Differences between revisions 20 and 31 (spanning 11 versions)
Revision 20 as of 2009-03-01 21:35:31
Size: 2714
Comment:
Revision 31 as of 2009-03-02 05:35:39
Size: 1661
Comment:
Deletions are marked like this. Additions are marked like this.
Line 1: Line 1:
------------
Major Goals:
= Sage for Newbies =
Line 4: Line 3:
1. SAGE as a Smart Calculator (target: Freshmen)
[[attachment:Sage_as_a_Smart_Calculator_0.2.sws]]
[[attachment:Sage_as_a_Smart_Calculator_0.3.sws]]
<<TableOfContents>>
Line 8: Line 5:
2. SAGE Primers / Tutorials for == Done ==
Line 10: Line 7:
(a) Quadratic Forms (target: Arizona Winter School Participants)     * 0. Front Matter
    * 1. Basics
          o 1.1. Primer Template: An Example [[attachment:primer_template\example.sws]] [[attachment:primer_design_principles.rtf]]
          o 1.2. Sage as a Smart Calculator [[attachment:sage_as_a_smart_calculator.sws]]
    * 2. Calculus
          o 2.1. Differential Calculus [[attachment:differential_calculus.sws]]
    * 4. Abstract Algebra
          o 4.1. Group Theory [[attachment:group_theory.sws]] (by Robert Beezer)
    * 5. Number Theory
          o 5.1. Elementary Number Theory I [[attachment: number_theory.primes_0.1.sws]]
          o 5.5. Quadratic Forms [[attachment: quadratic_forms.sws]]
    * 9. About this document ...
Line 12: Line 20:
(b) Number Theory via Diophantine Equations (target: Elementary Number Theory students) == To Do ==
Line 14: Line 22:
(c) Number Theory via Primes (target: Elementary Number Theory students)

(d) Group Theory (target: Undergraduate Math Majors) [http://abstract.ups.edu/sage-aata.html by Rob Beezer]

(e) Differential Calculus (target: Freshmen)
[[attachment:Differential_Calculus_Primer_0.3.sws]]

(f) Integral Calculus (target: Freshmen) [http://wdjoyner.com/teach/calc2-sage/hoffman-stein-calculus.pdf by Hoffman, Joyner & Stein]

(3) Port "Sage for Newbies" to ReST

------------
Typesetting:


reSTRUCTUREDtext [http://docutils.sourceforge.net/rst.html]




-------------

Goals:

1) Accessible to high school math teachers and undergraduate mathematics majors.

2) Anticipated user desires

a. Content specific modules

i. Quadratic Forms

ii. Group theory

iii. Abstract algebra

iv. Calculus

v. Number theory

vi. High school algebra / trigonometry / precalculus

vii. Probability

viii. Statistics

b. Plotting 2 and 3 dimensions

c. Sage math functions (sage as calculator), sage constants

d. Generate Classroom examples

i. show (), latex()

ii. matplotlab

3) Demonstrate SAGE functionality:

a. Primes

b. Random numbers

c. Plotting

d. Interact

e. Sage data types

4) Programming

a. Types, casting, relevant Sage data types

b. Lists, tuples

c. Control operators (if, then, else, logical operators, in, srange())

d. Loops

i. For, in, srange(), range()

e. Functions

f. Recursion

5) Topics

a. Primes and factorization

i. Given a random number, is it a prime?

1. Modular division

a. random()

b. Factor()

2. Euclidean algorithm

a. Recursion

b. gcd()

3. primality testing

a. for loops

b. range()

c. is_prime()

ii. How many primes are there?

1. prime_pi()

2. plotting example

iii. Where are the primes?

1. Density of primes

2. primes()

3. Arithemtic sequences of primes

b. Diophantine equations

i. Linear Diophantine equation

1. extended euclidean algorithm

2. recursion vs iteration

ii. diagonal quadratic forms; sums of squares (ENT p. 25)

1. Pythagorean triples and generating them

2. Graphing the Pythagorean triples

3. Enumerating all triples using linear intersections

4. Elliptic curves and congruent numbers (chapter 6, stein)

iii. Pell’s Equation (?)
    * 1. Basics
          o 1.3. Programming in Sage
          o 1.4. Sage Devel Basics
    * 2. Calculus
          o 2.2. Integral Calculus
          o 2.3. Multivariate Calculus
          o 2.4. Taylor Series and Infinite Sums
          o 2.5. Differential Equations
    * 3. Linear Algebra
          o 3.1. Matrix Algebra
          o 3.2. Vector Spaces
    * 4. Abstract Algebra
          o 4.2. Rings and Fields
    * 5. Number Theory
          o 5.2. Elementary Number Theory II
          o 5.3. Cryptography
          o 5.4. Elliptic Curves
          o 5.6. Automorphic Forms
          o 5.7. Quaternion Algebra
          o 5.8. Modular Forms
    * 6. Combinatorics
          o 6.1. Counting
          o 6.2. Graph Theory
    * 7. Geometry
    * 8. Statistics
          o 8.1. Statistical Methods
          o 8.2. Probability
          o 8.3. Finance

Sage for Newbies

Done

To Do

  • 1. Basics
    • o 1.3. Programming in Sage o 1.4. Sage Devel Basics
  • 2. Calculus
    • o 2.2. Integral Calculus o 2.3. Multivariate Calculus o 2.4. Taylor Series and Infinite Sums o 2.5. Differential Equations
  • 3. Linear Algebra
    • o 3.1. Matrix Algebra o 3.2. Vector Spaces
  • 4. Abstract Algebra
    • o 4.2. Rings and Fields
  • 5. Number Theory
    • o 5.2. Elementary Number Theory II o 5.3. Cryptography o 5.4. Elliptic Curves o 5.6. Automorphic Forms o 5.7. Quaternion Algebra o 5.8. Modular Forms
  • 6. Combinatorics
    • o 6.1. Counting o 6.2. Graph Theory
  • 7. Geometry
  • 8. Statistics
    • o 8.1. Statistical Methods o 8.2. Probability o 8.3. Finance

days13/projects/sagenewbie (last edited 2011-01-28 07:12:10 by Eviatar)