Attachment 'compileddata.csv'

Download

"Curve Label" "Curve Conductor" "Level" "Norm" "Discriminant" "Newform" "Polynomial"
"58a1" 58 29 2 8 "(a0, -a0, -1, 2*a0 + 2, a0 + 2, 2*a0 + 1)" "x^2 + 2*x - 1"
"14a1" 14 35 2 17 "(a1, -a1 - 1, 1, -1, a1 + 1, a1 + 3)" "x^2 + x - 4"
"35a1" 35 35 2 17 "(a1, -a1 - 1, 1, -1, a1 + 1, a1 + 3)" "x^2 + x - 4"
"14a1" 14 39 2 8 "(a1, 1, -2*a1 - 2, 2*a1 + 2, -2, -1)" "x^2 + 2*x - 1"
"14a1" 14 41 2 148 "(a0, -1/2*a0^2 - a0 + 3/2, -a0 - 1, 1/2*a0^2 + a0 + 1/2, 3/2*a0^2 + a0 - 9/2, -a0^2 + 3)" "x^3 + x^2 - 5*x - 1"
"43a1" 43 43 2 8 "(a1, -a1, -a1 + 2, a1 - 2, 2*a1 - 1, 2*a1 + 1)" "x^2 - 2"
"14a1" 14 51 2 17 "(a1, -1, -a1 + 1, 0, -a1 - 1, a1 + 3)" "x^2 + x - 4"
"51a1" 51 51 2 17 "(a1, -1, -a1 + 1, 0, -a1 - 1, a1 + 3)" "x^2 + x - 4"
"53a1" 53 53 2 148 "(a1, -a1^2 - a1 + 3, a1^2 - 3, a1^2 - 1, a1^2 + 2*a1 - 3, 1)" "x^3 + x^2 - 3*x - 1"
"14a1" 14 55 2 8 "(a1, -2*a1 + 2, -1, -2, 1, 2*a1 - 6)" "x^2 - 2*x - 1"
"118a1" 118 59 2 138136 "(a0, -1/4*a0^4 + 5/4*a0^2 - 1/2*a0, 3/4*a0^4 + 1/2*a0^3 - 23/4*a0^2 - 3*a0 + 7, -1/2*a0^4 - 1/2*a0^3 + 7/2*a0^2 + 3/2*a0 - 3, -1/2*a0^4 - a0^3 + 9/2*a0^2 + 6*a0 - 8, -1/2*a0^4 - a0^3 + 9/2*a0^2 + 6*a0 - 6)" "x^5 - 9*x^3 + 2*x^2 + 16*x - 8"
"61a1" 61 61 2 148 "(a1, -a1^2 + 3, a1^2 - 2*a1 - 2, a1^2 - a1 - 3, a1 + 4, -2*a1^2 + 2*a1 + 1)" "x^3 - x^2 - 3*x + 1"
"14a1" 14 62 2 12 "(-1, -1/2*a1 - 1/2, a1 + 3, 2, -1/2*a1 - 9/2, 3/2*a1 + 7/2)" "x^2 + 6*x - 3"
"14a1" 14 63 2 12 "(a1, 0, -2*a1, 1, 2*a1, 2)" "x^2 - 3"
"14a1" 14 65 2 12 "(a2, -a2 + 1, -1, 2, a2 - 3, 1)" "x^2 - 3"
"14a1" 14 65 2 8 "(a1, a1 + 1, 1, -2*a1, -a1 + 1, -1)" "x^2 + 2*x - 1"
"14a1" 14 68 2 12 "(0, 1/2*a0, -a0 + 2, -1/2*a0, 1/2*a0 - 4, a0)" "x^2 - 4*x - 8"
"79a1" 79 79 2 81589 "(a1, -a1^4 + a1^3 + 3*a1^2 - 3*a1 + 1, a1^4 - 4*a1^2 - a1 + 3, a1^4 - a1^3 - 5*a1^2 + 3*a1 + 3, -a1^4 - 2*a1^3 + 6*a1^2 + 7*a1 - 6, a1^3 + a1^2 - 2*a1 - 3)" "x^5 - 6*x^3 + 8*x - 1"
"162a1" 162 81 2 12 "(a0, 0, -a0, 2, -2*a0, -1)" "x^2 - 3"
"14a1" 14 82 2 8 "(1, a1 - 1, -2*a1 + 2, -a1 - 1, 3*a1 - 3, 0)" "x^2 - 2*x - 1"
"83a1" 83 83 2 9059636 "(a1, 1/2*a1^4 - 1/2*a1^3 - 7/2*a1^2 + 3/2*a1 + 4, -1/2*a1^5 - 1/2*a1^4 + 9/2*a1^3 + 7/2*a1^2 - 8*a1 - 2, 3/4*a1^5 - 1/4*a1^4 - 25/4*a1^3 + 3/4*a1^2 + 19/2*a1, -1/4*a1^5 + 1/4*a1^4 + 5/4*a1^3 + 1/4*a1^2 - 4, a1^3 - 5*a1 + 2)" "x^6 - x^5 - 9*x^4 + 7*x^3 + 20*x^2 - 12*x - 8"
"14a1" 14 85 2 12 "(a2, -a2 + 1, 1, a2 - 1, -a2 + 3, -4)" "x^2 - 3"
"14a1" 14 85 2 8 "(a1, -a1 - 3, -1, a1 - 1, a1 - 3, -2*a1 - 2)" "x^2 + 2*x - 1"
"14a1" 14 87 2 229 "(a1, -1, -2*a1^2 + 8, a1^2 - a1 - 2, a1^2 - a1 - 6, -a1^2 - a1 + 6)" "x^3 - 2*x^2 - 4*x + 7"
"11a1" 11 88 2 17 "(0, -a1, a1 + 2, 2*a1, -1, -2*a1 - 2)" "x^2 + x - 4"
"14a1" 14 88 2 17 "(0, -a1, a1 + 2, 2*a1, -1, -2*a1 - 2)" "x^2 + x - 4"
"89a1" 89 89 2 535120 "(a2, -1/2*a2^4 + 1/2*a2^3 + 7/2*a2^2 - 5/2*a2 - 4, -a2^2 + 4, 1/2*a2^4 - 4*a2^2 - a2 + 13/2, -a2^3 + 5*a2 + 2, -a2^4 + a2^3 + 8*a2^2 - 5*a2 - 11)" "x^5 + x^4 - 10*x^3 - 10*x^2 + 21*x + 17"
"14a1" 14 91 2 316 "(a3, -a3^2 + a3 + 2, -a3 + 1, -1, a3^2 - a3 - 2, 1)" "x^3 - x^2 - 4*x + 2"
"91a1" 91 91 2 316 "(a3, -a3^2 + a3 + 2, -a3 + 1, -1, a3^2 - a3 - 2, 1)" "x^3 - x^2 - 4*x + 2"
"91a1" 91 91 2 8 "(a2, -a2, a2 + 3, 1, -3*a2, -1)" "x^2 - 2"
"14a1" 14 93 2 229 "(a1, 1, -a1^2 - a1 + 2, -a1^2 - a1 + 4, 2*a1^2 - 6, 2*a1^2 - 4)" "x^3 - 4*x + 1"
"14a1" 14 94 2 8 "(-1, a1 + 1, -1/2*a1 + 3/2, -a1 - 3, -1/2*a1 + 7/2, -1/2*a1 - 5/2)" "x^2 + 2*x - 7"
"14a1" 14 95 2 148 "(a0, -a0^2 + 3, 1, 2*a0^2 - 2*a0 - 4, -2*a0 - 2, a0^2 - 2*a0 + 1)" "x^3 - x^2 - 3*x + 1"
"14a1" 14 95 2 11344 "(a1, -a1^3 + 5*a1 - 2, -1, -2*a1^2 - 2*a1 + 8, 2*a1^2 + 2*a1 - 6, a1^3 + 2*a1^2 - 3*a1 - 4)" "x^4 + 2*x^3 - 6*x^2 - 8*x + 9"
"14a1" 14 97 2 2777 "(a1, -a1^2 + a1 + 2, -a1 + 1, a1^3 - a1^2 - 4*a1 + 2, -2*a1^3 + 4*a1^2 + 3*a1 - 3, -3*a1^3 + 4*a1^2 + 8*a1 - 5)" "x^4 - 3*x^3 - x^2 + 6*x - 1"
"14a1" 14 98 2 8 "(1, a1 - 1, -2*a1 + 2, 0, -2, 0)" "x^2 - 2*x - 1"
"101a1" 101 101 2 1124401088 "(a1, 1/4*a1^6 + 1/4*a1^5 - 5/2*a1^4 - 5/2*a1^3 + 19/4*a1^2 + 17/4*a1 + 1/2, -1/2*a1^6 - 3/4*a1^5 + 11/2*a1^4 + 7*a1^3 - 29/2*a1^2 - 45/4*a1 + 15/2, -1/4*a1^5 - 1/2*a1^4 + 5/2*a1^3 + 4*a1^2 - 21/4*a1 - 7/2, -1/4*a1^6 + 3*a1^4 - 35/4*a1^2 + 5, 3/4*a1^6 + a1^5 - 17/2*a1^4 - 9*a1^3 + 91/4*a1^2 + 12*a1 - 10)" "x^7 - 13*x^5 + 2*x^4 + 47*x^3 - 16*x^2 - 43*x + 14"
"14a1" 14 104 2 17 "(0, a1, -a1 + 2, -a1, -2*a1, 1)" "x^2 - x - 4"
"26a1" 26 104 2 17 "(0, a1, -a1 + 2, -a1, -2*a1, 1)" "x^2 - x - 4"
"214c1" 214 107 2 890531404 "(a1, -1/4*a1^6 - 1/4*a1^5 + 5/2*a1^4 + 3/4*a1^3 - 29/4*a1^2 + 2*a1 + 4, 1/2*a1^6 + 1/2*a1^5 - 4*a1^4 - 5/2*a1^3 + 15/2*a1^2 + a1, -1/2*a1^6 - 1/2*a1^5 + 4*a1^4 + 7/2*a1^3 - 15/2*a1^2 - 6*a1 + 2, 1/2*a1^5 - 1/2*a1^4 - 4*a1^3 + 5/2*a1^2 + 11/2*a1, 1/2*a1^6 - 11/2*a1^4 + 1/2*a1^3 + 17*a1^2 - 7/2*a1 - 8)" "x^7 + x^6 - 10*x^5 - 7*x^4 + 29*x^3 + 12*x^2 - 20*x - 8"
"109a1" 109 109 2 7537 "(a2, -a2^3 + 4*a2 + 1, -a2, a2^3 - a2^2 - 4*a2 + 2, a2^3 + a2^2 - 5*a2, 2*a2^2 + a2 - 7)" "x^4 + x^3 - 5*x^2 - 4*x + 3"
"14a1" 14 110 2 33 "(-1, -1/2*a3 - 1/2, 1, 1/2*a3 + 1/2, -1, 2)" "x^2 - 33"
"110a1" 110 110 2 33 "(-1, -1/2*a3 - 1/2, 1, 1/2*a3 + 1/2, -1, 2)" "x^2 - 33"
"14a1" 14 111 2 148 "(a0, -1, -a0^2 + 5, -2*a0^2 + 2*a0 + 4, 2*a0^2 - 4*a0 - 2, 2*a0^2 - 4*a0 - 4)" "x^3 - 3*x^2 - x + 5"
"14a1" 14 111 2 6224 "(a1, 1, -a1^3 - 2*a1^2 + 3*a1 + 4, 2*a1^3 + 2*a1^2 - 8*a1 - 2, 2*a1^2 - 6, -2*a1^3 - 4*a1^2 + 6*a1 + 10)" "x^4 - 6*x^2 + 2*x + 5"
"14a1" 14 113 2 12 "(1, a1 - 1, -2*a1 + 4, 4, -2*a1 + 2, 2*a1 - 6)" "x^2 - 4*x + 1"
"14a1" 14 115 2 15317 "(a2, -a2^2 + a2 + 2, 1, a2^3 - 2*a2^2 - 4*a2 + 3, -2*a2 + 2, -2*a2^3 + 3*a2^2 + 7*a2 - 4)" "x^4 - 2*x^3 - 4*x^2 + 5*x + 2"
"115a1" 115 115 2 15317 "(a2, -a2^2 + a2 + 2, 1, a2^3 - 2*a2^2 - 4*a2 + 3, -2*a2 + 2, -2*a2^3 + 3*a2^2 + 7*a2 - 4)" "x^4 - 2*x^3 - 4*x^2 + 5*x + 2"
"14a1" 14 117 2 8 "(a2, 0, -2*a2 + 2, -2*a2 + 2, 2, -1)" "x^2 - 2*x - 1"
"14a1" 14 117 2 12 "(a1, 0, 0, 2, -2*a1, 1)" "x^2 - 3"
"14a1" 14 119 2 453749 "(a1, -a1^4 + 6*a1^2 + a1 - 4, 2*a1^4 + a1^3 - 15*a1^2 - 6*a1 + 18, -1, -2*a1^4 - 2*a1^3 + 14*a1^2 + 12*a1 - 14, -2*a1^4 + 14*a1^2 - 14)" "x^5 - 2*x^4 - 8*x^3 + 14*x^2 + 14*x - 17"
"61a1" 61 122 2 229 "(1, 1/2*a2 - 1/2, -1/4*a2^2 - a2 + 17/4, 1/2*a2^2 + 1/2*a2 - 6, -1/4*a2^2 + 5/4, -1/4*a2^2 + 13/4)" "x^3 - x^2 - 21*x + 37"
"14a1" 14 123 2 316 "(a3, -1, -a3^2 + a3 + 4, -a3^2 - a3 + 4, -a3 - 1, a3^2 - a3)" "x^3 - x^2 - 4*x + 2"
"123a1" 123 123 2 8 "(a2, 1, -a2 + 2, a2 - 2, -a2 + 1, -3*a2 + 2)" "x^2 - 2"
"123a1" 123 123 2 316 "(a3, -1, -a3^2 + a3 + 4, -a3^2 - a3 + 4, -a3 - 1, a3^2 - a3)" "x^3 - x^2 - 4*x + 2"
"43a1" 43 129 2 568 "(a3, 1, -a3 - 2, -a3^2 + 6, a3^2 - a3 - 5, 3)" "x^3 + 2*x^2 - 5*x - 8"
"258a1" 258 129 2 8 "(a2, -1, -a2 + 2, -2*a2 + 3, -a2 + 4, -5)" "x^2 - 2*x - 1"
"258a1" 258 129 2 568 "(a3, 1, -a3 - 2, -a3^2 + 6, a3^2 - a3 - 5, 3)" "x^3 + 2*x^2 - 5*x - 8"
"131a1" 131 131 2 2.23E+015 "(a1, 1/8*a1^8 - 2*a1^6 + 81/8*a1^4 - 67/4*a1^2 + 5, -1/16*a1^9 + 9/8*a1^7 + 1/8*a1^6 - 107/16*a1^5 - 9/8*a1^4 + 117/8*a1^3 + 7/4*a1^2 - 9*a1 + 1, -1/8*a1^9 - 1/4*a1^8 + 7/4*a1^7 + 7/2*a1^6 - 57/8*a1^5 - 63/4*a1^4 + 11/2*a1^3 + 47/2*a1^2 + 15/2*a1 - 3, -1/16*a1^9 + 9/8*a1^7 - 3/8*a1^6 - 107/16*a1^5 + 31/8*a1^4 + 117/8*a1^3 - 35/4*a1^2 - 11*a1 + 2, 1/16*a1^9 + 1/8*a1^8 - 7/8*a1^7 - 15/8*a1^6 + 55/16*a1^5 + 17/2*a1^4 - 17/8*a1^3 - 21/2*a1^2 - 5*a1 + 1)" "x^10 - 18*x^8 + 2*x^7 + 111*x^6 - 18*x^5 - 270*x^4 + 28*x^3 + 232*x^2 + 16*x - 32"
"14a1" 14 133 2 229 "(a3, -a3^2 + 5, a3^2 - a3 - 4, -1, -a3 + 3, a3^2 - a3 - 4)" "x^3 - 2*x^2 - 4*x + 7"
"14a1" 14 137 2 1435966564 "(a1, -1/2*a1^6 + 1/2*a1^5 + 11/2*a1^4 - 9/2*a1^3 - 33/2*a1^2 + 9*a1 + 21/2, a1^6 - a1^5 - 10*a1^4 + 8*a1^3 + 26*a1^2 - 13*a1 - 13, -a1^6 + 9*a1^4 - a1^3 - 21*a1^2 + 3*a1 + 11, 2*a1^6 - a1^5 - 19*a1^4 + 10*a1^3 + 47*a1^2 - 21*a1 - 22, a1^6 - 9*a1^4 + 2*a1^3 + 22*a1^2 - 8*a1 - 10)" "x^7 - 10*x^5 + 28*x^3 + 3*x^2 - 19*x - 7"
"139a1" 139 139 2 2145245897 "(a2, 1/2*a2^6 - 1/2*a2^5 - 9/2*a2^4 + 4*a2^3 + 19/2*a2^2 - 6*a2 - 4, -1/4*a2^6 - 1/4*a2^5 + 9/4*a2^4 + 3/2*a2^3 - 19/4*a2^2 - a2 + 3, -1/4*a2^6 + 1/4*a2^5 + 11/4*a2^4 - 2*a2^3 - 35/4*a2^2 + 7/2*a2 + 6, -1/2*a2^6 + a2^5 + 5*a2^4 - 17/2*a2^3 - 25/2*a2^2 + 27/2*a2 + 7, 1/2*a2^5 + 1/2*a2^4 - 9/2*a2^3 - 4*a2^2 + 17/2*a2 + 7)" "x^7 - x^6 - 11*x^5 + 8*x^4 + 35*x^3 - 10*x^2 - 32*x - 8"
"14a1" 14 141 2 17 "(a5, -1, a5 + 1, a5 + 1, -a5 + 3, -2*a5 - 4)" "x^2 + x - 4"
"141a1" 141 141 2 17 "(a5, -1, a5 + 1, a5 + 1, -a5 + 3, -2*a5 - 4)" "x^2 + x - 4"
"11a1" 11 143 2 194616205 "(a2, -a2^5 - a2^4 + 8*a2^3 + 6*a2^2 - 11*a2 - 5, a2^5 + 2*a2^4 - 8*a2^3 - 14*a2^2 + 12*a2 + 15, 2*a2^5 + 2*a2^4 - 17*a2^3 - 13*a2^2 + 26*a2 + 14, -1, 1)" "x^6 - 10*x^4 + 2*x^3 + 24*x^2 - 7*x - 12"
"14a1" 14 143 2 194616205 "(a2, -a2^5 - a2^4 + 8*a2^3 + 6*a2^2 - 11*a2 - 5, a2^5 + 2*a2^4 - 8*a2^3 - 14*a2^2 + 12*a2 + 15, 2*a2^5 + 2*a2^4 - 17*a2^3 - 13*a2^2 + 26*a2 + 14, -1, 1)" "x^6 - 10*x^4 + 2*x^3 + 24*x^2 - 7*x - 12"
"14a1" 14 145 2 148 "(a2, -a2^2 + 3, 1, a2^2 - 1, a2^2 - 2*a2 - 1, -2*a2)" "x^3 - x^2 - 3*x + 1"
"14a1" 14 145 2 8 "(a1, -2, 1, -2*a1 - 4, 2*a1, -2)" "x^2 + 2*x - 1"
"14a1" 14 145 2 148 "(a3, -a3^2 + 2*a3 + 1, -1, -a3^2 + 3, a3^2 - 2*a3 + 1, 2*a3 - 4)" "x^3 - 3*x^2 - x + 5"
"14a1" 14 146 2 404 "(-1, -1/2*a0 - 1/2, -1/8*a0^2 - 1/4*a0 + 15/8, 1/8*a0^2 + 1/4*a0 + 1/8, -1/4*a0^2 + 1/2*a0 + 27/4, -1/8*a0^2 - 1/4*a0 + 31/8)" "x^3 + 3*x^2 - 29*x - 63"
"14a1" 14 146 2 6224 "(1, -a1 + 1, 1/2*a1^3 - 2*a1^2 + 1/2*a1 + 2, -a1^3 + 7/2*a1^2 + 3*a1 - 9/2, a1^2 - 2*a1 - 3, -3/2*a1^2 + 4*a1 + 5/2)" "x^4 - 4*x^3 - 2*x^2 + 8*x + 1"
"14a1" 14 147 2 8 "(a3, -1, -a3 - 3, 0, -2, a3 - 3)" "x^2 + 2*x - 1"
"14a1" 14 147 2 8 "(a4, 1, a4 + 3, 0, -2, -a4 + 3)" "x^2 + 2*x - 1"
"14a1" 14 148 2 17 "(0, 1/2*a1, 2, -1/2*a1, -1/2*a1, 2)" "x^2 + 2*x - 16"
"37a1" 37 148 2 17 "(0, 1/2*a1, 2, -1/2*a1, -1/2*a1, 2)" "x^2 + 2*x - 16"
"14a1" 14 152 2 961 "(0, 1/2*a2, -1/8*a2^2 - 1/4*a2 + 4, 1/8*a2^2 - 1/4*a2 - 2, -1/8*a2^2 - 1/4*a2 + 2, -1/2*a2 + 2)" "x^3 - 2*x^2 - 40*x + 64"
"19a1" 19 152 2 961 "(0, 1/2*a2, -1/8*a2^2 - 1/4*a2 + 4, 1/8*a2^2 - 1/4*a2 - 2, -1/8*a2^2 - 1/4*a2 + 2, -1/2*a2 + 2)" "x^3 - 2*x^2 - 40*x + 64"
"38a1" 38 152 2 961 "(0, 1/2*a2, -1/8*a2^2 - 1/4*a2 + 4, 1/8*a2^2 - 1/4*a2 - 2, -1/8*a2^2 - 1/4*a2 + 2, -1/2*a2 + 2)" "x^3 - 2*x^2 - 40*x + 64"
"14a1" 14 153 2 17 "(a4, 0, -a4 - 1, 0, -a4 + 1, -a4 + 3)" "x^2 - x - 4"
"51a1" 51 153 2 17 "(a4, 0, -a4 - 1, 0, -a4 + 1, -a4 + 3)" "x^2 - x - 4"
"14a1" 14 155 2 8468 "(a4, -1/2*a4^3 + 1/2*a4^2 + 2*a4 - 1, 1, -a4^2 - a4 + 4, -a4^2 + a4 + 2, a4^3 - 5*a4 + 2)" "x^4 - x^3 - 6*x^2 + 4*x + 4"
"14a1" 14 155 2 20308 "(a3, -1/2*a3^3 - 1/2*a3^2 + 3*a3 + 1, -1, a3^2 + a3 - 4, a3^2 - a3 - 6, -a3^2 - a3 + 8)" "x^4 + x^3 - 8*x^2 - 4*x + 12"
"155a1" 155 155 2 8468 "(a4, -1/2*a4^3 + 1/2*a4^2 + 2*a4 - 1, 1, -a4^2 - a4 + 4, -a4^2 + a4 + 2, a4^3 - 5*a4 + 2)" "x^4 - x^3 - 6*x^2 + 4*x + 4"
"155a1" 155 155 2 20308 "(a3, -1/2*a3^3 - 1/2*a3^2 + 3*a3 + 1, -1, a3^2 + a3 - 4, a3^2 - a3 - 6, -a3^2 - a3 + 8)" "x^4 + x^3 - 8*x^2 - 4*x + 12"
"314a1" 314 157 2 390366232 "(a1, a1^4 - 3*a1^3 - 2*a1^2 + 7*a1 + 1, a1^6 - 4*a1^5 - 2*a1^4 + 18*a1^3 - 2*a1^2 - 20*a1 + 3, -a1^6 + 3*a1^5 + 4*a1^4 - 13*a1^3 - 5*a1^2 + 13*a1 + 2, -a1^6 + 4*a1^5 + a1^4 - 15*a1^3 + 3*a1^2 + 13*a1 + 1, a1^6 - 3*a1^5 - 5*a1^4 + 17*a1^3 + 4*a1^2 - 22*a1 + 3)" "x^7 - 5*x^6 + 2*x^5 + 21*x^4 - 22*x^3 - 21*x^2 + 27*x - 1"
"14a1" 14 158 2 24 "(-1, -1/2*a5 - 1/2, -2, 4, 0, a5 + 3)" "x^2 + 2*x - 23"
"14a1" 14 159 2 1054013 "(a1, -1, -a1^3 - a1^2 + 6*a1 + 4, 1/3*a1^4 + 4/3*a1^3 - 2*a1^2 - 7*a1 + 4/3, -2/3*a1^4 - 2/3*a1^3 + 4*a1^2 + 2*a1 - 2/3, 2/3*a1^4 - 1/3*a1^3 - 5*a1^2 + 2*a1 + 20/3)" "x^5 - 10*x^3 + 22*x + 5"
"14a1" 14 160 2 8 "(0, 1/2*a2, 1, -1/2*a2, -a2, -2)" "x^2 - 32"
"14a1" 14 161 2 2147108 "(a3, 1/2*a3^4 - 1/2*a3^3 - 4*a3^2 + 5/2*a3 + 11/2, -1/2*a3^4 - 1/2*a3^3 + 5*a3^2 + 5/2*a3 - 21/2, 1, -a3^4 + 8*a3^2 + a3 - 12, a3^4 - 9*a3^2 + 14)" "x^5 - 2*x^4 - 9*x^3 + 17*x^2 + 16*x - 27"
"14a1" 14 161 2 148 "(a2, -1/2*a2^2 + 5/2, -1/2*a2^2 + 5/2, -1, -a2 + 1, a2^2 - 3)" "x^3 + x^2 - 5*x - 1"
"163a1" 163 163 2 660293912 "(a2, a2^5 - a2^4 - 6*a2^3 + 5*a2^2 + 5*a2 - 2, -a2^6 + a2^5 + 7*a2^4 - 6*a2^3 - 11*a2^2 + 6*a2 + 6, a2^6 - 2*a2^5 - 7*a2^4 + 12*a2^3 + 11*a2^2 - 11*a2 - 4, a2^6 - 2*a2^5 - 7*a2^4 + 12*a2^3 + 12*a2^2 - 12*a2 - 6, -a2^6 + a2^5 + 8*a2^4 - 6*a2^3 - 16*a2^2 + 5*a2 + 8)" "x^7 - 3*x^6 - 5*x^5 + 19*x^4 - 23*x^2 + 4*x + 6"
"14a1" 14 164 2 25808 "(0, a0, -2/3*a0^3 - 1/3*a0^2 + 16/3*a0 + 2/3, a0^3 - 9*a0 + 4, 1/3*a0^3 + 2/3*a0^2 - 11/3*a0 - 4/3, 2/3*a0^3 - 2/3*a0^2 - 22/3*a0 + 22/3)" "x^4 - 2*x^3 - 10*x^2 + 22*x - 2"
