. Random numbers           * 5.7. Quaternion Algebra [Sourav]
Line 47: Line 45:
c. Plotting     * 9. About this document ...
Line 49: Line 47:
d. Interact
Line 51: Line 48:
e. Sage data types
Line 53: Line 49:
f. Email(?) == To Do ==
Line 55: Line 51:
4) Programming     * 1. Basics
Line 57: Line 53:
a. Types, casting, relevant Sage data types           * 1.3. Programming in Sage
Line 59: Line 55:
b. Lists, tuples     * 2. Calculus
Line 61: Line 57:
c. Control operators (if, then, else, logical operators, in, srange())           * 2.3. Multivariate Calculus
Line 63: Line 59:
d. Loops           * 2.4. Taylor Series and Infinite Sums
Line 65: Line 61:
i. For, in, srange(), range()           * 2.5. Differential Equations
Line 67: Line 63:
e. Functions     * 3. Linear Algebra
Line 69: Line 65:
f. Recursion           * 3.2. Vector Spaces [Sourav]
Line 71: Line 67:
5) Topics     * 4. Abstract Algebra
Line 73: Line 69:
a. Primes and factorization           * 4.2. Rings and Fields [Erik]
Line 75: Line 71:
i. Given a random number, is it a prime?     * 5. Number Theory
Line 77: Line 73:
1. Modular division           * 5.3. Cryptography [Dan]
Line 79: Line 75:
a. random()           * 5.4. Elliptic Curves [Aly]
Line 81: Line 77:
b. Factor()           * 5.6. Automorphic Forms
Line 83: Line 79:
2. Euclidean algorithm           * 5.8. Modular Forms
Line 85: Line 81:
a. Recursion     * 6. Combinatorics
Line 87: Line 83:
b. gcd()           * 6.1. Counting
Line 89: Line 85:
3. primality testing           * 6.2. Graph Theory
Line 91: Line 87:
a. for loops     * 7. Geometry
Line 93: Line 89:
b. range()     * 8. Statistics
Line 95: Line 91:
c. is_prime()           * 8.1. Statistical Methods [Erik]
Line 97: Line 93:
ii. How many primes are there?           * 8.2. Probability [Erik]
Line 99: Line 95:
1. prime_pi()

2. plotting example

iii. Where are the primes?

1. Density of primes

2. primes()

3. Arithemtic sequences of primes

b. Diophantine equations

i. Linear Diophantine equation

1. extended euclidean algorithm

2. recursion vs iteration

ii. diagonal quadratic forms; sums of squares (ENT p. 25)

1. Pythagorean triples and generating them

2. Graphing the Pythagorean triples

3. Enumerating all triples using linear intersections

4. Elliptic curves and congruent numbers (chapter 6, stein)

iii. Pell’s Equation (?)
          * 8.3. Finance

Sage Primers

Done / In Progress

To Do

  • 1. Basics
    • 1.3. Programming in Sage
  • 2. Calculus
    • 2.3. Multivariate Calculus
    • 2.4. Taylor Series and Infinite Sums
    • 2.5. Differential Equations
  • 3. Linear Algebra
    • 3.2. Vector Spaces [Sourav]
  • 4. Abstract Algebra
    • 4.2. Rings and Fields [Erik]
  • 5. Number Theory
    • 5.3. Cryptography [Dan]
    • 5.4. Elliptic Curves [Aly]
    • 5.6. Automorphic Forms
    • 5.8. Modular Forms
  • 6. Combinatorics
    • 6.1. Counting
    • 6.2. Graph Theory
  • 7. Geometry
  • 8. Statistics
    • 8.1. Statistical Methods [Erik]
    • 8.2. Probability [Erik]
    • 8.3. Finance

days13/projects/sagenewbie (last edited 2011-01-28 07:12:10 by Eviatar)