"14a1" 14 165 2 12 "(a1, 1, -1, 2, -1, -2*a1 + 2)" "x^2 - 3"
"14a1" 14 165 2 148 "(a2, 1, 1, -a2^2 - 2*a2 + 3, 1, -a2^2 + 3)" "x^3 + x^2 - 5*x - 1"
"14a1" 14 165 2 8 "(a0, -1, -1, -2*a0 - 4, -1, 4*a0 + 4)" "x^2 + 2*x - 1"
"83a1" 83 166 2 229 "(1, 1/2*a2 - 1/2, -1/8*a2^2 + 17/8, 1/8*a2^2 - a2 - 1/8, -1/2*a2 + 5/2, -1/8*a2^2 + 1/2*a2 - 11/8)" "x^3 - 5*x^2 - 17*x + 53"
"338a1" 338 169 2 12 "(a0, 2, -a0, 0, 0, 0)" "x^2 - 3"
"14a1" 14 170 2 17 "(1, -a5 + 1, 1, 2*a5 - 2, -4, a5 + 1)" "x^2 - 3*x - 2"
"170c1" 170 170 2 17 "(1, -a5 + 1, 1, 2*a5 - 2, -4, a5 + 1)" "x^2 - 3*x - 2"
"19a1" 19 171 2 13068 "(a4, 0, -1/2*a4^3 + 5/2*a4, -a4^2 + 5, 1/2*a4^3 - 9/2*a4, 2)" "x^4 - 9*x^2 + 12"
"43a1" 43 172 2 8 "(0, -a1, a1 + 2, a1 + 2, 2*a1 + 5, 2*a1 + 1)" "x^2 + 4*x + 2"
"14a1" 14 175 2 17 "(a5, -a5 + 1, 0, 1, -a5 + 1, a5 - 3)" "x^2 - x - 4"
"35a1" 35 175 2 17 "(a5, -a5 + 1, 0, 1, -a5 + 1, a5 - 3)" "x^2 - x - 4"
"11a1" 11 176 2 17 "(0, -a3, -a3 + 2, 2*a3, 1, 2*a3 - 2)" "x^2 - x - 4"
"14a1" 14 176 2 17 "(0, -a3, -a3 + 2, 2*a3, 1, 2*a3 - 2)" "x^2 - x - 4"
"14a1" 14 177 2 229 "(a3, -1, -a3^2 + a3 + 2, a3 + 3, -a3^2 - a3 + 2, -a3^2 - a3 + 4)" "x^3 - 4*x - 1"
"14a1" 14 178 2 568 "(1, -1/2*a3 + 1/2, 1/2*a3 - 1/2, -1/8*a3^2 + 1/2*a3 + 21/8, 2, 1/8*a3^2 + 1/2*a3 - 29/8)" "x^3 - x^2 - 33*x + 1"
"89a1" 89 178 2 568 "(1, -1/2*a3 + 1/2, 1/2*a3 - 1/2, -1/8*a3^2 + 1/2*a3 + 21/8, 2, 1/8*a3^2 + 1/2*a3 - 29/8)" "x^3 - x^2 - 33*x + 1"
"89a1" 89 178 2 8 "(-1, a2 + 1, -2*a2 - 5, -2, 2*a2 + 2, -2)" "x^2 + 4*x + 2"
"14a1" 14 183 2 148 "(a1, -1, 2, -2*a1^2 + 2*a1 + 4, -a1^2 + 3, 2*a1^2 - 2*a1 - 2)" "x^3 - x^2 - 3*x + 1"
"14a1" 14 183 2 91407488 "(a2, 1, 1/2*a2^5 + a2^4 - 5*a2^3 - 8*a2^2 + 21/2*a2 + 10, -a2^5 - 3/2*a2^4 + 9*a2^3 + 11*a2^2 - 17*a2 - 23/2, -1/2*a2^4 + 3*a2^2 - a2 - 5/2, -1/2*a2^5 + 5*a2^3 - 21/2*a2 + 1)" "x^6 - 11*x^4 + 2*x^3 + 31*x^2 - 10*x - 17"
"61a1" 61 183 2 91407488 "(a2, 1, 1/2*a2^5 + a2^4 - 5*a2^3 - 8*a2^2 + 21/2*a2 + 10, -a2^5 - 3/2*a2^4 + 9*a2^3 + 11*a2^2 - 17*a2 - 23/2, -1/2*a2^4 + 3*a2^2 - a2 - 5/2, -1/2*a2^5 + 5*a2^3 - 21/2*a2 + 1)" "x^6 - 11*x^4 + 2*x^3 + 31*x^2 - 10*x - 17"
"61a1" 61 183 2 8 "(a0, -1, -1, -a0 - 2, -a0 - 2, -3)" "x^2 + 2*x - 1"
"14a1" 14 184 2 17 "(0, a4, 2, 0, -2*a4, -a4 + 2)" "x^2 + x - 4"
"92a1" 92 184 2 17 "(0, a4, 2, 0, -2*a4, -a4 + 2)" "x^2 + x - 4"
"14a1" 14 185 2 368464 "(a3, -1/2*a3^4 + 7/2*a3^2 - a3 - 3, 1, -1/2*a3^3 - a3^2 + 5/2*a3 + 4, a3^4 + a3^3 - 6*a3^2 - 3*a3 + 5, -1/2*a3^4 - 1/2*a3^3 + 7/2*a3^2 + 1/2*a3 - 3)" "x^5 - 8*x^3 + 2*x^2 + 11*x - 2"
"14a1" 14 185 2 973904 "(a4, -1/2*a4^3 + 5/2*a4 + 1, -1, 1/2*a4^4 - 7/2*a4^2 - a4 + 5, -a4^2 + 3, -1/2*a4^4 + 1/2*a4^3 + 5/2*a4^2 - 5/2*a4 + 2)" "x^5 - 2*x^4 - 8*x^3 + 14*x^2 + 11*x - 12"
"37a1" 37 185 2 368464 "(a3, -1/2*a3^4 + 7/2*a3^2 - a3 - 3, 1, -1/2*a3^3 - a3^2 + 5/2*a3 + 4, a3^4 + a3^3 - 6*a3^2 - 3*a3 + 5, -1/2*a3^4 - 1/2*a3^3 + 7/2*a3^2 + 1/2*a3 - 3)" "x^5 - 8*x^3 + 2*x^2 + 11*x - 2"
"37a1" 37 185 2 973904 "(a4, -1/2*a4^3 + 5/2*a4 + 1, -1, 1/2*a4^4 - 7/2*a4^2 - a4 + 5, -a4^2 + 3, -1/2*a4^4 + 1/2*a4^3 + 5/2*a4^2 - 5/2*a4 + 2)" "x^5 - 2*x^4 - 8*x^3 + 14*x^2 + 11*x - 12"
"14a1" 14 186 2 17 "(1, -1, -1/2*a3 + 1, a3 + 2, -1/2*a3 - 1, -1/2*a3 + 1)" "x^2 + 2*x - 16"
"186a1" 186 186 2 17 "(1, -1, -1/2*a3 + 1, a3 + 2, -1/2*a3 - 1, -1/2*a3 + 1)" "x^2 + 2*x - 16"
"11a1" 11 187 2 17 "(2, -a3 + 2, a3 - 2, a3 - 1, 1, 0)" "x^2 - 5*x + 2"
"11a1" 11 187 2 12 "(a2, -a2 - 1, a2 - 1, -2, 1, -a2 - 6)" "x^2 + 2*x - 2"
"11a1" 11 187 2 148 "(a4, -a4^2 - a4 + 1, -a4 - 3, 2*a4^2 + 2*a4 - 4, -1, 3*a4 + 2)" "x^3 + 2*x^2 - 2*x - 2"
"11a1" 11 187 2 33844 "(a5, -a5^3 + a5^2 + 5*a5 - 1, -a5 + 1, 0, -1, a5^3 - 2*a5^2 - 5*a5 + 4)" "x^4 - x^3 - 6*x^2 + 2*x + 2"
"14a1" 14 187 2 33844 "(a5, -a5^3 + a5^2 + 5*a5 - 1, -a5 + 1, 0, -1, a5^3 - 2*a5^2 - 5*a5 + 4)" "x^4 - x^3 - 6*x^2 + 2*x + 2"
"187b1" 187 187 2 17 "(2, -a3 + 2, a3 - 2, a3 - 1, 1, 0)" "x^2 - 5*x + 2"
"378c1" 378 189 2 12 "(a5, 0, a5, 1, -a5, 2)" "x^2 - 3"
"378c1" 378 189 2 28 "(a4, 0, -a4, -1, -a4, -2)" "x^2 - 7"
"14a1" 14 190 2 17 "(-1, -1/2*a3 - 1/2, 1, -1/2*a3 - 1/2, 4, 3/2*a3 - 1/2)" "x^2 - 17"
"38a1" 38 190 2 17 "(-1, -1/2*a3 - 1/2, 1, -1/2*a3 - 1/2, 4, 3/2*a3 - 1/2)" "x^2 - 17"
"14a1" 14 193 2 28088476877 "(a2, -1/7*a2^7 + 4/7*a2^6 + 8/7*a2^5 - 34/7*a2^4 - 16/7*a2^3 + 69/7*a2^2 + 6/7*a2 - 18/7, -8/7*a2^7 + 4/7*a2^6 + 78/7*a2^5 - 27/7*a2^4 - 212/7*a2^3 + 41/7*a2^2 + 160/7*a2 + 10/7, 15/7*a2^7 - 11/7*a2^6 - 148/7*a2^5 + 83/7*a2^4 + 408/7*a2^3 - 146/7*a2^2 - 307/7*a2 + 18/7, 3/7*a2^7 - 5/7*a2^6 - 31/7*a2^5 + 39/7*a2^4 + 97/7*a2^3 - 67/7*a2^2 - 95/7*a2 + 19/7, -4/7*a2^7 + 2/7*a2^6 + 39/7*a2^5 - 17/7*a2^4 - 99/7*a2^3 + 38/7*a2^2 + 52/7*a2 - 9/7)" "x^8 - 2*x^7 - 9*x^6 + 18*x^5 + 21*x^4 - 44*x^3 - 11*x^2 + 27*x + 1"
"14a1" 14 195 2 316 "(a4, -1, -1, -a4^2 + 5, -a4^2 + 5, 1)" "x^3 - 7*x - 2"
"195b1" 195 195 2 316 "(a4, -1, -1, -a4^2 + 5, -a4^2 + 5, 1)" "x^3 - 7*x - 2"
"14a1" 14 196 2 8 "(0, -1/2*a2, 1/4*a2, 0, 4, 3/4*a2)" "x^2 - 32"
"197a1" 197 197 2 2.25E+015 "(a2, 1/4*a2^8 + 1/2*a2^7 - 5/2*a2^6 - 17/4*a2^5 + 15/2*a2^4 + 9*a2^3 - 27/4*a2^2 - 7/4*a2 + 5/2, -1/2*a2^8 + 5*a2^6 - 3/2*a2^5 - 13*a2^4 + 7*a2^3 + 11/2*a2^2 - 9/2*a2 + 1, -a2^7 - a2^6 + 10*a2^5 + 8*a2^4 - 27*a2^3 - 18*a2^2 + 14*a2 + 9, -1/2*a2^9 + 1/4*a2^8 + 13/2*a2^7 - 3*a2^6 - 109/4*a2^5 + 15/2*a2^4 + 85/2*a2^3 + 3/4*a2^2 - 75/4*a2 - 3/2, 1/2*a2^9 + 1/2*a2^8 - 7*a2^7 - 11/2*a2^6 + 67/2*a2^5 + 20*a2^4 - 121/2*a2^3 - 27*a2^2 + 53/2*a2 + 11)" "x^10 - 15*x^8 + x^7 + 78*x^6 - 7*x^5 - 165*x^4 + 15*x^3 + 123*x^2 - 9*x - 26"
"14a1" 14 201 2 1025428 "(a4, 1, 1/2*a4^4 - 1/2*a4^3 - 7/2*a4^2 + 5/2*a4 + 3, -1/2*a4^4 - 1/2*a4^3 + 5/2*a4^2 + 3/2*a4 + 1, a4^3 - 5*a4, a4^3 - 5*a4 + 2)" "x^5 - 8*x^3 + 13*x + 2"
"67a1" 67 201 2 1025428 "(a4, 1, 1/2*a4^4 - 1/2*a4^3 - 7/2*a4^2 + 5/2*a4 + 3, -1/2*a4^4 - 1/2*a4^3 + 5/2*a4^2 + 3/2*a4 + 1, a4^3 - 5*a4, a4^3 - 5*a4 + 2)" "x^5 - 8*x^3 + 13*x + 2"
"201b1" 201 201 2 1025428 "(a4, 1, 1/2*a4^4 - 1/2*a4^3 - 7/2*a4^2 + 5/2*a4 + 3, -1/2*a4^4 - 1/2*a4^3 + 5/2*a4^2 + 3/2*a4 + 1, a4^3 - 5*a4, a4^3 - 5*a4 + 2)" "x^5 - 8*x^3 + 13*x + 2"
"201b1" 201 201 2 148 "(a3, -1, -a3^2 + a3 + 3, -a3^2 + 2*a3 + 2, -a3^2 + 7, -a3^2 + 1)" "x^3 - 3*x^2 - x + 5"
"202a1" 202 202 2 10273 "(1, a2 - 1, a2^3 - a2^2 - 6*a2 + 4, -a2^3 + a2^2 + 5*a2 - 2, -3*a2^3 + a2^2 + 18*a2, -a2^2 + 5)" "x^4 - 3*x^3 - 5*x^2 + 16*x - 1"
"14a1" 14 203 2 2626356 "(a6, -1/2*a6^4 + 1/2*a6^3 + 7/2*a6^2 - 7/2*a6 - 2, 1/2*a6^4 - 1/2*a6^3 - 7/2*a6^2 + 5/2*a6 + 3, 1, -1/2*a6^4 - 1/2*a6^3 + 5/2*a6^2 + 7/2*a6 + 3, 1/2*a6^4 + 1/2*a6^3 - 7/2*a6^2 - 9/2*a6 + 5)" "x^5 - 2*x^4 - 8*x^3 + 14*x^2 + 9*x - 6"
"14a1" 14 203 2 17 "(-1, -a3 - 1, -a3 + 1, -1, -a3 - 1, a3 + 3)" "x^2 + x - 4"
"58a1" 58 203 2 2626356 "(a6, -1/2*a6^4 + 1/2*a6^3 + 7/2*a6^2 - 7/2*a6 - 2, 1/2*a6^4 - 1/2*a6^3 - 7/2*a6^2 + 5/2*a6 + 3, 1, -1/2*a6^4 - 1/2*a6^3 + 5/2*a6^2 + 7/2*a6 + 3, 1/2*a6^4 + 1/2*a6^3 - 7/2*a6^2 - 9/2*a6 + 5)" "x^5 - 2*x^4 - 8*x^3 + 14*x^2 + 9*x - 6"
"58a1" 58 203 2 17 "(-1, -a3 - 1, -a3 + 1, -1, -a3 - 1, a3 + 3)" "x^2 + x - 4"
"58a1" 58 203 2 148 "(a5, -a5^2 - a5 + 1, a5^2 - 4, -1, a5^2 - a5 - 1, -5)" "x^3 + x^2 - 3*x - 1"
"203a1" 203 203 2 8 "(2, -a4 + 2, 2*a4 - 2, -1, 2*a4 - 4, -2*a4 + 6)" "x^2 - 2*x - 1"
"203a1" 203 203 2 2626356 "(a6, -1/2*a6^4 + 1/2*a6^3 + 7/2*a6^2 - 7/2*a6 - 2, 1/2*a6^4 - 1/2*a6^3 - 7/2*a6^2 + 5/2*a6 + 3, 1, -1/2*a6^4 - 1/2*a6^3 + 5/2*a6^2 + 7/2*a6 + 3, 1/2*a6^4 + 1/2*a6^3 - 7/2*a6^2 - 9/2*a6 + 5)" "x^5 - 2*x^4 - 8*x^3 + 14*x^2 + 9*x - 6"
"14a1" 14 205 2 229 "(a6, -a6^2 + a6 + 4, -1, a6^2 - 7, -a6^2 - a6 + 6, -a6^2 + 3)" "x^3 - 2*x^2 - 4*x + 7"
"14a1" 14 205 2 229 "(a5, a5^2 - a5 - 2, 1, -a5^2 + 3, -a5^2 + a5 + 4, -a5^2 + 2*a5 + 3)" "x^3 - 4*x - 1"
"14a1" 14 207 2 8 "(a4, 0, -a4 + 3, -a4 - 1, -2*a4 + 2, 0)" "x^2 - 2*x - 1"
"14a1" 14 207 2 8 "(a1, 0, -a1 - 3, a1 - 1, -2*a1 - 2, 0)" "x^2 + 2*x - 1"
"14a1" 14 208 2 17 "(0, a4, a4 + 2, -a4, -2*a4, 1)" "x^2 + x - 4"
"26a1" 26 208 2 17 "(0, a4, a4 + 2, -a4, -2*a4, 1)" "x^2 + x - 4"
"11a1" 11 209 2 8 "(a1, -a1 - 1, -1, -a1 - 2, -1, 3*a1 - 2)" "x^2 - 2"
"11a1" 11 209 2 246832 "(a2, 1/2*a2^4 - a2^3 - 5/2*a2^2 + 4*a2 + 1, -1/2*a2^3 + 7/2*a2 - 1, -1/2*a2^3 + 3/2*a2 + 2, 1, -1/2*a2^4 + 7/2*a2^2 - 2)" "x^5 - 2*x^4 - 6*x^3 + 10*x^2 + 5*x - 4"
"11a1" 11 209 2 20757368448 "(a3, -1/2*a3^4 + 7/2*a3^2 - a3 - 2, 1/2*a3^5 - 9/2*a3^3 + 7*a3 + 3, -1/4*a3^6 + 3*a3^4 - 37/4*a3^2 + 13/2, -1, -1/4*a3^6 - 1/2*a3^5 + 5/2*a3^4 + 9/2*a3^3 - 27/4*a3^2 - 9*a3 + 7/2)" "x^7 + x^6 - 14*x^5 - 10*x^4 + 59*x^3 + 27*x^2 - 66*x - 30"
"14a1" 14 209 2 20757368448 "(a3, -1/2*a3^4 + 7/2*a3^2 - a3 - 2, 1/2*a3^5 - 9/2*a3^3 + 7*a3 + 3, -1/4*a3^6 + 3*a3^4 - 37/4*a3^2 + 13/2, -1, -1/4*a3^6 - 1/2*a3^5 + 5/2*a3^4 + 9/2*a3^3 - 27/4*a3^2 - 9*a3 + 7/2)" "x^7 + x^6 - 14*x^5 - 10*x^4 + 59*x^3 + 27*x^2 - 66*x - 30"
"422a1" 422 211 2 26927210518644 "(a3, 9/58*a3^8 + 15/58*a3^7 - 2*a3^6 - 157/58*a3^5 + 235/29*a3^4 + 222/29*a3^3 - 637/58*a3^2 - 161/29*a3 + 62/29, 7/116*a3^8 + 31/116*a3^7 - 1/2*a3^6 - 309/116*a3^5 + 41/58*a3^4 + 183/29*a3^3 + 91/116*a3^2 - 93/58*a3 + 8/29, -13/58*a3^8 - 41/58*a3^7 + 2*a3^6 + 433/58*a3^5 - 101/29*a3^4 - 630/29*a3^3 - 111/58*a3^2 + 500/29*a3 + 78/29, 3/29*a3^8 - 19/58*a3^7 - 3/2*a3^6 + 112/29*a3^5 + 381/58*a3^4 - 374/29*a3^3 - 280/29*a3^2 + 665/58*a3 + 167/29, 3/116*a3^8 + 5/116*a3^7 - 33/116*a3^5 - 43/29*a3^4 + 8/29*a3^3 + 271/116*a3^2 + 7/29*a3 + 49/29)" "x^9 + x^8 - 14*x^7 - 11*x^6 + 66*x^5 + 36*x^4 - 123*x^3 - 38*x^2 + 72*x + 8"
"422a1" 422 211 2 229 "(a2, -a2 - 1, -a2^2 - a2 + 1, a2 - 1, -3, 2*a2^2 - 5)" "x^3 - 4*x + 1"
"53a1" 53 212 2 756 "(0, a2, -a2^2 - 2*a2 + 3, a2^2 + 2*a2 - 1, -a2^2 + 7, 5)" "x^3 + 3*x^2 - 3*x - 7"
"214a1" 214 214 2 12 "(1, -a5 + 1, a5, a5 - 1, a5 + 3, a5 - 1)" "x^2 - 3"
"214a1" 214 214 2 12 "(-1, 1/2*a4 + 1/2, 1/2*a4 + 7/2, 1/2*a4 + 1/2, -1/2*a4 - 1/2, -1/2*a4 - 1/2)" "x^2 + 6*x - 3"
"14a1" 14 215 2 1933097 "(a2, -a2^3 + 5*a2, 1, a2^4 - a2^3 - 6*a2^2 + 6*a2 + 2, a2^3 - 6*a2 - 1, -a2^4 + 5*a2^2 + a2 + 3)" "x^5 - 2*x^4 - 7*x^3 + 13*x^2 + 5*x - 4"
"43a1" 43 215 2 1933097 "(a2, -a2^3 + 5*a2, 1, a2^4 - a2^3 - 6*a2^2 + 6*a2 + 2, a2^3 - 6*a2 - 1, -a2^4 + 5*a2^2 + a2 + 3)" "x^5 - 2*x^4 - 7*x^3 + 13*x^2 + 5*x - 4"
"14a1" 14 217 2 138136 "(a3, -a3^3 + 2*a3^2 + 3*a3 - 4, a3^4 - 2*a3^3 - 5*a3^2 + 6*a3 + 6, -1, -a3^4 + 2*a3^3 + 4*a3^2 - 5*a3 - 2, -a3^4 + a3^3 + 6*a3^2 - 2*a3 - 8)" "x^5 - 3*x^4 - 5*x^3 + 16*x^2 + 6*x - 19"
"14a1" 14 217 2 6809 "(a2, -a2^3 + 5*a2, -a2 + 1, 1, -a2^2 - 2*a2 + 3, a2^3 - a2^2 - 5*a2 + 3)" "x^4 - 5*x^2 + x + 1"
"109a1" 109 218 2 12 "(1, a2 - 1, -a2, a2 + 3, 1, -2*a2 + 2)" "x^2 - 3"
"109a1" 109 218 2 8 "(-1, a1 + 1, -a1 - 2, -a1 - 5, 2*a1 + 5, 2*a1 + 2)" "x^2 + 6*x + 7"
"109a1" 109 218 2 621 "(-1, -a4 - 1, -a4^2 - 3*a4 + 1, 2, a4^2 + 3*a4 - 1, a4^2 + 4*a4 + 3)" "x^3 + 6*x^2 + 6*x - 7"
"14a1" 14 219 2 8468 "(a3, -1, -1/2*a3^3 + 1/2*a3^2 + 2*a3 + 1, -a3^2 + a3 + 2, -a3^2 - a3 + 4, -a3^3 + 5*a3 + 2)" "x^4 - x^3 - 6*x^2 + 4*x + 4"
"219a1" 219 219 2 8468 "(a3, -1, -1/2*a3^3 + 1/2*a3^2 + 2*a3 + 1, -a3^2 + a3 + 2, -a3^2 - a3 + 4, -a3^3 + 5*a3 + 2)" "x^4 - x^3 - 6*x^2 + 4*x + 4"
"219a1" 219 219 2 4758548 "(a4, 1, -1/2*a4^5 - 1/2*a4^4 + 7/2*a4^3 + 3/2*a4^2 - 5*a4 + 1, 1/2*a4^5 + a4^4 - 7/2*a4^3 - 5*a4^2 + 5*a4 + 4, 1/2*a4^5 - 11/2*a4^3 + 13*a4, a4^3 - 5*a4 + 2)" "x^6 + x^5 - 9*x^4 - 5*x^3 + 20*x^2 + 4*x - 4"
"14a1" 14 221 2 28134208 "(a6, -1/2*a6^5 + 1/2*a6^4 + 4*a6^3 - 5/2*a6^2 - 13/2*a6 + 1, 1/2*a6^4 - 1/2*a6^3 - 3*a6^2 + 3/2*a6 + 3/2, -a6^3 + 5*a6 + 2, -a6^2 + 3, 1)" "x^6 - x^5 - 9*x^4 + 6*x^3 + 19*x^2 - 5*x - 3"
"14a1" 14 221 2 229 "(a5, -a5 - 1, -a5^2 - a5 + 2, a5 - 3, a5^2 - 5, 1)" "x^3 - 4*x + 1"
"446a1" 446 223 2 8 "(a0, a0, -a0 - 3, -a0 - 1, -a0, a0 + 3)" "x^2 + 2*x - 1"
"446a1" 446 223 2 3.20E+019 "(a2, 2*a2^11 - 11*a2^10 - 2*a2^9 + 98*a2^8 - 103*a2^7 - 245*a2^6 + 397*a2^5 + 123*a2^4 - 412*a2^3 + 129*a2^2 + 41*a2 - 18, 4*a2^11 - 21*a2^10 - 10*a2^9 + 196*a2^8 - 152*a2^7 - 550*a2^6 + 654*a2^5 + 468*a2^4 - 731*a2^3 + 20*a2^2 + 114*a2 + 4, -9*a2^11 + 45*a2^10 + 34*a2^9 - 435*a2^8 + 235*a2^7 + 1320*a2^6 - 1172*a2^5 - 1412*a2^4 + 1388*a2^3 + 350*a2^2 - 263*a2 - 61, -12*a2^11 + 60*a2^10 + 45*a2^9 - 578*a2^8 + 315*a2^7 + 1739*a2^6 - 1559*a2^5 - 1813*a2^4 + 1827*a2^3 + 390*a2^2 - 327*a2 - 68, a2^11 - 7*a2^10 + 6*a2^9 + 56*a2^8 - 119*a2^7 - 96*a2^6 + 400*a2^5 - 95*a2^4 - 403*a2^3 + 248*a2^2 + 36*a2 - 31)" "x^12 - 7*x^11 + 6*x^10 + 57*x^9 - 122*x^8 - 105*x^7 + 430*x^6 - 73*x^5 - 499*x^4 + 242*x^3 + 143*x^2 - 52*x - 19"
"14a1" 14 226 2 12 "(-1, -1/2*a2 - 1/2, 2, 0, a2 + 5, a2 + 1)" "x^2 + 6*x - 3"
"14a1" 14 226 2 8 "(-1, -1/2*a1 - 1/2, 1/2*a1 - 3/2, a1 - 1, -4, 2)" "x^2 + 2*x - 7"
"681a1" 681 227 2 8 "(a0, -2, -a0, -2*a0 - 1, 2*a0 + 1, 2*a0 - 4)" "x^2 - 2"
"681a1" 681 227 2 849105255012004 "(a4, 1/16*a4^9 - 21/16*a4^7 - 3/16*a4^6 + 75/8*a4^5 + 9/4*a4^4 - 209/8*a4^3 - 33/4*a4^2 + 23*a4 + 10, -3/4*a4^9 + 3/4*a4^8 + 49/4*a4^7 - 19/2*a4^6 - 269/4*a4^5 + 31*a4^4 + 289/2*a4^3 - 21/2*a4^2 - 101*a4 - 30, 13/16*a4^9 - 1/2*a4^8 - 213/16*a4^7 + 97/16*a4^6 + 589/8*a4^5 - 16*a4^4 - 1281/8*a4^3 - 53/4*a4^2 + 227/2*a4 + 42, 1/8*a4^9 - 1/4*a4^8 - 15/8*a4^7 + 27/8*a4^6 + 35/4*a4^5 - 51/4*a4^4 - 53/4*a4^3 + 11*a4^2 + 7/2*a4 + 1, -1/4*a4^8 + 13/4*a4^6 - 1/4*a4^5 - 25/2*a4^4 + a4^3 + 29/2*a4^2 + a4)" "x^10 - 17*x^8 - 3*x^7 + 98*x^6 + 40*x^5 - 218*x^4 - 148*x^3 + 136*x^2 + 144*x + 32"
"14a1" 14 228 2 33 "(0, 1, 1/2*a2 + 1/2, -1/2*a2 + 3/2, -1/2*a2 - 1/2, 2)" "x^2 - 4*x - 29"
"19a1" 19 228 2 33 "(0, 1, 1/2*a2 + 1/2, -1/2*a2 + 3/2, -1/2*a2 - 1/2, 2)" "x^2 - 4*x - 29"
"229a1" 229 229 2 1.36E+017 "(a2, 1/4*a2^9 - 1/4*a2^8 - 13/4*a2^7 + 11/4*a2^6 + 55/4*a2^5 - 10*a2^4 - 83/4*a2^3 + 53/4*a2^2 + 8*a2 - 11/4, -1/4*a2^9 + 1/4*a2^8 + 11/4*a2^7 - 5/4*a2^6 - 43/4*a2^5 + 65/4*a2^3 + 15/4*a2^2 - 6*a2 - 3/4, -1/4*a2^10 + 3/4*a2^9 + 9/4*a2^8 - 31/4*a2^7 - 21/4*a2^6 + 53/2*a2^5 - 3/4*a2^4 - 131/4*a2^3 + 13/2*a2^2 + 41/4*a2 + 3/2, 1/2*a2^10 - 7/4*a2^9 - 17/4*a2^8 + 71/4*a2^7 + 39/4*a2^6 - 235/4*a2^5 - 1/2*a2^4 + 265/4*a2^3 - 49/4*a2^2 - 27/2*a2 + 23/4, 1/2*a2^10 - 3/2*a2^9 - 9/2*a2^8 + 29/2*a2^7 + 25/2*a2^6 - 46*a2^5 - 19/2*a2^4 + 105/2*a2^3 - 3*a2^2 - 31/2*a2 + 2)" "x^11 - 5*x^10 - 4*x^9 + 50*x^8 - 26*x^7 - 165*x^6 + 152*x^5 + 193*x^4 - 207*x^3 - 50*x^2 + 52*x + 1"
"229a1" 229 229 2 1868969 "(a1, a1^4 + 2*a1^3 - 3*a1^2 - 4*a1 + 1, -a1^5 - 4*a1^4 - a1^3 + 8*a1^2 + 3*a1 - 2, a1^5 + 2*a1^4 - 3*a1^3 - 2*a1^2 + 4*a1 - 4, a1^4 + 3*a1^3 - 2*a1^2 - 6*a1 - 1, a1^5 + 5*a1^4 + 4*a1^3 - 11*a1^2 - 12*a1 + 5)" "x^6 + 4*x^5 - 12*x^3 - 3*x^2 + 9*x - 1"
"14a1" 14 230 2 1101 "(1, -1/2*a3 + 1/2, -1, -1/4*a3^2 + 3/2*a3 + 27/4, 1/2*a3^2 - 3/2*a3 - 11, -1/4*a3^2 + 1/2*a3 + 23/4)" "x^3 - x^2 - 37*x - 59"
"14a1" 14 231 2 837 "(a3, -1, -a3^2 + a3 + 4, -1, 1, -a3^2 + a3 + 4)" "x^3 - 6*x - 1"
"14a1" 14 231 2 229 "(a4, 1, -a4^2 - a4 + 6, -1, -1, -3*a4^2 + a4 + 10)" "x^3 - 2*x^2 - 4*x + 7"
"14a1" 14 232 2 568 "(0, -a3, -a3^2 + 6, 0, 2*a3^2 + a3 - 8, a3^2 + 2*a3 - 2)" "x^3 + 2*x^2 - 5*x - 8"
"58a1" 58 232 2 568 "(0, -a3, -a3^2 + 6, 0, 2*a3^2 + a3 - 8, a3^2 + 2*a3 - 2)" "x^3 + 2*x^2 - 5*x - 8"
"58a1" 58 232 2 8 "(0, -a2, 2*a2 - 3, -4, a2 - 2, -4*a2 + 3)" "x^2 - 2*x - 1"
"466b1" 466 233 2 1.27E+017 "(a2, 7/4*a2^10 - 1/2*a2^9 - 107/4*a2^8 + 8*a2^7 + 139*a2^6 - 65/2*a2^5 - 1147/4*a2^4 + 31/4*a2^3 + 883/4*a2^2 + 203/4*a2 - 16, 27/2*a2^10 - 9/2*a2^9 - 409/2*a2^8 + 145/2*a2^7 + 1046*a2^6 - 310*a2^5 - 4193/2*a2^4 + 183*a2^3 + 1550*a2^2 + 294*a2 - 219/2, a2^10 - 1/2*a2^9 - 15*a2^8 + 15/2*a2^7 + 75*a2^6 - 31*a2^5 - 143*a2^4 + 43/2*a2^3 + 195/2*a2^2 + 41/2*a2 - 5/2, 9/4*a2^10 - 3/4*a2^9 - 135/4*a2^8 + 49/4*a2^7 + 170*a2^6 - 107/2*a2^5 - 1331/4*a2^4 + 75/2*a2^3 + 242*a2^2 + 37*a2 - 81/4, -a2^10 + 15*a2^8 - a2^7 - 76*a2^6 + 6*a2^5 + 150*a2^4 + 3*a2^3 - 104*a2^2 - 20*a2 + 7)" "x^11 + 2*x^10 - 16*x^9 - 30*x^8 + 91*x^7 + 158*x^6 - 213*x^5 - 349*x^4 + 152*x^3 + 290*x^2 + 41*x - 19"
"14a1" 14 235 2 7379590429 "(a4, 1/2*a4^6 - 5*a4^4 + 12*a4^2 - 3/2*a4 - 3, 1, -1/2*a4^6 + 4*a4^4 + a4^3 - 7*a4^2 - 3/2*a4 + 1, -3/2*a4^6 + 13*a4^4 + 3*a4^3 - 25*a4^2 - 15/2*a4 + 3, -1/2*a4^6 - a4^5 + 5*a4^4 + 9*a4^3 - 11*a4^2 - 33/2*a4 + 2)" "x^7 - x^6 - 10*x^5 + 8*x^4 + 28*x^3 - 17*x^2 - 19*x + 2"
"235c1" 235 235 2 7379590429 "(a4, 1/2*a4^6 - 5*a4^4 + 12*a4^2 - 3/2*a4 - 3, 1, -1/2*a4^6 + 4*a4^4 + a4^3 - 7*a4^2 - 3/2*a4 + 1, -3/2*a4^6 + 13*a4^4 + 3*a4^3 - 25*a4^2 - 15/2*a4 + 3, -1/2*a4^6 - a4^5 + 5*a4^4 + 9*a4^3 - 11*a4^2 - 33/2*a4 + 2)" "x^7 - x^6 - 10*x^5 + 8*x^4 + 28*x^3 - 17*x^2 - 19*x + 2"
"235a1" 235 235 2 7379590429 "(a4, 1/2*a4^6 - 5*a4^4 + 12*a4^2 - 3/2*a4 - 3, 1, -1/2*a4^6 + 4*a4^4 + a4^3 - 7*a4^2 - 3/2*a4 + 1, -3/2*a4^6 + 13*a4^4 + 3*a4^3 - 25*a4^2 - 15/2*a4 + 3, -1/2*a4^6 - a4^5 + 5*a4^4 + 9*a4^3 - 11*a4^2 - 33/2*a4 + 2)" "x^7 - x^6 - 10*x^5 + 8*x^4 + 28*x^3 - 17*x^2 - 19*x + 2"
"235a1" 235 235 2 106069 "(a3, a3^4 + 2*a3^3 - 4*a3^2 - 5*a3 + 3, -1, -2*a3^4 - 5*a3^3 + 5*a3^2 + 10*a3 - 5, a3^4 + 3*a3^3 + a3^2 - 3*a3 - 5, a3^4 + a3^3 - 5*a3^2 - 3*a3 + 1)" "x^5 + 4*x^4 - 12*x^2 - 4*x + 7"
"14a1" 14 237 2 13643132296 "(a2, 1, -a2^6 + 12*a2^4 - a2^3 - 37*a2^2 + 9*a2 + 16, 3/2*a2^6 - 1/2*a2^5 - 17*a2^4 + 4*a2^3 + 49*a2^2 - 25/2*a2 - 37/2, 1/2*a2^6 + 1/2*a2^5 - 6*a2^4 - 4*a2^3 + 17*a2^2 + 7/2*a2 - 7/2, 5/2*a2^6 - 1/2*a2^5 - 28*a2^4 + 4*a2^3 + 79*a2^2 - 33/2*a2 - 57/2)" "x^7 - 2*x^6 - 11*x^5 + 22*x^4 + 30*x^3 - 65*x^2 - 2*x + 23"
"474a1" 474 237 2 8 "(a0, -1, 0, 1, -a0 + 4, -2*a0 + 1)" "x^2 - 2*x - 1"
"474a1" 474 237 2 13643132296 "(a2, 1, -a2^6 + 12*a2^4 - a2^3 - 37*a2^2 + 9*a2 + 16, 3/2*a2^6 - 1/2*a2^5 - 17*a2^4 + 4*a2^3 + 49*a2^2 - 25/2*a2 - 37/2, 1/2*a2^6 + 1/2*a2^5 - 6*a2^4 - 4*a2^3 + 17*a2^2 + 7/2*a2 - 7/2, 5/2*a2^6 - 1/2*a2^5 - 28*a2^4 + 4*a2^3 + 79*a2^2 - 33/2*a2 - 57/2)" "x^7 - 2*x^6 - 11*x^5 + 22*x^4 + 30*x^3 - 65*x^2 - 2*x + 23"
"14a1" 14 241 2 3.24E+019 "(a1, 11/8*a1^11 - 15/4*a1^10 - 79/4*a1^9 + 54*a1^8 + 773/8*a1^7 - 1043/4*a1^6 - 1631/8*a1^5 + 4025/8*a1^4 + 827/4*a1^3 - 1375/4*a1^2 - 741/8*a1 + 93/8, 11/8*a1^11 - 17/4*a1^10 - 75/4*a1^9 + 123/2*a1^8 + 669/8*a1^7 - 1199/4*a1^6 - 1223/8*a1^5 + 4717/8*a1^4 + 589/4*a1^3 - 1677/4*a1^2 - 737/8*a1 + 117/8, -15/16*a1^11 + 7/4*a1^10 + 61/4*a1^9 - 205/8*a1^8 - 1415/16*a1^7 + 1011/8*a1^6 + 3567/16*a1^5 - 3951/16*a1^4 - 1809/8*a1^3 + 1283/8*a1^2 + 813/16*a1 - 71/16, -5/4*a1^11 + 31/8*a1^10 + 135/8*a1^9 - 445/8*a1^8 - 589/8*a1^7 + 535/2*a1^6 + 255/2*a1^5 - 4119/8*a1^4 - 443/4*a1^3 + 711/2*a1^2 + 65*a1 - 85/8, 7/8*a1^11 - 5/2*a1^10 - 25/2*a1^9 + 145/4*a1^8 + 487/8*a1^7 - 707/4*a1^6 - 1039/8*a1^5 + 2759/8*a1^4 + 569/4*a1^3 - 947/4*a1^2 - 613/8*a1 + 47/8)" "x^12 - 3*x^11 - 14*x^10 + 44*x^9 + 65*x^8 - 219*x^7 - 123*x^6 + 444*x^5 + 105*x^4 - 328*x^3 - 45*x^2 + 18*x - 1"
"482a1" 482 241 2 3.24E+019 "(a1, 11/8*a1^11 - 15/4*a1^10 - 79/4*a1^9 + 54*a1^8 + 773/8*a1^7 - 1043/4*a1^6 - 1631/8*a1^5 + 4025/8*a1^4 + 827/4*a1^3 - 1375/4*a1^2 - 741/8*a1 + 93/8, 11/8*a1^11 - 17/4*a1^10 - 75/4*a1^9 + 123/2*a1^8 + 669/8*a1^7 - 1199/4*a1^6 - 1223/8*a1^5 + 4717/8*a1^4 + 589/4*a1^3 - 1677/4*a1^2 - 737/8*a1 + 117/8, -15/16*a1^11 + 7/4*a1^10 + 61/4*a1^9 - 205/8*a1^8 - 1415/16*a1^7 + 1011/8*a1^6 + 3567/16*a1^5 - 3951/16*a1^4 - 1809/8*a1^3 + 1283/8*a1^2 + 813/16*a1 - 71/16, -5/4*a1^11 + 31/8*a1^10 + 135/8*a1^9 - 445/8*a1^8 - 589/8*a1^7 + 535/2*a1^6 + 255/2*a1^5 - 4119/8*a1^4 - 443/4*a1^3 + 711/2*a1^2 + 65*a1 - 85/8, 7/8*a1^11 - 5/2*a1^10 - 25/2*a1^9 + 145/4*a1^8 + 487/8*a1^7 - 707/4*a1^6 - 1039/8*a1^5 + 2759/8*a1^4 + 569/4*a1^3 - 947/4*a1^2 - 613/8*a1 + 47/8)" "x^12 - 3*x^11 - 14*x^10 + 44*x^9 + 65*x^8 - 219*x^7 - 123*x^6 + 444*x^5 + 105*x^4 - 328*x^3 - 45*x^2 + 18*x - 1"
"121a1" 121 242 2 12 "(-1, 1/2*a2 + 1/2, -1/2*a2 - 3/2, -1/2*a2 - 9/2, 0, -3)" "x^2 + 6*x - 3"
"121a1" 121 242 2 12 "(1, 1/2*a4 - 1/2, -1/2*a4 - 1/2, 1/2*a4 + 7/2, 0, 3)" "x^2 + 2*x - 11"
"243a1" 243 243 2 24 "(a3, 0, -a3, 2, a3, -1)" "x^2 - 6"
"486a1" 486 243 2 12 "(a2, 0, 2*a2, -1, -2*a2, 5)" "x^2 - 3"
"14a1" 14 244 2 20308 "(0, -a1, -1/4*a1^3 + 2*a1 + 2, 1/4*a1^3 - 1/2*a1^2 - 2*a1 + 2, 1/4*a1^3 - 1/2*a1^2 - a1 + 2, -1/4*a1^3 + 3*a1 + 2)" "x^4 - 12*x^2 - 4*x + 16"
"61a1" 61 244 2 20308 "(0, -a1, -1/4*a1^3 + 2*a1 + 2, 1/4*a1^3 - 1/2*a1^2 - 2*a1 + 2, 1/4*a1^3 - 1/2*a1^2 - a1 + 2, -1/4*a1^3 + 3*a1 + 2)" "x^4 - 12*x^2 - 4*x + 16"
"14a1" 14 245 2 17 "(a3, a3 + 1, -1, 0, a3 + 1, -a3 - 3)" "x^2 + x - 4"
"35a1" 35 245 2 8 "(a5, a5 + 1, 1, 0, -2*a5 - 3, -a5 + 3)" "x^2 - 2"
"35a1" 35 245 2 17 "(a3, a3 + 1, -1, 0, a3 + 1, -a3 - 3)" "x^2 + x - 4"
"35a1" 35 245 2 8 "(a4, -a4 - 1, -1, 0, -2*a4 - 3, a4 - 3)" "x^2 - 2"
"490a1" 490 245 2 8 "(a6, a6 - 2, -1, 0, -2*a6 + 4, 2*a6)" "x^2 - 2*x - 1"
"490a1" 490 245 2 8 "(a7, -a7 + 2, 1, 0, -2*a7 + 4, -2*a7)" "x^2 - 2*x - 1"
"14a1" 14 247 2 2655049 "(a3, a3^3 - 5*a3, -a3^3 + 4*a3 + 1, -a3^3 - a3^2 + 5*a3 + 5, -a3^2 + 5, 1)" "x^5 - 9*x^3 - x^2 + 19*x + 4"
"19a1" 19 247 2 2655049 "(a3, a3^3 - 5*a3, -a3^3 + 4*a3 + 1, -a3^3 - a3^2 + 5*a3 + 5, -a3^2 + 5, 1)" "x^5 - 9*x^3 - x^2 + 19*x + 4"
"19a1" 19 247 2 6809 "(a2, -a2^3 - 2*a2^2 + 3*a2 + 4, a2^3 + 2*a2^2 - 4*a2 - 7, a2^3 + a2^2 - 5*a2 - 3, a2^2 + 2*a2 - 3, -1)" "x^4 + 3*x^3 - 2*x^2 - 9*x - 4"
"14a1" 14 248 2 316 "(0, 1/2*a4, -1/8*a4^2 + 1/2*a4 + 1, -1/8*a4^2 - 1/2*a4 + 5, 1/4*a4^2 - 1/2*a4 - 2, 1/4*a4^2 - 1/2*a4 - 4)" "x^3 - 4*x^2 - 24*x + 64"
"14a1" 14 248 2 33 "(0, 2, -1/2*a3 - 1, 1/2*a3 + 3, -2, a3 + 6)" "x^2 + 10*x - 8"
"124a1" 124 248 2 316 "(0, 1/2*a4, -1/8*a4^2 + 1/2*a4 + 1, -1/8*a4^2 - 1/2*a4 + 5, 1/4*a4^2 - 1/2*a4 - 2, 1/4*a4^2 - 1/2*a4 - 4)" "x^3 - 4*x^2 - 24*x + 64"
"124a1" 124 248 2 33 "(0, 2, -1/2*a3 - 1, 1/2*a3 + 3, -2, a3 + 6)" "x^2 + 10*x - 8"
"14a1" 14 249 2 368464 "(a4, -1, -1/2*a4^4 - 2*a4^3 + 2*a4^2 + 10*a4 + 1/2, a4^4 + 2*a4^3 - 5*a4^2 - 8*a4 + 2, -1/2*a4^4 - 2*a4^3 + a4^2 + 9*a4 + 9/2, a4^3 - 5*a4 + 2)" "x^5 + 3*x^4 - 4*x^3 - 14*x^2 - 3*x + 1"
"249a1" 249 249 2 8 "(a2, 1, -a2 - 4, -2, 2*a2 - 1, 0)" "x^2 + 2*x - 1"
"249a1" 249 249 2 368464 "(a4, -1, -1/2*a4^4 - 2*a4^3 + 2*a4^2 + 10*a4 + 1/2, a4^4 + 2*a4^3 - 5*a4^2 - 8*a4 + 2, -1/2*a4^4 - 2*a4^3 + a4^2 + 9*a4 + 9/2, a4^3 - 5*a4 + 2)" "x^5 + 3*x^4 - 4*x^3 - 14*x^2 - 3*x + 1"
"249a1" 249 249 2 6224 "(a3, 1, -a3 + 2, -a3^2 + 3, -2*a3^3 + a3^2 + 8*a3 - 2, -a3^3 + 5*a3 - 2)" "x^4 - 2*x^3 - 4*x^2 + 8*x - 1"
"753a1" 753 251 2 4.20E+032 "(a1, 69/1216*a1^16 - 53/304*a1^15 - 219/152*a1^14 + 2819/608*a1^13 + 903/64*a1^12 - 1857/38*a1^11 - 79979/1216*a1^10 + 9809/38*a1^9 + 87207/608*a1^8 - 216513/304*a1^7 - 7719/64*a1^6 + 31535/32*a1^5 + 6777/152*a1^4 - 97473/152*a1^3 - 3451/76*a1^2 + 5735/38*a1 + 434/19, -21/304*a1^16 - 37/608*a1^15 + 653/304*a1^14 + 287/152*a1^13 - 109/4*a1^12 - 14297/608*a1^11 + 27443/152*a1^10 + 91723/608*a1^9 - 200943/304*a1^8 - 161767/304*a1^7 + 20607/16*a1^6 + 32619/32*a1^5 - 21707/19*a1^4 - 146925/152*a1^3 + 5341/19*a1^2 + 5948/19*a1 + 743/19, 7/19*a1^16 - 85/304*a1^15 - 801/76*a1^14 + 1009/152*a1^13 + 973/8*a1^12 - 17893/304*a1^11 - 13748/19*a1^10 + 68557/304*a1^9 + 89407/38*a1^8 - 18169/76*a1^7 - 4087*a1^6 - 9741/16*a1^5 + 518077/152*a1^4 + 205791/152*a1^3 - 68487/76*a1^2 - 10829/19*a1 - 1119/19, -4/19*a1^16 - 11/152*a1^15 + 967/152*a1^14 + 203/76*a1^13 - 313/4*a1^12 - 5829/152*a1^11 + 76243/152*a1^10 + 42431/152*a1^9 - 269993/152*a1^8 - 42051/38*a1^7 + 13471/4*a1^6 + 18769/8*a1^5 - 451977/152*a1^4 - 89797/38*a1^3 + 29179/38*a1^2 + 14852/19*a1 + 1622/19, -277/1216*a1^16 + 47/304*a1^15 + 2007/304*a1^14 - 2231/608*a1^13 - 4951/64*a1^12 + 616/19*a1^11 + 569887/1216*a1^10 - 9297/76*a1^9 - 946677/608*a1^8 + 34695/304*a1^7 + 177391/64*a1^6 + 12773/32*a1^5 - 720659/304*a1^4 - 127435/152*a1^3 + 25057/38*a1^2 + 6630/19*a1 + 606/19)" "x^17 - 2*x^16 - 28*x^15 + 54*x^14 + 317*x^13 - 582*x^12 - 1867*x^11 + 3178*x^10 + 6186*x^9 - 9216*x^8 - 11921*x^7 + 13680*x^6 + 13752*x^5 - 9400*x^4 - 8800*x^3 + 1920*x^2 + 2240*x + 256"
"14a1" 14 253 2 8639957 "(a3, a3^4 - a3^3 - 5*a3^2 + 4*a3 + 3, -a3^3 + 4*a3 + 1, -a3^5 + 6*a3^3 + a3^2 - 6*a3 - 2, 1, -2*a3^5 + 3*a3^4 + 11*a3^3 - 15*a3^2 - 6*a3 + 5)" "x^6 - 3*x^5 - 4*x^4 + 16*x^3 - 3*x^2 - 10*x + 1"
"14a1" 14 254 2 17 "(1, 2, -a4 + 3, a4 - 3, a4 - 7, 2*a4 - 8)" "x^2 - 7*x + 8"
"14a1" 14 254 2 2949696 "(-1, 1/2*a5 + 1/2, -5/32*a5^4 - 7/8*a5^3 + 81/16*a5^2 + 125/8*a5 - 677/32, 3/32*a5^4 + 1/2*a5^3 - 53/16*a5^2 - 35/4*a5 + 575/32, 1/32*a5^4 + 1/4*a5^3 - 11/16*a5^2 - 5*a5 + 29/32, 2)" "x^5 + 9*x^4 - 14*x^3 - 214*x^2 - 195*x + 509"
"254a1" 254 254 2 2949696 "(-1, 1/2*a5 + 1/2, -5/32*a5^4 - 7/8*a5^3 + 81/16*a5^2 + 125/8*a5 - 677/32, 3/32*a5^4 + 1/2*a5^3 - 53/16*a5^2 - 35/4*a5 + 575/32, 1/32*a5^4 + 1/4*a5^3 - 11/16*a5^2 - 5*a5 + 29/32, 2)" "x^5 + 9*x^4 - 14*x^3 - 214*x^2 - 195*x + 509"
"254a1" 254 254 2 17 "(1, 2, -a4 + 3, a4 - 3, a4 - 7, 2*a4 - 8)" "x^2 - 7*x + 8"
"14a1" 14 255 2 229 "(a2, 1, 1, -a2^2 - a2 + 4, -a2^2 + a2 + 2, 2*a2^2 - 4)" "x^3 - 4*x + 1"
"14a1" 14 255 2 13768 "(a3, 1, -1, -a3^3 - a3^2 + 5*a3 + 5, a3^3 + a3^2 - 7*a3 - 3, -2*a3^2 + 8)" "x^4 - x^3 - 8*x^2 + 7*x + 9"
"14a1" 14 256 2 8 "(0, -a4, 0, 0, a4, 0)" "x^2 - 8"
"14a1" 14 257 2 3.41E+022 "(a1, 1755/144512*a1^13 - 14949/144512*a1^12 - 15147/72256*a1^11 + 77379/36128*a1^10 + 155093/144512*a1^9 - 1184607/72256*a1^8 - 21849/72256*a1^7 + 8189141/144512*a1^6 - 1591687/144512*a1^5 - 6092391/72256*a1^4 + 826663/36128*a1^3 + 5567751/144512*a1^2 - 838701/144512*a1 - 479015/144512, 6245/72256*a1^13 - 7803/72256*a1^12 - 66405/36128*a1^11 + 40205/18064*a1^10 + 1060043/72256*a1^9 - 610385/36128*a1^8 - 1969527/36128*a1^7 + 4165227/72256*a1^6 + 6795559/72256*a1^5 - 3048569/36128*a1^4 - 1165231/18064*a1^3 + 2740441/72256*a1^2 + 1042445/72256*a1 - 214841/72256, 3085/144512*a1^13 - 803/144512*a1^12 - 29405/72256*a1^11 + 2701/36128*a1^10 + 376483/144512*a1^9 - 13089/72256*a1^8 - 389111/72256*a1^7 - 168493/144512*a1^6 - 729569/144512*a1^5 + 434759/72256*a1^4 + 866533/36128*a1^3 - 1185999/144512*a1^2 - 1265867/144512*a1 + 477775/144512, 7307/36128*a1^13 - 11013/36128*a1^12 - 78211/18064*a1^11 + 57571/9032*a1^10 + 1255701/36128*a1^9 - 887991/18064*a1^8 - 2333329/18064*a1^7 + 6124677/36128*a1^6 + 7879545/36128*a1^5 - 4385815/18064*a1^4 - 1210133/9032*a1^3 + 3144647/36128*a1^2 + 698611/36128*a1 - 95719/36128, 215/36128*a1^13 - 905/36128*a1^12 - 2203/18064*a1^11 + 4481/9032*a1^10 + 29473/36128*a1^9 - 63719/18064*a1^8 - 22053/18064*a1^7 + 383777/36128*a1^6 - 252067/36128*a1^5 - 201971/18064*a1^4 + 208273/9032*a1^3 - 46029/36128*a1^2 - 424425/36128*a1 + 76437/36128)" "x^14 - 2*x^13 - 21*x^12 + 42*x^11 + 163*x^10 - 327*x^9 - 568*x^8 + 1153*x^7 + 830*x^6 - 1755*x^5 - 318*x^4 + 825*x^3 + 10*x^2 - 96*x - 1"
"14a1" 14 257 2 3.41E+022 "(a1, 1755/144512*a1^13 - 14949/144512*a1^12 - 15147/72256*a1^11 + 77379/36128*a1^10 + 155093/144512*a1^9 - 1184607/72256*a1^8 - 21849/72256*a1^7 + 8189141/144512*a1^6 - 1591687/144512*a1^5 - 6092391/72256*a1^4 + 826663/36128*a1^3 + 5567751/144512*a1^2 - 838701/144512*a1 - 479015/144512, 6245/72256*a1^13 - 7803/72256*a1^12 - 66405/36128*a1^11 + 40205/18064*a1^10 + 1060043/72256*a1^9 - 610385/36128*a1^8 - 1969527/36128*a1^7 + 4165227/72256*a1^6 + 6795559/72256*a1^5 - 3048569/36128*a1^4 - 1165231/18064*a1^3 + 2740441/72256*a1^2 + 1042445/72256*a1 - 214841/72256, 3085/144512*a1^13 - 803/144512*a1^12 - 29405/72256*a1^11 + 2701/36128*a1^10 + 376483/144512*a1^9 - 13089/72256*a1^8 - 389111/72256*a1^7 - 168493/144512*a1^6 - 729569/144512*a1^5 + 434759/72256*a1^4 + 866533/36128*a1^3 - 1185999/144512*a1^2 - 1265867/144512*a1 + 477775/144512, 7307/36128*a1^13 - 11013/36128*a1^12 - 78211/18064*a1^11 + 57571/9032*a1^10 + 1255701/36128*a1^9 - 887991/18064*a1^8 - 2333329/18064*a1^7 + 6124677/36128*a1^6 + 7879545/36128*a1^5 - 4385815/18064*a1^4 - 1210133/9032*a1^3 + 3144647/36128*a1^2 + 698611/36128*a1 - 95719/36128, 215/36128*a1^13 - 905/36128*a1^12 - 2203/18064*a1^11 + 4481/9032*a1^10 + 29473/36128*a1^9 - 63719/18064*a1^8 - 22053/18064*a1^7 + 383777/36128*a1^6 - 252067/36128*a1^5 - 201971/18064*a1^4 + 208273/9032*a1^3 - 46029/36128*a1^2 - 424425/36128*a1 + 76437/36128)" "x^14 - 2*x^13 - 21*x^12 + 42*x^11 + 163*x^10 - 327*x^9 - 568*x^8 + 1153*x^7 + 830*x^6 - 1755*x^5 - 318*x^4 + 825*x^3 + 10*x^2 - 96*x - 1"
"14a1" 14 259 2 26825 "(a5, -a5^2 + 5, a5^2 - 3, -1, -a5^3 - 2*a5^2 + 4*a5 + 9, a5^3 - 5*a5 + 2)" "x^4 - 9*x^2 + x + 17"
"14a1" 14 259 2 17 "(a2, 0, -a2 + 1, 1, a2 - 1, -a2 + 1)" "x^2 - x - 4"
"777b1" 777 259 2 8 "(0, -1/2*a1, -1/4*a1 + 3, -1, 1/2*a1 - 3, 3/4*a1 + 1)" "x^2 - 32"
"777b1" 777 259 2 22545 "(a6, -a6^3 + 4*a6, a6^2 - 3, 1, a6^3 - 6*a6 + 3, -a6^2 + a6 + 1)" "x^4 - x^3 - 6*x^2 + 5*x + 4"
"777b1" 777 259 2 17 "(a2, 0, -a2 + 1, 1, a2 - 1, -a2 + 1)" "x^2 - x - 4"
"14a1" 14 260 2 564 "(0, 1/2*a1, 1, -1/4*a1^2 + 6, 1/4*a1^2 - 1/2*a1 - 6, 1)" "x^3 - 4*x^2 - 32*x + 96"
"14a1" 14 261 2 229 "(a4, 0, 2*a4^2 - 8, a4^2 + a4 - 2, -a4^2 - a4 + 6, -a4^2 + a4 + 6)" "x^3 + 2*x^2 - 4*x - 7"
"58a1" 58 261 2 8 "(a3, 0, 1, -2*a3 + 2, a3 - 2, -2*a3 + 1)" "x^2 - 2*x - 1"
"262a1" 262 262 2 12 "(1, a4 - 1, a4 + 1, -a4 + 2, -2*a4, -a4 - 3)" "x^2 - 3"
"262a1" 262 262 2 8 "(-1, -a3 - 1, a3 + 3, -a3, -2*a3, 3*a3 + 3)" "x^2 + 2*x - 1"
"14a1" 14 265 2 7232 "(1/2*a7^2 - 9/2, -1/4*a7^2 + 1/2*a7 + 9/4, 1, -1/4*a7^3 - 1/4*a7^2 + 11/4*a7 + 15/4, -1/2*a7^2 - a7 + 13/2, 1/4*a7^3 - a7^2 - 13/4*a7 + 21/2)" "x^4 - 22*x^2 + 113"
"14a1" 14 265 2 12 "(a5, 2, -1, a5 + 1, -2*a5 + 2, -2*a5)" "x^2 - 3"
"53a1" 53 265 2 7232 "(1/2*a7^2 - 9/2, -1/4*a7^2 + 1/2*a7 + 9/4, 1, -1/4*a7^3 - 1/4*a7^2 + 11/4*a7 + 15/4, -1/2*a7^2 - a7 + 13/2, 1/4*a7^3 - a7^2 - 13/4*a7 + 21/2)" "x^4 - 22*x^2 + 113"
"53a1" 53 265 2 8 "(a1, a1, -1, -2*a1 - 4, 2, -2*a1 - 1)" "x^2 + 2*x - 1"
"14a1" 14 266 2 469 "(1, 1/2*a3 - 1/2, -1/4*a3^2 - 1/2*a3 + 27/4, -1, 1/2*a3^2 + 1/2*a3 - 9, 1/2*a3^2 + a3 - 23/2)" "x^3 - x^2 - 29*x + 61"
"14a1" 14 267 2 23377 "(a5, -1, a5^2 - 3, -a5^3 - a5^2 + 5*a5 + 5, -a5^2 + a5 + 2, -a5^3 - a5^2 + 4*a5 + 6)" "x^4 - x^3 - 7*x^2 + 6*x + 7"
"269a1" 269 269 2 1.02E+030 "(a2, 18/683*a2^15 - 991/10928*a2^14 - 9143/10928*a2^13 + 26463/10928*a2^12 + 58569/5464*a2^11 - 279911/10928*a2^10 - 773187/10928*a2^9 + 92792/683*a2^8 + 693889/2732*a2^7 - 4097871/10928*a2^6 - 5203557/10928*a2^5 + 5451909/10928*a2^4 + 2147933/5464*a2^3 - 2720323/10928*a2^2 - 840769/10928*a2 + 79841/2732, 70/683*a2^15 - 363/10928*a2^14 - 30851/10928*a2^13 + 11845/10928*a2^12 + 84629/2732*a2^11 - 148583/10928*a2^10 - 1882165/10928*a2^9 + 454851/5464*a2^8 + 1392713/2732*a2^7 - 2841689/10928*a2^6 - 8410593/10928*a2^5 + 4298529/10928*a2^4 + 695081/1366*a2^3 - 2654109/10928*a2^2 - 976295/10928*a2 + 93147/2732, 2287/10928*a2^15 - 333/1366*a2^14 - 15109/2732*a2^13 + 72055/10928*a2^12 + 624789/10928*a2^11 - 377619/5464*a2^10 - 3183057/10928*a2^9 + 478169/1366*a2^8 + 8282669/10928*a2^7 - 4746505/5464*a2^6 - 5240293/5464*a2^5 + 10399189/10928*a2^4 + 5962023/10928*a2^3 - 528717/1366*a2^2 - 999017/10928*a2 + 117181/2732, -581/2732*a2^15 + 1717/5464*a2^14 + 31231/5464*a2^13 - 46055/5464*a2^12 - 164865/2732*a2^11 + 480091/5464*a2^10 + 1727655/5464*a2^9 - 1215601/2732*a2^8 - 585729/683*a2^7 + 6088951/5464*a2^6 + 6340331/5464*a2^5 - 6839219/5464*a2^4 - 990813/1366*a2^3 + 2851401/5464*a2^2 + 722503/5464*a2 - 73529/1366, 3/2732*a2^15 + 49/683*a2^14 + 42/683*a2^13 - 5167/2732*a2^12 - 5311/2732*a2^11 + 53695/2732*a2^10 + 27423/1366*a2^9 - 277997/2732*a2^8 - 266457/2732*a2^7 + 370859/1366*a2^6 + 317525/1366*a2^5 - 469565/1366*a2^4 - 654743/2732*a2^3 + 437761/2732*a2^2 + 42097/683*a2 - 12622/683)" "x^16 - x^15 - 28*x^14 + 27*x^13 + 314*x^12 - 283*x^11 - 1803*x^10 + 1435*x^9 + 5637*x^8 - 3547*x^7 - 9470*x^6 + 3701*x^5 + 7860*x^4 - 1001*x^3 - 2363*x^2 - 43*x + 172"
"14a1" 14 272 2 12 "(0, -1/2*a4, -a4 + 2, 1/2*a4, -1/2*a4 + 4, a4)" "x^2 - 4*x - 8"
"14a1" 14 273 2 316 "(a3, -1, -a3^2 - 2*a3 + 1, -1, 2*a3^2 + 2*a3 - 6, -1)" "x^3 + 2*x^2 - 3*x - 2"
"14a1" 14 273 2 8 "(a2, -1, 0, 1, 2, -1)" "x^2 - 2*x - 1"
"14a1" 14 273 2 17428 "(a4, 1, -a4^2 + 3, 1, -a4^3 + 5*a4, 1)" "x^4 - x^3 - 7*x^2 + 5*x + 6"
"91a1" 91 273 2 17428 "(a4, 1, -a4^2 + 3, 1, -a4^3 + 5*a4, 1)" "x^4 - x^3 - 7*x^2 + 5*x + 6"
"91a1" 91 273 2 316 "(a3, -1, -a3^2 - 2*a3 + 1, -1, 2*a3^2 + 2*a3 - 6, -1)" "x^3 + 2*x^2 - 3*x - 2"
"14a1" 14 274 2 401584 "(1, a4 - 1, 1/2*a4^4 - 5/2*a4^3 - a4^2 + 23/2*a4 - 7/2, -1/2*a4^4 + 5/2*a4^3 + 1/2*a4^2 - 23/2*a4 + 7, -3/4*a4^4 + 7/2*a4^3 + 2*a4^2 - 33/2*a4 + 27/4, 1/2*a4^3 - 3/2*a4^2 - 7/2*a4 + 13/2)" "x^5 - 7*x^4 + 8*x^3 + 28*x^2 - 57*x + 19"
"274a1" 274 274 2 148 "(-1, 1/2*a3 + 1/2, -1/8*a3^2 + 1/4*a3 + 27/8, -1/4*a3^2 + 17/4, 1/4*a3^2 - 1/2*a3 - 7/4, 1/4*a3^2 - 25/4)" "x^3 - x^2 - 21*x + 13"
"274a1" 274 274 2 401584 "(1, a4 - 1, 1/2*a4^4 - 5/2*a4^3 - a4^2 + 23/2*a4 - 7/2, -1/2*a4^4 + 5/2*a4^3 + 1/2*a4^2 - 23/2*a4 + 7, -3/4*a4^4 + 7/2*a4^3 + 2*a4^2 - 33/2*a4 + 27/4, 1/2*a4^3 - 3/2*a4^2 - 7/2*a4 + 13/2)" "x^5 - 7*x^4 + 8*x^3 + 28*x^2 - 57*x + 19"
"11a1" 11 275 2 17424 "(a7, -1/2*a7^3 + 7/2*a7, 0, -a7^3 + 5*a7, -1, 0)" "x^4 - 7*x^2 + 4"
"14a1" 14 275 2 8 "(a2, -2*a2 - 2, 0, 2, 1, 2*a2 + 6)" "x^2 + 2*x - 1"
"14a1" 14 275 2 17424 "(a7, -1/2*a7^3 + 7/2*a7, 0, -a7^3 + 5*a7, -1, 0)" "x^4 - 7*x^2 + 4"
"14a1" 14 276 2 40 "(0, -1, 1/2*a0 + 1, -1/2*a0 + 1, 0, 4)" "x^2 + 4*x - 36"
"14a1" 14 276 2 8 "(0, 1, -a1 + 1, -a1 - 1, 4*a1 + 4, 4*a1 + 4)" "x^2 + 2*x - 1"
"277a1" 277 277 2 148 "(a1, 2, a1^2 - 1, -a1^2 - 2*a1 + 3, a1 + 4, 2*a1 + 1)" "x^3 + x^2 - 3*x - 1"
"139a1" 139 278 2 617176 "(1, -1/2*a4 + 1/2, 1/80*a4^4 - 1/10*a4^3 - 9/40*a4^2 + 9/5*a4 + 5/16, -1/40*a4^4 + 1/5*a4^3 + 1/5*a4^2 - 13/5*a4 + 29/8, -1/8*a4^3 + 5/8*a4^2 + 25/8*a4 - 37/8, 3/80*a4^4 - 1/20*a4^3 - 57/40*a4^2 - 17/20*a4 + 91/16)" "x^5 - 3*x^4 - 38*x^3 + 34*x^2 + 245*x - 175"
"139a1" 139 278 2 8 "(-1, -1/2*a2 - 1/2, 1/2*a2 - 1/2, 1/2*a2 - 5/2, a2 + 2, 1/2*a2 - 9/2)" "x^2 + 2*x - 7"
"14a1" 14 279 2 361944768 "(a3, 0, -1/3*a3^5 + 2*a3^3 - 1/3*a3, a3^4 - 7*a3^2 + 8, 2/3*a3^5 - 6*a3^3 + 32/3*a3, -2*a3^2 + 8)" "x^6 - 12*x^4 + 40*x^2 - 27"
"14a1" 14 279 2 229 "(a2, 0, a2^2 - a2 - 2, -a2^2 + a2 + 4, -2*a2^2 + 6, 2*a2^2 - 4)" "x^3 - 4*x - 1"
"14a1" 14 280 2 33 "(0, 1/2*a2, -1, -1, 1/2*a2 + 4, 1/2*a2 + 2)" "x^2 + 2*x - 32"
"14a1" 14 280 2 17 "(0, -1/2*a3, 1, 1, 1/2*a3, 3/2*a3 + 2)" "x^2 + 2*x - 16"
"35a1" 35 280 2 33 "(0, 1/2*a2, -1, -1, 1/2*a2 + 4, 1/2*a2 + 2)" "x^2 + 2*x - 32"
"35a1" 35 280 2 17 "(0, -1/2*a3, 1, 1, 1/2*a3, 3/2*a3 + 2)" "x^2 + 2*x - 16"
"14a1" 14 281 2 9.35E+029 "(a1, -13665/151856*a1^15 - 4453/75928*a1^14 + 360823/151856*a1^13 + 192549/151856*a1^12 - 3808793/151856*a1^11 - 393525/37964*a1^10 + 10220589/75928*a1^9 + 6015201/151856*a1^8 - 58521373/151856*a1^7 - 5496873/75928*a1^6 + 85533697/151856*a1^5 + 10360255/151856*a1^4 - 55824393/151856*a1^3 - 495365/9491*a1^2 + 6299351/75928*a1 + 2953595/151856, -5097/75928*a1^15 - 73/9491*a1^14 + 142687/75928*a1^13 - 599/75928*a1^12 - 1608837/75928*a1^11 + 87021/37964*a1^10 + 4649421/37964*a1^9 - 1750371/75928*a1^8 - 28958277/75928*a1^7 + 3301675/37964*a1^6 + 46755675/75928*a1^5 - 9261139/75928*a1^4 - 34843841/75928*a1^3 + 249793/9491*a1^2 + 1195511/9491*a1 + 1626197/75928, 599/18982*a1^15 + 3543/37964*a1^14 - 15197/18982*a1^13 - 42087/18982*a1^12 + 305459/37964*a1^11 + 777481/37964*a1^10 - 1529371/37964*a1^9 - 3507895/37964*a1^8 + 975791/9491*a1^7 + 1985247/9491*a1^6 - 2259949/18982*a1^5 - 8255973/37964*a1^4 + 1467147/37964*a1^3 + 739551/9491*a1^2 + 371647/37964*a1 + 33381/18982, -12727/151856*a1^15 + 204/9491*a1^14 + 346247/151856*a1^13 - 99493/151856*a1^12 - 3793561/151856*a1^11 + 144027/18982*a1^10 + 10706791/75928*a1^9 - 6451005/151856*a1^8 - 66041481/151856*a1^7 + 8902335/75928*a1^6 + 108659163/151856*a1^5 - 20422589/151856*a1^4 - 86268599/151856*a1^3 + 1062797/75928*a1^2 + 1623433/9491*a1 + 5250719/151856, 1845/18982*a1^15 + 1311/37964*a1^14 - 101841/37964*a1^13 - 8453/18982*a1^12 + 1130421/37964*a1^11 - 2887/9491*a1^10 - 3205285/18982*a1^9 + 515547/18982*a1^8 + 19453149/37964*a1^7 - 2577655/18982*a1^6 - 7543373/9491*a1^5 + 8568847/37964*a1^4 + 5259886/9491*a1^3 - 3199653/37964*a1^2 - 5388413/37964*a1 - 668059/37964)" "x^16 + x^15 - 27*x^14 - 24*x^13 + 294*x^12 + 229*x^11 - 1650*x^10 - 1115*x^9 + 5054*x^8 + 2991*x^7 - 8223*x^6 - 4526*x^5 + 6338*x^4 + 3707*x^3 - 1604*x^2 - 1215*x - 167"
"14a1" 14 282 2 24 "(-1, 1, -1/2*a3 - 1, 2, 1/2*a3 + 1, 1/2*a3 + 3)" "x^2 + 4*x - 20"
"14a1" 14 282 2 148 "(1, 1, -1/2*a4 - 1/2, 1/4*a4^2 + 5/2*a4 - 7/4, -1/2*a4^2 - 7/2*a4 + 5, -1/2*a4^2 - 7/2*a4 + 7)" "x^3 + 7*x^2 - 21*x + 5"
"14a1" 14 282 2 12 "(-1, -1, 1/2*a2 - 1/2, -a2 - 1, -1/2*a2 - 7/2, 3/2*a2 + 1/2)" "x^2 + 2*x - 11"
"566a1" 566 283 2 2.24E+024 "(a1, 17/94*a1^13 - 41/47*a1^12 - 85/47*a1^11 + 1211/94*a1^10 + 265/94*a1^9 - 3265/47*a1^8 + 1745/94*a1^7 + 7844/47*a1^6 - 2764/47*a1^5 - 8227/47*a1^4 + 4197/94*a1^3 + 5787/94*a1^2 - 526/47*a1 - 102/47, -19/94*a1^13 + 32/47*a1^12 + 142/47*a1^11 - 983/94*a1^10 - 1673/94*a1^9 + 2781/47*a1^8 + 5343/94*a1^7 - 7014/47*a1^6 - 5357/47*a1^5 + 7384/47*a1^4 + 11621/94*a1^3 - 4151/94*a1^2 - 1552/47*a1 + 302/47, -39/188*a1^13 + 65/47*a1^12 + 27/47*a1^11 - 3685/188*a1^10 + 3705/188*a1^9 + 4587/47*a1^8 - 27647/188*a1^7 - 18971/94*a1^6 + 34223/94*a1^5 + 15263/94*a1^4 - 63131/188*a1^3 - 6403/188*a1^2 + 4062/47*a1 - 447/47, 3/188*a1^13 + 37/94*a1^12 - 78/47*a1^11 - 1047/188*a1^10 + 4321/188*a1^9 + 2559/94*a1^8 - 22993/188*a1^7 - 2526/47*a1^6 + 27057/94*a1^5 + 3779/94*a1^4 - 53525/188*a1^3 - 1279/188*a1^2 + 7911/94*a1 - 432/47, -79/94*a1^13 + 323/94*a1^12 + 489/47*a1^11 - 4859/94*a1^10 - 1911/47*a1^9 + 26671/94*a1^8 + 4509/94*a1^7 - 64761/94*a1^6 - 28/47*a1^5 + 33230/47*a1^4 + 745/94*a1^3 - 9848/47*a1^2 + 1231/94*a1 + 239/47)" "x^14 - 6*x^13 - 4*x^12 + 83*x^11 - 77*x^10 - 394*x^9 + 617*x^8 + 724*x^7 - 1566*x^6 - 370*x^5 + 1489*x^4 - 153*x^3 - 410*x^2 + 120*x - 8"
"566a1" 566 283 2 149911754752 "(a0, 1/5*a0^8 + 2/5*a0^7 - 13/5*a0^6 - 22/5*a0^5 + 53/5*a0^4 + 13*a0^3 - 77/5*a0^2 - 53/5*a0 + 14/5, a0^7 + 4*a0^6 - 3*a0^5 - 23*a0^4 - 4*a0^3 + 34*a0^2 + 12*a0 - 5, 3/5*a0^8 + 16/5*a0^7 + 11/5*a0^6 - 66/5*a0^5 - 111/5*a0^4 + 6*a0^3 + 169/5*a0^2 + 76/5*a0 - 23/5, -3/5*a0^8 - 21/5*a0^7 - 31/5*a0^6 + 76/5*a0^5 + 216/5*a0^4 + 3*a0^3 - 309/5*a0^2 - 176/5*a0 + 28/5, 2/5*a0^8 + 14/5*a0^7 + 19/5*a0^6 - 64/5*a0^5 - 169/5*a0^4 + 2*a0^3 + 291/5*a0^2 + 164/5*a0 - 42/5)" "x^9 + 6*x^8 + 5*x^7 - 29*x^6 - 50*x^5 + 27*x^4 + 83*x^3 + 19*x^2 - 13*x + 1"
"14a1" 14 285 2 28 "(a3, -1, 1, -a3 - 1, a3 + 3, -a3 - 3)" "x^2 - 7"
"14a1" 14 285 2 12 "(a4, 1, 1, a4 - 1, -a4 + 3, -a4 - 1)" "x^2 - 3"
"14a1" 14 285 2 8 "(a5, -1, -1, a5 + 1, -a5 + 1, -a5 + 5)" "x^2 - 2*x - 1"
"14a1" 14 285 2 8 "(a6, 1, -1, -a6 + 1, -3*a6 + 5, -a6 - 1)" "x^2 - 2*x - 1"
"14a1" 14 286 2 961 "(-1, -a6 - 1, -1/2*a6^2 - 3/2*a6 + 3, -1/2*a6^2 - 3/2*a6 + 1, 1, -1)" "x^3 + 4*x^2 - 5*x - 16"
"26a1" 26 286 2 961 "(-1, -a6 - 1, -1/2*a6^2 - 3/2*a6 + 3, -1/2*a6^2 - 3/2*a6 + 1, 1, -1)" "x^3 + 4*x^2 - 5*x - 16"
"286a1" 286 286 2 961 "(-1, -a6 - 1, -1/2*a6^2 - 3/2*a6 + 3, -1/2*a6^2 - 3/2*a6 + 1, 1, -1)" "x^3 + 4*x^2 - 5*x - 16"
"14a1" 14 287 2 185257757 "(a5, -a5^3 + 5*a5, a5^5 - 9*a5^3 - a5^2 + 19*a5 + 6, -1, a5^5 + a5^4 - 11*a5^3 - 8*a5^2 + 30*a5 + 15, a5^5 + a5^4 - 10*a5^3 - 8*a5^2 + 22*a5 + 14)" "x^6 + x^5 - 10*x^4 - 10*x^3 + 23*x^2 + 24*x + 5"
"14a1" 14 289 2 2048 "(-1/4*a5^3 - 1/4*a5^2 + 27/4*a5 + 3/4, 1/8*a5^3 + 1/8*a5^2 - 23/8*a5 - 3/8, 1/4*a5^3 + 1/8*a5^2 - 13/2*a5 + 19/8, 3/8*a5^3 + 1/8*a5^2 - 81/8*a5 + 41/8, -3/8*a5^3 - 1/8*a5^2 + 81/8*a5 - 41/8, -1/4*a5^3 - 1/4*a5^2 + 27/4*a5 - 1/4)" "x^4 - 4*x^3 - 30*x^2 + 132*x - 31"
"14a1" 14 290 2 469 "(1, 1/2*a3 - 1/2, 1, -1/4*a3^2 - 1/2*a3 + 19/4, 1/2*a3^2 + a3 - 19/2, -1/2*a3^2 - 3/2*a3 + 12)" "x^3 - x^2 - 29*x + 61"
"14a1" 14 290 2 621 "(1, a4 - 1, -1, -a4^2 + 2*a4 + 5, -2*a4 + 4, 2*a4^2 - 7*a4 - 1)" "x^3 - 6*x^2 + 6*x + 7"
"291a1" 291 291 2 578530924 "(a7, 1, -1/2*a7^6 + 9/2*a7^4 - 1/2*a7^3 - 10*a7^2 + 5/2*a7 + 4, 1/2*a7^6 + 1/2*a7^5 - 5*a7^4 - 7/2*a7^3 + 25/2*a7^2 + 3*a7 - 2, a7^4 - a7^3 - 7*a7^2 + 5*a7 + 6, a7^3 - 5*a7 + 2)" "x^7 - 11*x^5 + x^4 + 34*x^3 - 5*x^2 - 24*x - 4"
"14a1" 14 292 2 13448 "(0, 1/2*a1, 1/8*a1^3 - 1/2*a1^2 - 7/2*a1 + 10, -1/16*a1^3 + 1/8*a1^2 + 7/4*a1 - 2, -3/16*a1^3 + 5/8*a1^2 + 21/4*a1 - 10, -1/2*a1 + 2)" "x^4 - 6*x^3 - 20*x^2 + 128*x - 128"
"14a1" 14 295 2 32223476 "(a2, -a2^5 + a2^4 + 6*a2^3 - 4*a2^2 - 7*a2 + 1, 1, a2^5 - 7*a2^3 - a2^2 + 10*a2 + 3, a2^4 - a2^3 - 5*a2^2 + 3*a2 + 4, -a2^4 + a2^3 + 4*a2^2 - 3*a2 + 1)" "x^6 - 2*x^5 - 6*x^4 + 11*x^3 + 8*x^2 - 11*x - 3"
"14a1" 14 295 2 1254052688 "(a3, a3^5 - 3*a3^4 - 4*a3^3 + 14*a3^2 - a3 - 3, -1, a3^6 - a3^5 - 10*a3^4 + 8*a3^3 + 25*a3^2 - 15*a3 - 4, -a3^6 + 2*a3^5 + 5*a3^4 - 8*a3^3 - 3*a3^2 - 2*a3 + 3, -2*a3^6 + 4*a3^5 + 15*a3^4 - 23*a3^3 - 30*a3^2 + 23*a3 + 7)" "x^7 - x^6 - 10*x^5 + 7*x^4 + 27*x^3 - 11*x^2 - 10*x - 1"
"14a1" 14 296 2 48389 "(0, a3, a3^3 - 7*a3 + 2, -a3^3 - a3^2 + 7*a3 + 4, a3^2 - 4, -a3^3 - a3^2 + 6*a3 + 6)" "x^4 - 2*x^3 - 8*x^2 + 15*x + 4"
"37a1" 37 296 2 229 "(0, 1/2*a2, 1/2*a2 - 1, 1/4*a2^2 - 1/2*a2 - 1, -3/4*a2^2 + 12, -3/4*a2^2 + 13)" "x^3 - 4*x^2 - 16*x + 56"
"37a1" 37 296 2 48389 "(0, a3, a3^3 - 7*a3 + 2, -a3^3 - a3^2 + 7*a3 + 4, a3^2 - 4, -a3^3 - a3^2 + 6*a3 + 6)" "x^4 - 2*x^3 - 8*x^2 + 15*x + 4"
"27a1" 27 297 2 12 "(a4, 0, -a4 - 2, a4 - 1, -1, -a4 - 3)" "x^2 + 2*x - 2"
"27a1" 27 297 2 12 "(a5, 0, -a5 + 2, -a5 - 1, 1, a5 - 3)" "x^2 - 2*x - 2"
"297b1" 297 297 2 564 "(a7, 0, -a7^2 + 3, a7 + 2, -1, -a7^2 + 5)" "x^3 - x^2 - 5*x + 3"
"297b1" 297 297 2 564 "(a6, 0, a6^2 - 3, -a6 + 2, 1, -a6^2 + 5)" "x^3 + x^2 - 5*x - 3"
"298a1" 298 298 2 617176 "(1, -a4 + 1, 2/5*a4^4 - 7/5*a4^3 - 9/5*a4^2 + 18/5*a4 + 14/5, -3/5*a4^4 + 13/5*a4^3 + 1/5*a4^2 - 22/5*a4 + 9/5, -1/5*a4^4 + 1/5*a4^3 + 12/5*a4^2 + 6/5*a4 - 22/5, 3/5*a4^4 - 18/5*a4^3 + 19/5*a4^2 + 37/5*a4 - 44/5)" "x^5 - 4*x^4 - 4*x^3 + 15*x^2 + 5*x - 11"
"298a1" 298 298 2 12 "(-1, 1/2*a2 + 1/2, -1/2*a2 + 3/2, -1/2*a2 + 3/2, 1/2*a2 + 5/2, 1/2*a2 - 5/2)" "x^2 - 2*x - 11"
"14a1" 14 299 2 17 "(a4, -a4 + 1, -a4 + 1, 2*a4, -a4 + 3, 1)" "x^2 - x - 4"
"14a1" 14 299 2 6.08E+015 "(a6, -3/16*a6^9 - 3/16*a6^8 + 47/16*a6^7 + 11/4*a6^6 - 233/16*a6^5 - 195/16*a6^4 + 397/16*a6^3 + 141/8*a6^2 - 23/2*a6 - 7, 7/32*a6^9 + 9/32*a6^8 - 117/32*a6^7 - 65/16*a6^6 + 649/32*a6^5 + 565/32*a6^4 - 1379/32*a6^3 - 199/8*a6^2 + 61/2*a6 + 11, -3/16*a6^9 + 1/16*a6^8 + 51/16*a6^7 - a6^6 - 289/16*a6^5 + 73/16*a6^4 + 617/16*a6^3 - 29/8*a6^2 - 25*a6 - 4, 7/32*a6^9 + 13/32*a6^8 - 105/32*a6^7 - 95/16*a6^6 + 481/32*a6^5 + 849/32*a6^4 - 711/32*a6^3 - 39*a6^2 + 21/2*a6 + 15, -1)" "x^10 - x^9 - 19*x^8 + 18*x^7 + 127*x^6 - 109*x^5 - 357*x^4 + 252*x^3 + 400*x^2 - 192*x - 128"
"1196b1" 1196 299 2 17 "(a4, -a4 + 1, -a4 + 1, 2*a4, -a4 + 3, 1)" "x^2 - x - 4"
"1196b1" 1196 299 2 788 "(0, -a5, -1/2*a5^2 + 7/2, -a5 + 1, -1/2*a5^2 + a5 + 9/2, 1)" "x^3 - x^2 - 9*x + 5"
"1196b1" 1196 299 2 6.08E+015 "(a6, -3/16*a6^9 - 3/16*a6^8 + 47/16*a6^7 + 11/4*a6^6 - 233/16*a6^5 - 195/16*a6^4 + 397/16*a6^3 + 141/8*a6^2 - 23/2*a6 - 7, 7/32*a6^9 + 9/32*a6^8 - 117/32*a6^7 - 65/16*a6^6 + 649/32*a6^5 + 565/32*a6^4 - 1379/32*a6^3 - 199/8*a6^2 + 61/2*a6 + 11, -3/16*a6^9 + 1/16*a6^8 + 51/16*a6^7 - a6^6 - 289/16*a6^5 + 73/16*a6^4 + 617/16*a6^3 - 29/8*a6^2 - 25*a6 - 4, 7/32*a6^9 + 13/32*a6^8 - 105/32*a6^7 - 95/16*a6^6 + 481/32*a6^5 + 849/32*a6^4 - 711/32*a6^3 - 39*a6^2 + 21/2*a6 + 15, -1)" "x^10 - x^9 - 19*x^8 + 18*x^7 + 127*x^6 - 109*x^5 - 357*x^4 + 252*x^3 + 400*x^2 - 192*x - 128"
"14a1" 14 301 2 301909 "(a2, -a2^3 + 4*a2 + 1, a2^4 - 5*a2^2 + a2 + 3, -1, a2^4 - a2^3 - 5*a2^2 + 4*a2 + 5, -a2^3 - 2*a2^2 + 4*a2 + 5)" "x^5 - x^4 - 6*x^3 + 5*x^2 + 6*x - 1"
"43a1" 43 301 2 81509 "(a1, a1^4 + a1^3 - 6*a1^2 - 5*a1 + 4, -2*a1^4 - 2*a1^3 + 11*a1^2 + 8*a1 - 8, -1, 3*a1^4 + a1^3 - 17*a1^2 - 4*a1 + 7, -2*a1^4 - a1^3 + 12*a1^2 + 2*a1 - 9)" "x^5 - 6*x^3 + x^2 + 5*x - 2"
"43a1" 43 301 2 1197549289 "(a3, -a3^5 + a3^4 + 7*a3^3 - 5*a3^2 - 8*a3 + 2, a3^6 - 2*a3^5 - 6*a3^4 + 11*a3^3 + 4*a3^2 - 6*a3, 1, -a3^6 + 3*a3^5 + 5*a3^4 - 18*a3^3 + a3^2 + 13*a3 + 1, a3^6 - a3^5 - 8*a3^4 + 6*a3^3 + 14*a3^2 - 7*a3 - 3)" "x^7 - 4*x^6 - 3*x^5 + 25*x^4 - 13*x^3 - 23*x^2 + 11*x + 2"
"302a1" 302 302 2 6224 "(1, -1/2*a5 + 1/2, -1/4*a5^2 + 1/2*a5 + 11/4, -1/8*a5^3 + 3/8*a5^2 + 17/8*a5 - 3/8, 1/4*a5^3 - 1/2*a5^2 - 15/4*a5 + 1, 1/8*a5^3 + 1/8*a5^2 - 17/8*a5 - 17/8)" "x^4 - 22*x^2 - 24*x + 29"
"302a1" 302 302 2 25808 "(-1, -1/2*a4 - 1/2, -1/12*a4^3 - 1/2*a4^2 + 19/12*a4 + 3, 1/24*a4^3 + 1/8*a4^2 - 25/24*a4 + 7/8, -1/4*a4^2 - 3/2*a4 + 15/4, -1/24*a4^3 - 1/8*a4^2 + 25/24*a4 + 25/8)" "x^4 + 4*x^3 - 34*x^2 - 28*x + 153"
"302a1" 302 302 2 8 "(-1, -a3 - 1, 0, 2*a3 - 2, 2*a3 + 2, -2*a3 - 4)" "x^2 - 2"
"14a1" 14 303 2 327416137 "(a4, -1, a4^6 + a4^5 - 8*a4^4 - 6*a4^3 + 14*a4^2 + 3*a4 - 3, -a4^6 - 2*a4^5 + 8*a4^4 + 12*a4^3 - 14*a4^2 - 5*a4 + 4, -a4^3 - a4^2 + 6*a4 + 2, -a4^6 - 3*a4^5 + 5*a4^4 + 20*a4^3 + 4*a4^2 - 18*a4 - 3)" "x^7 - 12*x^5 + 40*x^3 + x^2 - 24*x - 4"
"101a1" 101 303 2 8 "(a2, -1, -a2 - 1, -a2 - 2, 2, 2*a2 - 3)" "x^2 - 2"
"101a1" 101 303 2 12334732 "(a3, 1, a3^4 - a3^3 - 5*a3^2 + 3*a3 + 5, -a3^5 + a3^4 + 5*a3^3 - 5*a3^2 - 3*a3 + 4, -2*a3^4 + a3^3 + 11*a3^2 - 4*a3 - 8, 2*a3^5 - 2*a3^4 - 11*a3^3 + 9*a3^2 + 10*a3 - 5)" "x^6 - x^5 - 7*x^4 + 5*x^3 + 13*x^2 - 4*x - 6"
"14a1" 14 304 2 961 "(0, 1/2*a6, -1/8*a6^2 + 1/4*a6 + 4, -1/8*a6^2 - 1/4*a6 + 2, 1/8*a6^2 - 1/4*a6 - 2, 1/2*a6 + 2)" "x^3 + 2*x^2 - 40*x - 64"
"19a1" 19 304 2 961 "(0, 1/2*a6, -1/8*a6^2 + 1/4*a6 + 4, -1/8*a6^2 - 1/4*a6 + 2, 1/8*a6^2 - 1/4*a6 - 2, 1/2*a6 + 2)" "x^3 + 2*x^2 - 40*x - 64"
"38a1" 38 304 2 961 "(0, 1/2*a6, -1/8*a6^2 + 1/4*a6 + 4, -1/8*a6^2 - 1/4*a6 + 2, 1/8*a6^2 - 1/4*a6 - 2, 1/2*a6 + 2)" "x^3 + 2*x^2 - 40*x - 64"
"14a1" 14 305 2 5262019648 "(a2, -1/2*a2^5 + 4*a2^3 - 1/2*a2^2 - 11/2*a2 - 1/2, -1, a2^4 - 7*a2^2 + 2*a2 + 8, 1/2*a2^6 - 5*a2^4 + 1/2*a2^3 + 25/2*a2^2 - 3/2*a2 - 6, -a2^2 + 5)" "x^7 + 2*x^6 - 11*x^5 - 19*x^4 + 35*x^3 + 48*x^2 - 25*x - 27"
"14a1" 14 305 2 333399296 "(a3, -1/2*a3^6 + a3^5 + 4*a3^4 - 15/2*a3^3 - 15/2*a3^2 + 27/2*a3, 1, a3^4 - 2*a3^3 - 5*a3^2 + 8*a3 + 2, a3^6 - 3/2*a3^5 - 10*a3^4 + 13*a3^3 + 49/2*a3^2 - 55/2*a3 - 1/2, a3^6 - a3^5 - 10*a3^4 + 9*a3^3 + 25*a3^2 - 22*a3 - 2)" "x^7 - 2*x^6 - 9*x^5 + 17*x^4 + 19*x^3 - 36*x^2 + 5*x + 1"
"14a1" 14 305 2 2777 "(a1, -a1^3 - 2*a1^2 + 2*a1 + 1, 1, a1^3 + 2*a1^2 - 2*a1 - 5, a1^2 - a1 - 4, -a1^2 - 2*a1 + 1)" "x^4 + 3*x^3 - x^2 - 6*x - 1"
"14a1" 14 306 2 24 "(1, 0, a5 - 1, -a5 + 3, -2*a5 + 2, 2*a5)" "x^2 - 2*x - 5"
"14a1" 14 306 2 24 "(-1, 0, 1/2*a4 + 1/2, 1/2*a4 + 5/2, -a4 - 1, -a4 + 1)" "x^2 + 2*x - 23"
"307b1" 307 307 2 8232339871885 "(a5, -a5^8 + 2*a5^7 + 11*a5^6 - 18*a5^5 - 38*a5^4 + 44*a5^3 + 39*a5^2 - 24*a5 - 13, a5^7 - a5^6 - 11*a5^5 + 5*a5^4 + 36*a5^3 + 3*a5^2 - 24*a5 - 9, a5^7 - a5^6 - 12*a5^5 + 5*a5^4 + 44*a5^3 + 5*a5^2 - 36*a5 - 13, a5^8 - 2*a5^7 - 10*a5^6 + 15*a5^5 + 31*a5^4 - 26*a5^3 - 23*a5^2 + 6*a5 + 3, a5^8 - a5^7 - 12*a5^6 + 6*a5^5 + 45*a5^4 - 2*a5^3 - 45*a5^2 - 8*a5 + 6)" "x^9 - 3*x^8 - 11*x^7 + 30*x^6 + 46*x^5 - 87*x^4 - 91*x^3 + 50*x^2 + 62*x + 13"
"11a1" 11 308 2 1016 "(0, -1/2*a2, -1/4*a2^2 + 4, 1, 1, 1/4*a2^2 - 1/2*a2)" "x^3 - 2*x^2 - 24*x + 16"
"14a1" 14 308 2 1016 "(0, -1/2*a2, -1/4*a2^2 + 4, 1, 1, 1/4*a2^2 - 1/2*a2)" "x^3 - 2*x^2 - 24*x + 16"
"14a1" 14 308 2 24 "(0, -a1, 2, -1, -1, a1 + 2)" "x^2 - 6"
"14a1" 14 309 2 2187277690340 "(a3, 1, -1/2*a3^7 + 11/2*a3^5 - 18*a3^3 - 3/2*a3^2 + 17*a3 + 7/2, a3^6 - 8*a3^4 + a3^3 + 13*a3^2 - 3*a3, -a3^6 - a3^5 + 8*a3^4 + 6*a3^3 - 14*a3^2 - 5*a3 + 3, 1/2*a3^7 - 11/2*a3^5 - a3^4 + 18*a3^3 + 15/2*a3^2 - 18*a3 - 11/2)" "x^8 + x^7 - 13*x^6 - 11*x^5 + 52*x^4 + 35*x^3 - 59*x^2 - 27*x + 1"
"309a1" 309 309 2 148 "(a1, -1, a1, -a1^2 + 2*a1 + 1, -a1^2 + 5, -2*a1^2 + 2*a1 + 3)" "x^3 - x^2 - 3*x + 1"
"309a1" 309 309 2 2187277690340 "(a3, 1, -1/2*a3^7 + 11/2*a3^5 - 18*a3^3 - 3/2*a3^2 + 17*a3 + 7/2, a3^6 - 8*a3^4 + a3^3 + 13*a3^2 - 3*a3, -a3^6 - a3^5 + 8*a3^4 + 6*a3^3 - 14*a3^2 - 5*a3 + 3, 1/2*a3^7 - 11/2*a3^5 - a3^4 + 18*a3^3 + 15/2*a3^2 - 18*a3 - 11/2)" "x^8 + x^7 - 13*x^6 - 11*x^5 + 52*x^4 + 35*x^3 - 59*x^2 - 27*x + 1"
"309a1" 309 309 2 81509 "(a2, -1, a2^4 + a2^3 - 5*a2^2 - 3*a2 + 3, -2*a2^4 - 3*a2^3 + 7*a2^2 + 6*a2 - 4, 2*a2^3 + 2*a2^2 - 6*a2 - 4, 2*a2^4 + 3*a2^3 - 5*a2^2 - 6*a2 - 1)" "x^5 + 2*x^4 - 4*x^3 - 6*x^2 + 4*x + 1"
"14a1" 14 310 2 12 "(-1, -a2 - 1, -1, 2*a2, a2 - 1, -a2 - 3)" "x^2 - 3"
"14a1" 14 310 2 24 "(-1, 1/2*a3 + 1/2, 1, -2, 1/2*a3 + 5/2, 1/2*a3 + 5/2)" "x^2 + 2*x - 23"
"14a1" 14 310 2 148 "(1, a4 - 1, 1, -a4^2 + 2*a4 + 3, a4^2 - 5*a4 + 2, -a4 - 1)" "x^3 - 5*x^2 + 3*x + 5"
"14a1" 14 313 2 7.46E+019 "(a2, a2^10 - 3*a2^9 - 12*a2^8 + 35*a2^7 + 54*a2^6 - 139*a2^5 - 112*a2^4 + 200*a2^3 + 100*a2^2 - 47*a2 - 17, a2^11 - 4*a2^10 - 9*a2^9 + 47*a2^8 + 18*a2^7 - 190*a2^6 + 34*a2^5 + 290*a2^4 - 113*a2^3 - 105*a2^2 + 33*a2 + 8, -3/2*a2^11 + 11/2*a2^10 + 31/2*a2^9 - 67*a2^8 - 47*a2^7 + 283*a2^6 + 27/2*a2^5 - 919/2*a2^4 + 99*a2^3 + 387/2*a2^2 - 69/2*a2 - 33/2, a2^11 - 5*a2^10 - 7*a2^9 + 63*a2^8 - 11*a2^7 - 279*a2^6 + 172*a2^5 + 491*a2^4 - 344*a2^3 - 260*a2^2 + 95*a2 + 32, -a2^11 + 2*a2^10 + 15*a2^9 - 22*a2^8 - 92*a2^7 + 77*a2^6 + 276*a2^5 - 72*a2^4 - 355*a2^3 - 52*a2^2 + 80*a2 + 14)" "x^12 - 6*x^11 - 2*x^10 + 69*x^9 - 68*x^8 - 268*x^7 + 399*x^6 + 368*x^5 - 701*x^4 - 57*x^3 + 262*x^2 - 22*x - 19"
"314a1" 314 314 2 8278122173 "(1, a2 - 1, -1/3*a2^5 + 5/3*a2^4 + 1/3*a2^3 - 9*a2^2 + 17/3*a2 + 3, 1/15*a2^6 + 1/15*a2^5 - 7/3*a2^4 + 13/5*a2^3 + 146/15*a2^2 - 196/15*a2 + 3, -1/15*a2^6 + 4/15*a2^5 + a2^4 - 74/15*a2^3 - 16/15*a2^2 + 266/15*a2 - 8, -1/15*a2^6 + 3/5*a2^5 - a2^4 - 34/15*a2^3 + 79/15*a2^2 - 64/15*a2 + 5)" "x^7 - 6*x^6 - 2*x^5 + 59*x^4 - 47*x^3 - 143*x^2 + 157*x - 15"
"14a1" 14 315 2 8 "(a2, 0, -1, -1, -2*a2 - 4, 2*a2)" "x^2 + 2*x - 1"
"14a1" 14 315 2 17 "(a4, 0, -1, -1, a4 - 1, -a4 + 3)" "x^2 - x - 4"
"14a1" 14 315 2 8 "(a5, 0, 1, -1, -2*a5 + 4, -2*a5)" "x^2 - 2*x - 1"
"35a1" 35 315 2 17 "(a4, 0, -1, -1, a4 - 1, -a4 + 3)" "x^2 - x - 4"
"14a1" 14 318 2 41 "(-1, 1, 1/2*a5 - 1/2, 0, -1/2*a5 + 5/2, 6)" "x^2 - 4*x - 37"
"106a1" 106 318 2 17 "(1, 1, -1/2*a6, 1/2*a6 + 1, -1, a6)" "x^2 + 2*x - 16"
"106a1" 106 318 2 41 "(-1, 1, 1/2*a5 - 1/2, 0, -1/2*a5 + 5/2, 6)" "x^2 - 4*x - 37"
"318a1" 318 318 2 17 "(1, 1, -1/2*a6, 1/2*a6 + 1, -1, a6)" "x^2 + 2*x - 16"
"11a1" 11 319 2 2777 "(a2, -a2^3 - 2*a2^2 + 2*a2 + 1, a2^3 + 2*a2^2 - 2*a2 - 3, a2^3 + 2*a2^2 - 3*a2 - 2, -1, -2*a2^3 - 5*a2^2 + a2 + 4)" "x^4 + 2*x^3 - 3*x^2 - 3*x + 2"
"14a1" 14 319 2 230985139597 "(a4, -1/9*a4^7 - 1/9*a4^6 + 16/9*a4^5 + 10/9*a4^4 - 26/3*a4^3 - 25/9*a4^2 + 113/9*a4 + 14/9, 4/9*a4^7 - 2/9*a4^6 - 49/9*a4^5 + 17/9*a4^4 + 56/3*a4^3 - 26/9*a4^2 - 143/9*a4 + 13/9, -2/9*a4^7 - 1/3*a4^6 + 3*a4^5 + 34/9*a4^4 - 12*a4^3 - 98/9*a4^2 + 13*a4 + 29/9, -1, 2/3*a4^7 - 2/9*a4^6 - 73/9*a4^5 + 16/9*a4^4 + 86/3*a4^3 - 2*a4^2 - 254/9*a4 - 13/9)" "x^8 - 13*x^6 - x^5 + 50*x^4 + 7*x^3 - 54*x^2 - 5*x + 1"
"14a1" 14 320 2 8 "(0, -a6, -1, -a6, 2*a6, 2)" "x^2 - 8"
"14a1" 14 321 2 8526891664 "(a3, -1, -1/4*a3^6 + 1/4*a3^5 + 11/4*a3^4 - 5/2*a3^3 - 31/4*a3^2 + 25/4*a3 + 13/4, 1/2*a3^6 - 7*a3^4 + a3^3 + 26*a3^2 - 7*a3 - 27/2, -3/4*a3^6 + 1/4*a3^5 + 41/4*a3^4 - 4*a3^3 - 151/4*a3^2 + 67/4*a3 + 93/4, -1/2*a3^6 + 1/2*a3^5 + 7*a3^4 - 11/2*a3^3 - 55/2*a3^2 + 15*a3 + 21)" "x^7 - 14*x^5 - x^4 + 55*x^3 + 8*x^2 - 46*x - 19"
"14a1" 14 322 2 316 "(1, -1/2*a6 + 1/2, 1/2*a6 + 3/2, -1, -1/4*a6^2 + 1/2*a6 + 15/4, -1/4*a6^2 + 1/2*a6 + 23/4)" "x^3 + x^2 - 29*x - 37"
"14a1" 14 322 2 316 "(1, -1/2*a6 + 1/2, 1/2*a6 + 3/2, -1, -1/4*a6^2 + 1/2*a6 + 15/4, -1/4*a6^2 + 1/2*a6 + 23/4)" "x^3 + x^2 - 29*x - 37"
"14a1" 14 322 2 12 "(1, -1/2*a5 + 1/2, -1/2*a5 + 5/2, 1, a5 - 3, a5 - 1)" "x^2 - 6*x - 3"
"14a1" 14 323 2 17 "(a1, a1 + 1, 2, -2*a1, -2, 2)" "x^2 + x - 4"
"14a1" 14 323 2 106069 "(a3, -a3^3 - 2*a3^2 + 2*a3 + 1, a3^4 + 3*a3^3 - a3^2 - 6*a3 - 1, a3^3 + 2*a3^2 - a3 - 2, -2*a3^4 - 6*a3^3 + 2*a3^2 + 9*a3 - 1, -a3^2 - a3 - 2)" "x^5 + 3*x^4 - 2*x^3 - 7*x^2 + 2*x + 1"
"14a1" 14 323 2 9227627564 "(a5, 1/2*a5^6 - 1/2*a5^5 - 5*a5^4 + 7/2*a5^3 + 13*a5^2 - 7/2*a5 - 5, a5^6 - 10*a5^4 + 26*a5^2 + a5 - 10, -a5^3 + 5*a5, -a5^6 + 11*a5^4 + a5^3 - 33*a5^2 - 6*a5 + 18, -a5^2 - a5 + 6)" "x^7 - x^6 - 10*x^5 + 9*x^4 + 26*x^3 - 19*x^2 - 12*x + 8"
"323a1" 323 323 2 17 "(a1, a1 + 1, 2, -2*a1, -2, 2)" "x^2 + x - 4"
"323a1" 323 323 2 9227627564 "(a5, 1/2*a5^6 - 1/2*a5^5 - 5*a5^4 + 7/2*a5^3 + 13*a5^2 - 7/2*a5 - 5, a5^6 - 10*a5^4 + 26*a5^2 + a5 - 10, -a5^3 + 5*a5, -a5^6 + 11*a5^4 + a5^3 - 33*a5^2 - 6*a5 + 18, -a5^2 - a5 + 6)" "x^7 - x^6 - 10*x^5 + 9*x^4 + 26*x^3 - 19*x^2 - 12*x + 8"
"14a1" 14 325 2 8 "(a7, a7 - 1, 0, -2*a7, a7 + 1, 1)" "x^2 - 2*x - 1"
"14a1" 14 325 2 148 "(a9, a9^2 + a9 - 4, 0, -a9^2 - 2*a9 + 1, a9 - 1, 1)" "x^3 + 3*x^2 - x - 5"
"14a1" 14 325 2 148 "(a10, -a10^2 + a10 + 4, 0, a10^2 - 2*a10 - 1, -a10 - 1, -1)" "x^3 - 3*x^2 - x + 5"
"14a1" 14 325 2 12 "(a6, -a6 - 1, 0, -2, -a6 - 3, -1)" "x^2 - 3"
"650b1" 650 325 2 8 "(a5, -2*a5 - 2, 0, a5, -a5 + 4, -1)" "x^2 + 2*x - 1"
"650b1" 650 325 2 8 "(a8, -2*a8 + 2, 0, a8, a8 + 4, 1)" "x^2 - 2*x - 1"
"326a1" 326 326 2 17844257 "(1, a4 - 1, a4^5 - 7*a4^4 + 12*a4^3 + 5*a4^2 - 16*a4 - 2, -3*a4^5 + 22*a4^4 - 40*a4^3 - 19*a4^2 + 62*a4 + 19, 3*a4^5 - 23*a4^4 + 45*a4^3 + 17*a4^2 - 73*a4 - 17, a4^5 - 8*a4^4 + 15*a4^3 + 12*a4^2 - 30*a4 - 13)" "x^6 - 11*x^5 + 40*x^4 - 41*x^3 - 47*x^2 + 71*x + 23"
"14a1" 14 327 2 367901428451840 "(a3, 1, -1/6*a3^8 - 1/6*a3^7 + 8/3*a3^6 + 7/3*a3^5 - 40/3*a3^4 - 10*a3^3 + 125/6*a3^2 + 85/6*a3 - 1/3, -1/3*a3^8 + 2/3*a3^7 + 13/3*a3^6 - 22/3*a3^5 - 53/3*a3^4 + 22*a3^3 + 68/3*a3^2 - 44/3*a3 + 1/3, 3*a3^8 - 7/2*a3^7 - 79/2*a3^6 + 33*a3^5 + 163*a3^4 - 72*a3^3 - 217*a3^2 - 5/2*a3 + 23/2, -4/3*a3^8 + 5/3*a3^7 + 52/3*a3^6 - 46/3*a3^5 - 212/3*a3^4 + 30*a3^3 + 278/3*a3^2 + 31/3*a3 - 2/3)" "x^9 - 3*x^8 - 11*x^7 + 35*x^6 + 34*x^5 - 122*x^4 - 29*x^3 + 127*x^2 + 9*x - 5"
"14a1" 14 327 2 16371248 "(a2, -1, 1/2*a2^5 - 1/2*a2^4 - 9/2*a2^3 + 5/2*a2^2 + 19/2*a2 + 1/2, -a2^5 + 2*a2^4 + 5*a2^3 - 8*a2^2 - 3*a2 + 1, -1/2*a2^5 + 1/2*a2^4 + 9/2*a2^3 - 5/2*a2^2 - 19/2*a2 + 3/2, a2^5 - a2^4 - 7*a2^3 + 3*a2^2 + 11*a2 + 3)" "x^6 - 4*x^5 - 2*x^4 + 20*x^3 - 8*x^2 - 16*x + 1"
"109a1" 109 327 2 16371248 "(a2, -1, 1/2*a2^5 - 1/2*a2^4 - 9/2*a2^3 + 5/2*a2^2 + 19/2*a2 + 1/2, -a2^5 + 2*a2^4 + 5*a2^3 - 8*a2^2 - 3*a2 + 1, -1/2*a2^5 + 1/2*a2^4 + 9/2*a2^3 - 5/2*a2^2 - 19/2*a2 + 3/2, a2^5 - a2^4 - 7*a2^3 + 3*a2^2 + 11*a2 + 3)" "x^6 - 4*x^5 - 2*x^4 + 20*x^3 - 8*x^2 - 16*x + 1"
"109a1" 109 327 2 367901428451840 "(a3, 1, -1/6*a3^8 - 1/6*a3^7 + 8/3*a3^6 + 7/3*a3^5 - 40/3*a3^4 - 10*a3^3 + 125/6*a3^2 + 85/6*a3 - 1/3, -1/3*a3^8 + 2/3*a3^7 + 13/3*a3^6 - 22/3*a3^5 - 53/3*a3^4 + 22*a3^3 + 68/3*a3^2 - 44/3*a3 + 1/3, 3*a3^8 - 7/2*a3^7 - 79/2*a3^6 + 33*a3^5 + 163*a3^4 - 72*a3^3 - 217*a3^2 - 5/2*a3 + 23/2, -4/3*a3^8 + 5/3*a3^7 + 52/3*a3^6 - 46/3*a3^5 - 212/3*a3^4 + 30*a3^3 + 278/3*a3^2 + 31/3*a3 - 2/3)" "x^9 - 3*x^8 - 11*x^7 + 35*x^6 + 34*x^5 - 122*x^4 - 29*x^3 + 127*x^2 + 9*x - 5"
"109a1" 109 327 2 148 "(a1, -1, -1, -a1^2 - 2*a1 + 1, a1^2 + a1 - 3, -a1^2 - 2*a1 + 1)" "x^3 + 3*x^2 - x - 5"
"14a1" 14 328 2 788 "(0, 1/2*a4, -1/4*a4^2 + 6, 1/2*a4 + 2, -1/2*a4 - 2, -a4 - 2)" "x^3 + 4*x^2 - 24*x - 80"
"14a1" 14 328 2 12 "(0, -a2, 0, a2 + 2, a2 + 4, 0)" "x^2 + 2*x - 2"
"14a1" 14 328 2 148 "(0, -a3, -a3^2 + 4*a3 - 2, 2*a3^2 - 5*a3 - 2, -2*a3^2 + 5*a3 - 2, -2*a3 + 2)" "x^3 - 4*x^2 + 2*x + 2"
"14a1" 14 329 2 17 "(-1, -a1 - 1, -a1 - 3, 1, -a1 - 5, 2)" "x^2 + 3*x - 2"
"14a1" 14 329 2 1032140 "(a5, -a5^2 + 5, a5 - 1, -1, -a5^4 + 10*a5^2 + a5 - 20, a5^3 - 2*a5^2 - 6*a5 + 11)" "x^5 - x^4 - 11*x^3 + 12*x^2 + 28*x - 33"
"329a1" 329 329 2 148 "(a4, a4^2 - a4 - 3, 1/2*a4^2 - 2*a4 - 3/2, -1, -1/2*a4^2 - a4 + 5/2, -a4 - 1)" "x^3 - x^2 - 5*x + 1"
"329a1" 329 329 2 102441812 "(a6, -a6^3 + 6*a6 - 2, 1/2*a6^5 + 1/2*a6^4 - 9/2*a6^3 - 2*a6^2 + 10*a6 - 3/2, 1, -1/2*a6^5 - 1/2*a6^4 + 9/2*a6^3 + a6^2 - 11*a6 + 15/2, -a6^5 - a6^4 + 10*a6^3 + 4*a6^2 - 26*a6 + 8)" "x^6 - 12*x^4 + 5*x^3 + 36*x^2 - 29*x + 3"
"329a1" 329 329 2 17 "(-1, -a1 - 1, -a1 - 3, 1, -a1 - 5, 2)" "x^2 + 3*x - 2"
"331a1" 331 331 2 229 "(a1, -a1 - 1, -a1^2 + 2, a1^2 - 3, -a1 - 3, -2*a1^2 - a1 + 3)" "x^3 + 2*x^2 - 4*x - 7"
"331a1" 331 331 2 1.96E+029 "(a3, -1069/10445*a3^15 + 5881/10445*a3^14 + 17079/10445*a3^13 - 23704/2089*a3^12 - 84578/10445*a3^11 + 923333/10445*a3^10 + 43752/10445*a3^9 - 3472853/10445*a3^8 + 749508/10445*a3^7 + 6394904/10445*a3^6 - 1779062/10445*a3^5 - 5163977/10445*a3^4 + 881194/10445*a3^3 + 1507308/10445*a3^2 - 64022/10445*a3 - 14094/2089, -193/41780*a3^15 + 3141/41780*a3^14 + 8817/41780*a3^13 - 34827/20890*a3^12 - 31464/10445*a3^11 + 604449/41780*a3^10 + 402503/20890*a3^9 - 2602543/41780*a3^8 - 2497031/41780*a3^7 + 1153919/8356*a3^6 + 3522077/41780*a3^5 - 6042977/41780*a3^4 - 85673/2089*a3^3 + 2150027/41780*a3^2 + 44617/10445*a3 - 14807/10445, -5839/10445*a3^15 + 9898/10445*a3^14 + 114836/10445*a3^13 - 191702/10445*a3^12 - 859383/10445*a3^11 + 1427727/10445*a3^10 + 3015533/10445*a3^9 - 5069699/10445*a3^8 - 4853023/10445*a3^7 + 1713921/2089*a3^6 + 2824461/10445*a3^5 - 5994991/10445*a3^4 - 56504/2089*a3^3 + 1607476/10445*a3^2 - 86331/10445*a3 - 91994/10445, -3028/10445*a3^15 + 5627/10445*a3^14 + 58148/10445*a3^13 - 21605/2089*a3^12 - 419726/10445*a3^11 + 793671/10445*a3^10 + 1386534/10445*a3^9 - 2758186/10445*a3^8 - 1983964/10445*a3^7 + 4488793/10445*a3^6 + 864276/10445*a3^5 - 2892759/10445*a3^4 - 153317/10445*a3^3 + 679861/10445*a3^2 + 75441/10445*a3 - 4708/2089, 11711/20890*a3^15 - 26481/20890*a3^14 - 223473/20890*a3^13 + 258476/10445*a3^12 + 798976/10445*a3^11 - 3881061/20890*a3^10 - 2583287/10445*a3^9 + 13914713/20890*a3^8 + 6823439/20890*a3^7 - 23859907/20890*a3^6 - 249959/4178*a3^5 + 17062757/20890*a3^4 - 942881/10445*a3^3 - 884743/4178*a3^2 + 295971/10445*a3 + 126152/10445)" "x^16 - 3*x^15 - 19*x^14 + 60*x^13 + 136*x^12 - 465*x^11 - 448*x^10 + 1747*x^9 + 657*x^8 - 3241*x^7 - 375*x^6 + 2695*x^5 + 230*x^4 - 855*x^3 - 110*x^2 + 56*x + 8"
"83a1" 83 332 2 28 "(0, -1/2*a1, -1/2*a1 - 1, 1/2*a1, -1/2*a1 + 2, 1/2*a1 - 3)" "x^2 - 28"
"83a1" 83 332 2 8 "(0, a0, -a0 - 1, -a0 - 4, -a0 - 4, a0 + 1)" "x^2 + 2*x - 1"
"14a1" 14 333 2 148 "(a4, 0, a4^2 - 5, -2*a4^2 - 2*a4 + 4, -2*a4^2 - 4*a4 + 2, 2*a4^2 + 4*a4 - 4)" "x^3 + 3*x^2 - x - 5"
"14a1" 14 333 2 27648 "(a5, 0, -a5^3 + 5*a5, 2, 0, 2)" "x^4 - 6*x^2 + 3"
"14a1" 14 333 2 6224 "(a6, 0, -a6^3 + 2*a6^2 + 3*a6 - 4, -2*a6^3 + 2*a6^2 + 8*a6 - 2, -2*a6^2 + 6, 2*a6^3 - 4*a6^2 - 6*a6 + 10)" "x^4 - 6*x^2 - 2*x + 5"
"14a1" 14 334 2 469 "(-1, a4 + 1, -a4^2 - a4 + 4, -a4^2 - a4 + 4, a4^2 + 2*a4 + 1, -a4^2 - 3*a4 - 2)" "x^3 + 4*x^2 - 7"
"334a1" 334 334 2 733 "(1, 1/2*a5 - 1/2, -1, 1, -1/4*a5^2 - 1/2*a5 + 35/4, -1/4*a5^2 + 25/4)" "x^3 - 5*x^2 - 21*x + 89"
"334a1" 334 334 2 8 "(-1, -a2 - 1, 1/2*a2 + 3/2, -3, -a2 - 1, -a2 + 3)" "x^2 + 2*x - 7"
"14a1" 14 335 2 1.52E+019 "(a4, 43/5261*a4^10 - 84/5261*a4^9 - 1344/5261*a4^8 + 1488/5261*a4^7 + 13496/5261*a4^6 - 9411/5261*a4^5 - 54847/5261*a4^4 + 24218/5261*a4^3 + 84666/5261*a4^2 - 17145/5261*a4 - 28424/5261, 1, 2136/5261*a4^10 + 966/5261*a4^9 - 37154/5261*a4^8 - 11851/5261*a4^7 + 223588/5261*a4^6 + 42464/5261*a4^5 - 550354/5261*a4^4 - 52284/5261*a4^3 + 499421/5261*a4^2 + 31446/5261*a4 - 115048/5261, -1271/5261*a4^10 + 770/5261*a4^9 + 22842/5261*a4^8 - 13640/5261*a4^7 - 141250/5261*a4^6 + 78376/5261*a4^5 + 351072/5261*a4^4 - 160620/5261*a4^3 - 307876/5261*a4^2 + 86139/5261*a4 + 57128/5261, 1936/5261*a4^10 + 1112/5261*a4^9 - 34818/5261*a4^8 - 16692/5261*a4^7 + 219421/5261*a4^6 + 85502/5261*a4^5 - 576654/5261*a4^4 - 176549/5261*a4^3 + 579238/5261*a4^2 + 109722/5261*a4 - 156334/5261)" "x^11 - 18*x^9 + 2*x^8 + 114*x^7 - 24*x^6 - 306*x^5 + 86*x^4 + 332*x^3 - 109*x^2 - 114*x + 46"
"67a1" 67 335 2 454756917 "(a3, -2*a3^6 + a3^5 + 23*a3^4 - 8*a3^3 - 66*a3^2 + 12*a3 + 10, -1, 2*a3^6 + 2*a3^5 - 23*a3^4 - 26*a3^3 + 61*a3^2 + 81*a3 + 20, -2*a3^5 + 22*a3^3 + 2*a3^2 - 58*a3 - 12, 3*a3^6 - 4*a3^5 - 34*a3^4 + 39*a3^3 + 100*a3^2 - 90*a3 - 34)" "x^7 - 2*x^6 - 12*x^5 + 21*x^4 + 42*x^3 - 52*x^2 - 39*x - 6"
"67a1" 67 335 2 8 "(a1, -a1, -1, -2, a1, -2)" "x^2 - 2"
"67a1" 67 335 2 1.52E+019 "(a4, 43/5261*a4^10 - 84/5261*a4^9 - 1344/5261*a4^8 + 1488/5261*a4^7 + 13496/5261*a4^6 - 9411/5261*a4^5 - 54847/5261*a4^4 + 24218/5261*a4^3 + 84666/5261*a4^2 - 17145/5261*a4 - 28424/5261, 1, 2136/5261*a4^10 + 966/5261*a4^9 - 37154/5261*a4^8 - 11851/5261*a4^7 + 223588/5261*a4^6 + 42464/5261*a4^5 - 550354/5261*a4^4 - 52284/5261*a4^3 + 499421/5261*a4^2 + 31446/5261*a4 - 115048/5261, -1271/5261*a4^10 + 770/5261*a4^9 + 22842/5261*a4^8 - 13640/5261*a4^7 - 141250/5261*a4^6 + 78376/5261*a4^5 + 351072/5261*a4^4 - 160620/5261*a4^3 - 307876/5261*a4^2 + 86139/5261*a4 + 57128/5261, 1936/5261*a4^10 + 1112/5261*a4^9 - 34818/5261*a4^8 - 16692/5261*a4^7 + 219421/5261*a4^6 + 85502/5261*a4^5 - 576654/5261*a4^4 - 176549/5261*a4^3 + 579238/5261*a4^2 + 109722/5261*a4 - 156334/5261)" "x^11 - 18*x^9 + 2*x^8 + 114*x^7 - 24*x^6 - 306*x^5 + 86*x^4 + 332*x^3 - 109*x^2 - 114*x + 46"
"14a1" 14 337 2 2.90E+025 "(a1, -1949/1618*a1^14 + 1320/809*a1^13 + 19977/809*a1^12 - 22552/809*a1^11 - 322023/1618*a1^10 + 281379/1618*a1^9 + 1285759/1618*a1^8 - 383962/809*a1^7 - 2607215/1618*a1^6 + 826791/1618*a1^5 + 2373167/1618*a1^4 - 68300/809*a1^3 - 287702/809*a1^2 - 35427/809*a1 + 4591/1618, 971/1618*a1^14 - 954/809*a1^13 - 9264/809*a1^12 + 16549/809*a1^11 + 137225/1618*a1^10 - 212741/1618*a1^9 - 498023/1618*a1^8 + 309926/809*a1^7 + 915105/1618*a1^6 - 797805/1618*a1^5 - 761279/1618*a1^4 + 176743/809*a1^3 + 85396/809*a1^2 - 10937/809*a1 - 3535/1618, 849/1618*a1^14 - 685/809*a1^13 - 8280/809*a1^12 + 11507/809*a1^11 + 125879/1618*a1^10 - 139611/1618*a1^9 - 470549/1618*a1^8 + 180836/809*a1^7 + 890021/1618*a1^6 - 342519/1618*a1^5 - 750325/1618*a1^4 - 655/809*a1^3 + 74829/809*a1^2 + 24406/809*a1 + 7347/1618, 6103/3236*a1^14 - 4299/1618*a1^13 - 30978/809*a1^12 + 36187/809*a1^11 + 989877/3236*a1^10 - 882049/3236*a1^9 - 3925325/3236*a1^8 + 575536/809*a1^7 + 7937621/3236*a1^6 - 2195013/3236*a1^5 - 7252033/3236*a1^4 - 12097/809*a1^3 + 444324/809*a1^2 + 86502/809*a1 + 9625/3236, 797/809*a1^14 - 1207/809*a1^13 - 16066/809*a1^12 + 20440/809*a1^11 + 127515/809*a1^10 - 126146/809*a1^9 - 503042/809*a1^8 + 339199/809*a1^7 + 1014207/809*a1^6 - 356190/809*a1^5 - 927323/809*a1^4 + 52978/809*a1^3 + 229839/809*a1^2 + 28557/809*a1 + 142/809)" "x^15 - 3*x^14 - 18*x^13 + 56*x^12 + 123*x^11 - 402*x^10 - 400*x^9 + 1395*x^8 + 643*x^7 - 2406*x^6 - 496*x^5 + 1843*x^4 + 200*x^3 - 388*x^2 - 69*x + 1"
"14a1" 14 337 2 2.90E+025 "(a1, -1949/1618*a1^14 + 1320/809*a1^13 + 19977/809*a1^12 - 22552/809*a1^11 - 322023/1618*a1^10 + 281379/1618*a1^9 + 1285759/1618*a1^8 - 383962/809*a1^7 - 2607215/1618*a1^6 + 826791/1618*a1^5 + 2373167/1618*a1^4 - 68300/809*a1^3 - 287702/809*a1^2 - 35427/809*a1 + 4591/1618, 971/1618*a1^14 - 954/809*a1^13 - 9264/809*a1^12 + 16549/809*a1^11 + 137225/1618*a1^10 - 212741/1618*a1^9 - 498023/1618*a1^8 + 309926/809*a1^7 + 915105/1618*a1^6 - 797805/1618*a1^5 - 761279/1618*a1^4 + 176743/809*a1^3 + 85396/809*a1^2 - 10937/809*a1 - 3535/1618, 849/1618*a1^14 - 685/809*a1^13 - 8280/809*a1^12 + 11507/809*a1^11 + 125879/1618*a1^10 - 139611/1618*a1^9 - 470549/1618*a1^8 + 180836/809*a1^7 + 890021/1618*a1^6 - 342519/1618*a1^5 - 750325/1618*a1^4 - 655/809*a1^3 + 74829/809*a1^2 + 24406/809*a1 + 7347/1618, 6103/3236*a1^14 - 4299/1618*a1^13 - 30978/809*a1^12 + 36187/809*a1^11 + 989877/3236*a1^10 - 882049/3236*a1^9 - 3925325/3236*a1^8 + 575536/809*a1^7 + 7937621/3236*a1^6 - 2195013/3236*a1^5 - 7252033/3236*a1^4 - 12097/809*a1^3 + 444324/809*a1^2 + 86502/809*a1 + 9625/3236, 797/809*a1^14 - 1207/809*a1^13 - 16066/809*a1^12 + 20440/809*a1^11 + 127515/809*a1^10 - 126146/809*a1^9 - 503042/809*a1^8 + 339199/809*a1^7 + 1014207/809*a1^6 - 356190/809*a1^5 - 927323/809*a1^4 + 52978/809*a1^3 + 229839/809*a1^2 + 28557/809*a1 + 142/809)" "x^15 - 3*x^14 - 18*x^13 + 56*x^12 + 123*x^11 - 402*x^10 - 400*x^9 + 1395*x^8 + 643*x^7 - 2406*x^6 - 496*x^5 + 1843*x^4 + 200*x^3 - 388*x^2 - 69*x + 1"
"14a1" 14 339 2 1882484 "(a7, -1, -a7^3 - a7^2 + 7*a7 + 5, 1/2*a7^4 + 1/2*a7^3 - 3*a7^2 - 3*a7 - 2, -a7^3 + 7*a7 + 2, -1/2*a7^4 + 1/2*a7^3 + 3*a7^2 - 3*a7 - 1)" "x^5 - x^4 - 10*x^3 + 6*x^2 + 22*x + 4"
"339a1" 339 339 2 265504 "(a6, 1, -a6^4 + a6^3 + 5*a6^2 - a6 - 1, -a6^4 + 2*a6^3 + 3*a6^2 - 4*a6 + 1, 2*a6^4 - 3*a6^3 - 10*a6^2 + 5*a6 + 6, -2*a6^3 + 3*a6^2 + 8*a6 - 2)" "x^5 - 7*x^3 - 4*x^2 + 6*x + 2"
"339a1" 339 339 2 8 "(a4, -1, -a4 - 1, -1, -a4, -2*a4 - 4)" "x^2 - 2"
"339b1" 339 339 2 17 "(2, 1, 1/2*a5, -1/2*a5 + 1, -a5 + 2, -3)" "x^2 - 6*x - 8"
"339a1" 339 339 2 1882484 "(a7, -1, -a7^3 - a7^2 + 7*a7 + 5, 1/2*a7^4 + 1/2*a7^3 - 3*a7^2 - 3*a7 - 2, -a7^3 + 7*a7 + 2, -1/2*a7^4 + 1/2*a7^3 + 3*a7^2 - 3*a7 - 1)" "x^5 - x^4 - 10*x^3 + 6*x^2 + 22*x + 4"
"678a1" 678 339 2 265504 "(a6, 1, -a6^4 + a6^3 + 5*a6^2 - a6 - 1, -a6^4 + 2*a6^3 + 3*a6^2 - 4*a6 + 1, 2*a6^4 - 3*a6^3 - 10*a6^2 + 5*a6 + 6, -2*a6^3 + 3*a6^2 + 8*a6 - 2)" "x^5 - 7*x^3 - 4*x^2 + 6*x + 2"
"678a1" 678 339 2 8 "(a3, -1, -2*a3 - 1, 3, 2*a3 + 4, 5)" "x^2 + 2*x - 1"
"1017d1" 1017 339 2 1882484 "(a7, -1, -a7^3 - a7^2 + 7*a7 + 5, 1/2*a7^4 + 1/2*a7^3 - 3*a7^2 - 3*a7 - 2, -a7^3 + 7*a7 + 2, -1/2*a7^4 + 1/2*a7^3 + 3*a7^2 - 3*a7 - 1)" "x^5 - x^4 - 10*x^3 + 6*x^2 + 22*x + 4"
"1017d1" 1017 339 2 17 "(2, 1, 1/2*a5, -1/2*a5 + 1, -a5 + 2, -3)" "x^2 - 6*x - 8"
"14a1" 14 340 2 404 "(0, -1/2*a1, 1, -1/2*a1, -1/4*a1^2 + 1/2*a1 + 6, -1/4*a1^2 + a1 + 6)" "x^3 - 32*x - 32"
"14a1" 14 341 2 1.12E+019 "(a3, -7/88*a3^10 + 1/44*a3^9 + 3/2*a3^8 - 15/44*a3^7 - 867/88*a3^6 + 67/44*a3^5 + 2301/88*a3^4 - 69/44*a3^3 - 1029/44*a3^2 - 17/11*a3 + 171/88, -1/88*a3^10 - 3/44*a3^9 + 1/4*a3^8 + 45/44*a3^7 - 171/88*a3^6 - 201/44*a3^5 + 555/88*a3^4 + 229/44*a3^3 - 167/22*a3^2 + 47/22*a3 + 191/88, 13/88*a3^10 + 3/22*a3^9 - 11/4*a3^8 - 28/11*a3^7 + 1563/88*a3^6 + 721/44*a3^5 - 4091/88*a3^4 - 933/22*a3^3 + 464/11*a3^2 + 1627/44*a3 - 107/88, 1, 3/88*a3^10 + 9/44*a3^9 - 3/4*a3^8 - 157/44*a3^7 + 513/88*a3^6 + 933/44*a3^5 - 1621/88*a3^4 - 2183/44*a3^3 + 201/11*a3^2 + 827/22*a3 + 219/88)" "x^11 - x^10 - 20*x^9 + 20*x^8 + 141*x^7 - 135*x^6 - 421*x^5 + 347*x^4 + 530*x^3 - 288*x^2 - 239*x + 17"
"14a1" 14 344 2 7998268 "(0, a3, a3^3 - 7*a3 + 2, -a3^3 - a3^2 + 7*a3 + 4, -1/2*a3^4 + 1/2*a3^3 + 9/2*a3^2 - 4*a3 - 4, 1/2*a3^4 - 1/2*a3^3 - 9/2*a3^2 + 4*a3 + 6)" "x^5 + x^4 - 13*x^3 - 8*x^2 + 42*x + 8"
"43a1" 43 344 2 229 "(0, 1/2*a2, -1/4*a2^2 + a2 + 2, 2, -1/4*a2^2 - 1/2*a2 + 5, 3/4*a2^2 - 5/2*a2 - 5)" "x^3 - 6*x^2 - 4*x + 32"
"43a1" 43 344 2 12 "(0, -a1, a1 - 2, a1 - 2, -3, -3)" "x^2 - 2*x - 2"
"43a1" 43 344 2 7998268 "(0, a3, a3^3 - 7*a3 + 2, -a3^3 - a3^2 + 7*a3 + 4, -1/2*a3^4 + 1/2*a3^3 + 9/2*a3^2 - 4*a3 - 4, 1/2*a3^4 - 1/2*a3^3 - 9/2*a3^2 + 4*a3 + 6)" "x^5 + x^4 - 13*x^3 - 8*x^2 + 42*x + 8"
"14a1" 14 345 2 316 "(a9, 1, 1, a9^2 - 1, -a9^2 - a9 + 2, -a9^2 - a9 + 4)" "x^3 + x^2 - 4*x - 2"
"115a1" 115 345 2 316 "(a9, 1, 1, a9^2 - 1, -a9^2 - a9 + 2, -a9^2 - a9 + 4)" "x^3 + x^2 - 4*x - 2"
"115a1" 115 345 2 8 "(a7, -1, -1, -2*a7 - 1, -a7 - 4, -a7 + 2)" "x^2 - 2"
"115a1" 115 345 2 12 "(a6, -1, 1, -3, a6, -3*a6 - 2)" "x^2 + 2*x - 2"
"115a1" 115 345 2 24 "(a8, 1, -1, -1, -a8, -a8 + 2)" "x^2 - 6"
"346a1" 346 346 2 2777 "(-1, 1/2*a3 + 1/2, -3/8*a3^3 - 19/8*a3^2 + 35/8*a3 + 107/8, 5/8*a3^3 + 31/8*a3^2 - 69/8*a3 - 207/8, 3/8*a3^3 + 17/8*a3^2 - 47/8*a3 - 133/8, -3/8*a3^3 - 17/8*a3^2 + 43/8*a3 + 105/8)" "x^4 + 8*x^3 - 2*x^2 - 64*x - 71"
"346a1" 346 346 2 229 "(-1, -a2 - 1, -1/2*a2^2 - 3/2*a2 + 1, -1/2*a2^2 - 3/2*a2, 4, -a2^2 - 3*a2 + 2)" "x^3 + 4*x^2 - x - 8"
"347a1" 347 347 2 7.37E+037 "(a3, 2368973/4704816*a3^18 + 1050541/1176204*a3^17 - 31607009/2352408*a3^16 - 36697577/1568272*a3^15 + 339797849/2352408*a3^14 + 1165084067/4704816*a3^13 - 3751578757/4704816*a3^12 - 1061167243/784136*a3^11 + 5581476023/2352408*a3^10 + 3170767733/784136*a3^9 - 16906363175/4704816*a3^8 - 10048243833/1568272*a3^7 + 10241331209/4704816*a3^6 + 22186663277/4704816*a3^5 - 7109191/98017*a3^4 - 2643825137/2352408*a3^3 - 39417161/1176204*a3^2 + 13783403/196034*a3 - 855884/294051, -980543/1176204*a3^18 - 1785727/1176204*a3^17 + 6561631/294051*a3^16 + 15589663/392068*a3^15 - 283700599/1176204*a3^14 - 494801387/1176204*a3^13 + 790733963/588102*a3^12 + 901585957/392068*a3^11 - 1199040037/294051*a3^10 - 674954441/98017*a3^9 + 7585353371/1176204*a3^8 + 2155488049/196034*a3^7 - 1318656575/294051*a3^6 - 4877268607/588102*a3^5 + 327508265/392068*a3^4 + 1268626007/588102*a3^3 - 77888231/588102*a3^2 - 14544684/98017*a3 + 4691882/294051, 254717/392068*a3^18 + 110486/98017*a3^17 - 3410281/196034*a3^16 - 11527033/392068*a3^15 + 18437081/98017*a3^14 + 121308673/392068*a3^13 - 411259833/392068*a3^12 - 329234001/196034*a3^11 + 311975523/98017*a3^10 + 976357683/196034*a3^9 - 1974765875/392068*a3^8 - 3073671159/392068*a3^7 + 1370183785/392068*a3^6 + 2261308991/392068*a3^5 - 60115173/98017*a3^4 - 137696806/98017*a3^3 + 6349214/98017*a3^2 + 8587867/98017*a3 - 682804/98017, 522269/4704816*a3^18 + 671615/2352408*a3^17 - 6584189/2352408*a3^16 - 11725677/1568272*a3^15 + 32694409/1176204*a3^14 + 371742047/4704816*a3^13 - 639471631/4704816*a3^12 - 168802541/392068*a3^11 + 764712737/2352408*a3^10 + 1002908423/784136*a3^9 - 1284114683/4704816*a3^8 - 3135543555/1568272*a3^7 - 968651485/4704816*a3^6 + 6656149319/4704816*a3^5 + 288043943/784136*a3^4 - 676439837/2352408*a3^3 - 30767191/588102*a3^2 + 1105024/98017*a3 + 534685/294051, 642419/4704816*a3^18 + 434591/2352408*a3^17 - 8711789/2352408*a3^16 - 7419763/1568272*a3^15 + 24019073/588102*a3^14 + 229515917/4704816*a3^13 - 1107152677/4704816*a3^12 - 101525541/392068*a3^11 + 1781542433/2352408*a3^10 + 588817265/784136*a3^9 - 6350978021/4704816*a3^8 - 1824770561/1568272*a3^7 + 5887629269/4704816*a3^6 + 4077327977/4704816*a3^5 - 443678627/784136*a3^4 - 559454345/2352408*a3^3 + 42697672/294051*a3^2 + 4280313/196034*a3 - 2624813/294051)" "x^19 - 30*x^17 + x^16 + 374*x^15 - 21*x^14 - 2509*x^13 + 166*x^12 + 9794*x^11 - 586*x^10 - 22435*x^9 + 749*x^8 + 28885*x^7 + 329*x^6 - 18752*x^5 - 878*x^4 + 4788*x^3 - 64*x^2 - 352*x + 32"
"1396a1" 1396 349 2 1.05E+015 "(a0, -3/2*a0^10 - 13/2*a0^9 + 5*a0^8 + 91/2*a0^7 + 7*a0^6 - 205/2*a0^5 - 35/2*a0^4 + 181/2*a0^3 - 11/2*a0^2 - 51/2*a0 + 7, 1/2*a0^9 + 3*a0^8 + 2*a0^7 - 33/2*a0^6 - 49/2*a0^5 + 22*a0^4 + 87/2*a0^3 - 7*a0^2 - 39/2*a0, 5/2*a0^10 + 21/2*a0^9 - 11*a0^8 - 159/2*a0^7 + 2*a0^6 + 401/2*a0^5 + 27/2*a0^4 - 399/2*a0^3 + 27/2*a0^2 + 125/2*a0 - 14, -2*a0^10 - 9*a0^9 + 6*a0^8 + 64*a0^7 + 15*a0^6 - 148*a0^5 - 39*a0^4 + 135*a0^3 + 10*a0^2 - 40*a0 + 2, 1/2*a0^10 + 3*a0^9 + 3*a0^8 - 29/2*a0^7 - 65/2*a0^6 + 10*a0^5 + 133/2*a0^4 + 11*a0^3 - 93/2*a0^2 - 5*a0 + 8)" "x^11 + 5*x^10 - x^9 - 35*x^8 - 24*x^7 + 80*x^6 + 66*x^5 - 77*x^4 - 56*x^3 + 31*x^2 + 15*x - 4"
"1396a1" 1396 349 2 5.87E+031 "(a1, 715008/3463583*a1^16 - 3971843/3463583*a1^15 - 16588569/6927166*a1^14 + 158865051/6927166*a1^13 - 16523199/3463583*a1^12 - 1193366371/6927166*a1^11 + 1225665635/6927166*a1^10 + 2040760680/3463583*a1^9 - 6331983519/6927166*a1^8 - 2910324614/3463583*a1^7 + 12956859425/6927166*a1^6 + 677682467/3463583*a1^5 - 9771397341/6927166*a1^4 + 1891397865/6927166*a1^3 + 1628902717/6927166*a1^2 - 173708857/6927166*a1 - 26729619/3463583, 954477/13854332*a1^16 - 3024095/6927166*a1^15 - 4718181/6927166*a1^14 + 61112781/6927166*a1^13 - 14161207/3463583*a1^12 - 233310948/3463583*a1^11 + 551154783/6927166*a1^10 + 3290717187/13854332*a1^9 - 2682361823/6927166*a1^8 - 5084510469/13854332*a1^7 + 2729699073/3463583*a1^6 + 1087579147/6927166*a1^5 - 8563127797/13854332*a1^4 + 550576315/13854332*a1^3 + 869328429/6927166*a1^2 + 84175177/13854332*a1 - 15215169/3463583, 2905513/6927166*a1^16 - 27261015/13854332*a1^15 - 86394221/13854332*a1^14 + 554333223/13854332*a1^13 + 258068317/13854332*a1^12 - 4278239417/13854332*a1^11 + 1871113733/13854332*a1^10 + 15393324859/13854332*a1^9 - 6994671029/6927166*a1^8 - 12444132529/6927166*a1^7 + 31554547335/13854332*a1^6 + 12622965207/13854332*a1^5 - 24549976441/13854332*a1^4 + 466327327/3463583*a1^3 + 4093560537/13854332*a1^2 - 260015547/13854332*a1 - 28163165/3463583, 1694339/13854332*a1^16 - 6118499/13854332*a1^15 - 31509881/13854332*a1^14 + 126344463/13854332*a1^13 + 207627961/13854332*a1^12 - 999938265/13854332*a1^11 - 523641917/13854332*a1^10 + 941303368/3463583*a1^9 + 19400320/3463583*a1^8 - 6714025959/13854332*a1^7 + 1333064643/13854332*a1^6 + 4674545327/13854332*a1^5 - 193589442/3463583*a1^4 - 580301749/13854332*a1^3 - 446523973/13854332*a1^2 - 3306351/6927166*a1 + 17995286/3463583, -307079/6927166*a1^16 + 1424408/3463583*a1^15 - 1232279/6927166*a1^14 - 26858856/3463583*a1^13 + 53251971/3463583*a1^12 + 361410325/6927166*a1^11 - 526373679/3463583*a1^10 - 945585989/6927166*a1^9 + 4338299075/6927166*a1^8 + 95570172/3463583*a1^7 - 4039539605/3463583*a1^6 + 1360511433/3463583*a1^5 + 2862527382/3463583*a1^4 - 2663083419/6927166*a1^3 - 763538811/6927166*a1^2 + 225157233/6927166*a1 + 6941920/3463583)" "x^17 - 5*x^16 - 14*x^15 + 102*x^14 + 26*x^13 - 792*x^12 + 474*x^11 + 2887*x^10 - 3021*x^9 - 4835*x^8 + 6673*x^7 + 2880*x^6 - 5373*x^5 - 164*x^4 + 1075*x^3 + 75*x^2 - 41*x - 4"
"14a1" 14 350 2 24 "(1, -1/2*a7 + 1/2, 0, 1, a7 - 1, 1/2*a7 - 5/2)" "x^2 - 2*x - 23"
"14a1" 14 350 2 24 "(-1, 1/2*a6 + 1/2, 0, -1, a6 + 1, -1/2*a6 + 3/2)" "x^2 + 2*x - 23"
"11a1" 11 352 2 17 "(0, a6, a6 + 2, 0, -1, 2)" "x^2 + x - 4"
"11a1" 11 352 2 17 "(0, -1/2*a7, 1/2*a7 + 2, 0, 1, 2)" "x^2 + 2*x - 16"
"14a1" 14 352 2 17 "(0, a6, a6 + 2, 0, -1, 2)" "x^2 + x - 4"
"14a1" 14 352 2 17 "(0, -1/2*a7, 1/2*a7 + 2, 0, 1, 2)" "x^2 + 2*x - 16"
"14a1" 14 353 2 1.35E+025 "(a3, 1/8*a3^13 - 7/8*a3^12 - 9/8*a3^11 + 65/4*a3^10 - 55/8*a3^9 - 855/8*a3^8 + 405/4*a3^7 + 2405/8*a3^6 - 2763/8*a3^5 - 2871/8*a3^4 + 3453/8*a3^3 + 1145/8*a3^2 - 1245/8*a3 - 75/8, 7/4*a3^13 - 25/4*a3^12 - 103/4*a3^11 + 221/2*a3^10 + 415/4*a3^9 - 2793/4*a3^8 + 89/2*a3^7 + 7619/4*a3^6 - 3777/4*a3^5 - 8801/4*a3^4 + 6115/4*a3^3 + 3263/4*a3^2 - 2347/4*a3 - 121/4, 3/8*a3^13 - 13/8*a3^12 - 39/8*a3^11 + 113/4*a3^10 + 99/8*a3^9 - 1409/8*a3^8 + 253/4*a3^7 + 3815/8*a3^6 - 2637/8*a3^5 - 4409/8*a3^4 + 3663/8*a3^3 + 1667/8*a3^2 - 1371/8*a3 - 53/8, -1/2*a3^13 + 3/2*a3^12 + 15/2*a3^11 - 25*a3^10 - 71/2*a3^9 + 299/2*a3^8 + 41*a3^7 - 777/2*a3^6 + 191/2*a3^5 + 853/2*a3^4 - 443/2*a3^3 - 293/2*a3^2 + 191/2*a3 + 9/2, 5/4*a3^13 - 15/4*a3^12 - 81/4*a3^11 + 135/2*a3^10 + 417/4*a3^9 - 1735/4*a3^8 - 287/2*a3^7 + 4805/4*a3^6 - 927/4*a3^5 - 5623/4*a3^4 + 2489/4*a3^3 + 2093/4*a3^2 - 1073/4*a3 - 59/4)" "x^14 - 4*x^13 - 14*x^12 + 71*x^11 + 47*x^10 - 452*x^9 + 101*x^8 + 1251*x^7 - 740*x^6 - 1488*x^5 + 1096*x^4 + 600*x^3 - 410*x^2 - 42*x - 1"
"14a1" 14 353 2 229 "(a1, -1/2*a1^2 + 1/2*a1 + 3, -a1 + 1, -a1 + 1, 1/2*a1^2 - 1/2*a1 - 1, -1/2*a1^2 - 1/2*a1 + 6)" "x^3 - x^2 - 6*x + 4"
"14a1" 14 354 2 44 "(-1, 1, a6 + 2, 4, -2, -a6 - 2)" "x^2 + 2*x - 10"
"14a1" 14 354 2 316 "(1, 1, a7 - 2, -1/2*a7^2 + a7 + 3, 3/2*a7^2 - 7*a7 + 1, -1/2*a7^2 + 2*a7 + 1)" "x^3 - 8*x^2 + 14*x + 4"
"118c1" 118 354 2 316 "(1, 1, a7 - 2, -1/2*a7^2 + a7 + 3, 3/2*a7^2 - 7*a7 + 1, -1/2*a7^2 + 2*a7 + 1)" "x^3 - 8*x^2 + 14*x + 4"
"14a1" 14 355 2 29874922592 "(a4, a4^7 - 3*a4^6 - 6*a4^5 + 21*a4^4 + 3*a4^3 - 28*a4^2 + 2*a4 + 6, -1, -1/2*a4^7 - a4^6 + 15/2*a4^5 + 17/2*a4^4 - 61/2*a4^3 - 35/2*a4^2 + 61/2*a4 + 13, -a4^7 + 12*a4^5 + a4^4 - 42*a4^3 - 5*a4^2 + 39*a4 + 12, 3/2*a4^7 - 3*a4^6 - 21/2*a4^5 + 39/2*a4^4 + 25/2*a4^3 - 45/2*a4^2 - 5/2*a4 + 5)" "x^8 - 4*x^7 - 5*x^6 + 31*x^5 - 3*x^4 - 57*x^3 + 5*x^2 + 32*x + 8"
"14a1" 14 355 2 62581037 "(a3, -a3^3 + a3^2 + 4*a3 - 2, 1, a3^3 - 2*a3^2 - 4*a3 + 7, -a3^5 + 2*a3^4 + 7*a3^3 - 12*a3^2 - 12*a3 + 16, a3^4 - 2*a3^3 - 3*a3^2 + 7*a3 - 3)" "x^6 - 3*x^5 - 6*x^4 + 21*x^3 + 4*x^2 - 35*x + 16"
"355a1" 355 355 2 29874922592 "(a4, a4^7 - 3*a4^6 - 6*a4^5 + 21*a4^4 + 3*a4^3 - 28*a4^2 + 2*a4 + 6, -1, -1/2*a4^7 - a4^6 + 15/2*a4^5 + 17/2*a4^4 - 61/2*a4^3 - 35/2*a4^2 + 61/2*a4 + 13, -a4^7 + 12*a4^5 + a4^4 - 42*a4^3 - 5*a4^2 + 39*a4 + 12, 3/2*a4^7 - 3*a4^6 - 21/2*a4^5 + 39/2*a4^4 + 25/2*a4^3 - 45/2*a4^2 - 5/2*a4 + 5)" "x^8 - 4*x^7 - 5*x^6 + 31*x^5 - 3*x^4 - 57*x^3 + 5*x^2 + 32*x + 8"
"355a1" 355 355 2 62581037 "(a3, -a3^3 + a3^2 + 4*a3 - 2, 1, a3^3 - 2*a3^2 - 4*a3 + 7, -a3^5 + 2*a3^4 + 7*a3^3 - 12*a3^2 - 12*a3 + 16, a3^4 - 2*a3^3 - 3*a3^2 + 7*a3 - 3)" "x^6 - 3*x^5 - 6*x^4 + 21*x^3 + 4*x^2 - 35*x + 16"
"14a1" 14 356 2 49413201792 "(0, a1, -46/73*a1^6 - 6/73*a1^5 + 799/73*a1^4 + 126/73*a1^3 - 3888/73*a1^2 - 552/73*a1 + 4734/73, 28/73*a1^6 + 10/73*a1^5 - 480/73*a1^4 - 137/73*a1^3 + 2246/73*a1^2 + 409/73*a1 - 2488/73, 37/73*a1^6 + 8/73*a1^5 - 676/73*a1^4 - 168/73*a1^3 + 3505/73*a1^2 + 736/73*a1 - 4414/73, -1/73*a1^6 - 16/73*a1^5 + 38/73*a1^4 + 190/73*a1^3 - 367/73*a1^2 - 450/73*a1 + 944/73)" "x^7 - x^6 - 18*x^5 + 18*x^4 + 93*x^3 - 95*x^2 - 126*x + 134"
"89a1" 89 356 2 49413201792 "(0, a1, -46/73*a1^6 - 6/73*a1^5 + 799/73*a1^4 + 126/73*a1^3 - 3888/73*a1^2 - 552/73*a1 + 4734/73, 28/73*a1^6 + 10/73*a1^5 - 480/73*a1^4 - 137/73*a1^3 + 2246/73*a1^2 + 409/73*a1 - 2488/73, 37/73*a1^6 + 8/73*a1^5 - 676/73*a1^4 - 168/73*a1^3 + 3505/73*a1^2 + 736/73*a1 - 4414/73, -1/73*a1^6 - 16/73*a1^5 + 38/73*a1^4 + 190/73*a1^3 - 367/73*a1^2 - 450/73*a1 + 944/73)" "x^7 - x^6 - 18*x^5 + 18*x^4 + 93*x^3 - 95*x^2 - 126*x + 134"
"14a1" 14 357 2 316 "(a6, 1, -a6 + 1, 1, -a6^2 + 5, -2*a6^2 + a6 + 5)" "x^3 - x^2 - 4*x + 2"
"14a1" 14 357 2 7232 "(a7, -1, -a7^3 + a7^2 + 5*a7 - 3, 1, -a7^2 + 2*a7 + 3, a7^3 - a7^2 - 5*a7 + 3)" "x^4 - 2*x^3 - 5*x^2 + 8*x + 2"
"51a1" 51 357 2 12 "(a4, 1, -a4 - 3, -1, -5, 3*a4 + 1)" "x^2 + 2*x - 2"
"51a1" 51 357 2 7232 "(a7, -1, -a7^3 + a7^2 + 5*a7 - 3, 1, -a7^2 + 2*a7 + 3, a7^3 - a7^2 - 5*a7 + 3)" "x^4 - 2*x^3 - 5*x^2 + 8*x + 2"
"51a1" 51 357 2 316 "(a6, 1, -a6 + 1, 1, -a6^2 + 5, -2*a6^2 + a6 + 5)" "x^3 - x^2 - 4*x + 2"
"51a1" 51 357 2 8 "(a5, -1, -a5 - 1, -1, 1, -a5 - 3)" "x^2 - 2"
"359a1" 359 359 2 2777 "(a2, -a2^3 - a2^2 + 3*a2 + 1, -a2 - 2, a2^3 + a2^2 - 3*a2 - 2, a2^3 + a2^2 - 3*a2 - 1, a2^3 - 3*a2)" "x^4 + 2*x^3 - 3*x^2 - 5*x + 1"
"359a1" 359 359 2 7.50E+050 "(a3, -1602259971281292311414/235747603462801695253721*a3^23 + 2535070199865138113860/235747603462801695253721*a3^22 + 58364780315011524436024/235747603462801695253721*a3^21 - 87316532202790041766744/235747603462801695253721*a3^20 - 914060976817924221583118/235747603462801695253721*a3^19 + 1264665868878600575782134/235747603462801695253721*a3^18 + 8088919438943353164191194/235747603462801695253721*a3^17 - 10018516587867869759577110/235747603462801695253721*a3^16 - 44752146629281025763159134/235747603462801695253721*a3^15 + 47225317260747136454940921/235747603462801695253721*a3^14 + 161849990574404999407680046/235747603462801695253721*a3^13 - 134535096935674829898945662/235747603462801695253721*a3^12 - 388545929698346391432449898/235747603462801695253721*a3^11 + 222408874791265956416071774/235747603462801695253721*a3^10 + 613906725607214891686644074/235747603462801695253721*a3^9 - 183651607254654342889069074/235747603462801695253721*a3^8 - 613267952857175869139934302/235747603462801695253721*a3^7 + 28535102178044191495017546/235747603462801695253721*a3^6 + 351940465805991912886831381/235747603462801695253721*a3^5 + 51026380098522174374104544/235747603462801695253721*a3^4 - 93412339482037596682677712/235747603462801695253721*a3^3 - 21883690704068331298381066/235747603462801695253721*a3^2 + 6227221811979044886354542/235747603462801695253721*a3 + 1026953395498779305597052/235747603462801695253721, 2845845013662546464739/235747603462801695253721*a3^23 - 2447792018482001570617/235747603462801695253721*a3^22 - 101596799773264261973636/235747603462801695253721*a3^21 + 76404212950225242413899/235747603462801695253721*a3^20 + 1547314517788223949714671/235747603462801695253721*a3^19 - 958236983994120443104695/235747603462801695253721*a3^18 - 13158464440448911424043463/235747603462801695253721*a3^17 + 6045500883849570828566849/235747603462801695253721*a3^16 + 68676383557081059207753001/235747603462801695253721*a3^15 - 18699558052070012014843887/235747603462801695253721*a3^14 - 227537807635293992915686339/235747603462801695253721*a3^13 + 14267359498739287105320709/235747603462801695253721*a3^12 + 477170573176822561669772612/235747603462801695253721*a3^11 + 73651738052628121096722953/235747603462801695253721*a3^10 - 607737947281787201499665289/235747603462801695253721*a3^9 - 210728066092986939219944726/235747603462801695253721*a3^8 + 422157970536179111909121713/235747603462801695253721*a3^7 + 191589646943914323560838765/235747603462801695253721*a3^6 - 123363657169095027209115171/235747603462801695253721*a3^5 - 38101634714152134188816408/235747603462801695253721*a3^4 + 10517562601958539988713856/235747603462801695253721*a3^3 - 10255503074075539732514609/235747603462801695253721*a3^2 - 1342706028625085600442226/235747603462801695253721*a3 + 969740879854942598224584/235747603462801695253721, -3140151164664093291007/235747603462801695253721*a3^23 + 458407022175633631052/235747603462801695253721*a3^22 + 119861803682872242733257/235747603462801695253721*a3^21 - 13204876435189221365070/235747603462801695253721*a3^20 - 1971607964340997034402034/235747603462801695253721*a3^19 + 133775356305913808218979/235747603462801695253721*a3^18 + 18310581440368569048285533/235747603462801695253721*a3^17 - 352867661979863664045897/235747603462801695253721*a3^16 - 105662090233093338945990217/235747603462801695253721*a3^15 - 3726267360428420153376431/235747603462801695253721*a3^14 + 392794100154810843180147811/235747603462801695253721*a3^13 + 37512623181767439350164961/235747603462801695253721*a3^12 - 943599597386818461978694935/235747603462801695253721*a3^11 - 152026494955699155837468431/235747603462801695253721*a3^10 + 1430721336441804888988900597/235747603462801695253721*a3^9 + 330558417519231746815222453/235747603462801695253721*a3^8 - 1298840875371663911768671473/235747603462801695253721*a3^7 - 391342160018673505469509525/235747603462801695253721*a3^6 + 644841998130504491198834599/235747603462801695253721*a3^5 + 231650733011752018906928272/235747603462801695253721*a3^4 - 151714295960640239955706559/235747603462801695253721*a3^3 - 57209110453375976111844952/235747603462801695253721*a3^2 + 11761368072815550434303905/235747603462801695253721*a3 + 3282214419272575620760487/235747603462801695253721, -4975284508894749084208/235747603462801695253721*a3^23 - 1885966507969865227747/235747603462801695253721*a3^22 + 202871705177743937677709/235747603462801695253721*a3^21 + 57657250969201435183432/235747603462801695253721*a3^20 - 3572612192677847926059913/235747603462801695253721*a3^19 - 713445715874446701682734/235747603462801695253721*a3^18 + 35574947430300041328981156/235747603462801695253721*a3^17 + 4544314139729983484447578/235747603462801695253721*a3^16 - 220318208812274214800729346/235747603462801695253721*a3^15 - 15580417016815457449090158/235747603462801695253721*a3^14 + 879668055335024691681716618/235747603462801695253721*a3^13 + 27557935985880445312401597/235747603462801695253721*a3^12 - 2272637286075763627424768130/235747603462801695253721*a3^11 - 28381090590019355374659958/235747603462801695253721*a3^10 + 3717217345612673115843299966/235747603462801695253721*a3^9 + 61193565040696548170447242/235747603462801695253721*a3^8 - 3661787458291825325700175535/235747603462801695253721*a3^7 - 154254833078233761269112182/235747603462801695253721*a3^6 + 1977285409091483549444642116/235747603462801695253721*a3^5 + 159607236095480214549743126/235747603462801695253721*a3^4 - 481041123485813689228832701/235747603462801695253721*a3^3 - 56130468072617860810445281/235747603462801695253721*a3^2 + 29473816041248689534163004/235747603462801695253721*a3 + 3991312265997797979503931/235747603462801695253721, 969380424784224618619/235747603462801695253721*a3^23 + 2508674814477409255825/235747603462801695253721*a3^22 - 47373563549591843668231/235747603462801695253721*a3^21 - 76650330316937868506021/235747603462801695253721*a3^20 + 958664243632398123401039/235747603462801695253721*a3^19 + 934340141759355758848092/235747603462801695253721*a3^18 - 10598593469475775120973006/235747603462801695253721*a3^17 - 5634251907961684292013102/235747603462801695253721*a3^16 + 70648362996302155076127230/235747603462801695253721*a3^15 + 15726708240508670322130004/235747603462801695253721*a3^14 - 294320866160295633335209924/235747603462801695253721*a3^13 - 3101983071604815217852166/235747603462801695253721*a3^12 + 766121724422905387651600722/235747603462801695253721*a3^11 - 96123344447668685089673852/235747603462801695253721*a3^10 - 1208216440193682290415559912/235747603462801695253721*a3^9 + 237982646258405001874239702/235747603462801695253721*a3^8 + 1080645208142704411800453810/235747603462801695253721*a3^7 - 229895213862721708873530460/235747603462801695253721*a3^6 - 486411162012764409954826960/235747603462801695253721*a3^5 + 92450869102871749010500757/235747603462801695253721*a3^4 + 86734285593739853642787003/235747603462801695253721*a3^3 - 15179139862623490132348579/235747603462801695253721*a3^2 - 1912808202391911782131331/235747603462801695253721*a3 + 1349430867283171232987307/235747603462801695253721)" "x^24 - x^23 - 39*x^22 + 38*x^21 + 658*x^20 - 619*x^19 - 6300*x^18 + 5654*x^17 + 37740*x^16 - 31780*x^15 - 147096*x^14 + 113400*x^13 + 376092*x^12 - 255412*x^11 - 621508*x^10 + 349080*x^9 + 638532*x^8 - 266744*x^7 - 378124*x^6 + 98609*x^5 + 110695*x^4 - 14509*x^3 - 11972*x^2 + 780*x + 381"
"362a1" 362 362 2 8 "(1, -a3 + 1, a3 + 2, 2*a3, -a3 - 5, -a3 + 4)" "x^2 - 2"
"362a1" 362 362 2 864824 "(-1, 1/2*a4 + 1/2, 1/16*a4^4 - 1/8*a4^3 - 3/2*a4^2 + 13/8*a4 + 95/16, -1/8*a4^3 + 1/8*a4^2 + 17/8*a4 - 1/8, 1/8*a4^3 - 3/8*a4^2 - 17/8*a4 + 43/8, -1/16*a4^4 + 1/8*a4^3 + 3/2*a4^2 - 13/8*a4 - 63/16)" "x^5 - 3*x^4 - 30*x^3 + 74*x^2 + 205*x - 439"
"121a1" 121 363 2 12 "(a5, -1, -3, -2*a5, 0, -a5)" "x^2 - 3"
"121a1" 121 363 2 17424 "(a9, 1, -a9^2 + 4, -1/2*a9^3 + 7/2*a9, 0, a9^3 - 8*a9)" "x^4 - 7*x^2 + 4"
"363b1" 363 363 2 17424 "(a9, 1, -a9^2 + 4, -1/2*a9^3 + 7/2*a9, 0, a9^3 - 8*a9)" "x^4 - 7*x^2 + 4"
"91a1" 91 364 2 12 "(0, -1/2*a3, 1/2*a3 + 1, 1, 1/2*a3 + 4, 1)" "x^2 + 4*x - 8"
"91a1" 91 364 2 24 "(0, -1/2*a2, -1/2*a2 - 1, -1, 1/2*a2 + 4, -1)" "x^2 - 24"
"14a1" 14 365 2 12 "(a0, 2, 1, -a0 + 3, -a0 - 3, 2*a0)" "x^2 - 3"
"14a1" 14 365 2 1050324147376 "(a4, -1/2*a4^5 + 1/2*a4^4 + 9/2*a4^3 - 3*a4^2 - 8*a4 + 5/2, -1, 1/2*a4^7 - 1/2*a4^6 - 5*a4^5 + 7/2*a4^4 + 23/2*a4^3 - 9/2*a4^2 - 3*a4 + 7/2, -1/4*a4^7 + 5/4*a4^6 + 3/2*a4^5 - 45/4*a4^4 - 1/4*a4^3 + 87/4*a4^2 + a4 - 15/4, 1/2*a4^6 - 1/2*a4^5 - 9/2*a4^4 + 3*a4^3 + 8*a4^2 - 5/2*a4 + 2)" "x^8 - 2*x^7 - 11*x^6 + 19*x^5 + 36*x^4 - 46*x^3 - 41*x^2 + 25*x + 3"
"14a1" 14 365 2 117688 "(a2, -a2^2 + 1, -1, a2^3 - 4*a2 - 1, -2*a2^4 - a2^3 + 9*a2^2 + 2*a2 - 4, -a2^3 + 3*a2 - 2)" "x^5 + x^4 - 5*x^3 - 4*x^2 + 4*x + 1"
"61a1" 61 366 2 17 "(-1, -1, a7 - 1, 1/2*a7 - 2, -1/2*a7 + 2, -1/2*a7 + 4)" "x^2 - 2*x - 16"
"366b1" 366 366 2 17 "(-1, -1, a7 - 1, 1/2*a7 - 2, -1/2*a7 + 2, -1/2*a7 + 4)" "x^2 - 2*x - 16"
"14a1" 14 368 2 17 "(0, -a8, 2, 0, 2*a8, -a8 + 2)" "x^2 + x - 4"
"92a1" 92 368 2 17 "(0, -a8, 2, 0, 2*a8, -a8 + 2)" "x^2 + x - 4"
"14a1" 14 369 2 148 "(a5, 0, -a5 + 1, 1/2*a5^2 - a5 + 1/2, -3/2*a5^2 + a5 + 9/2, -a5^2 + 3)" "x^3 - x^2 - 5*x + 1"
"14a1" 14 369 2 316 "(a4, 0, a4^2 + a4 - 4, -a4^2 + a4 + 4, -a4 + 1, a4^2 + a4)" "x^3 + x^2 - 4*x - 2"
"123a1" 123 369 2 148 "(a6, 0, -a6 + 2, -a6^2 + a6 + 2, a6 + 3, -a6^2 + 3*a6)" "x^3 - 2*x^2 - 2*x + 2"
"123a1" 123 369 2 148 "(a3, 0, -a3 - 2, -a3^2 - a3 + 2, a3 - 3, -a3^2 - 3*a3)" "x^3 + 2*x^2 - 2*x - 2"
"123a1" 123 369 2 8 "(a2, 0, -a2 - 2, -a2 - 2, -a2 - 1, 3*a2 + 2)" "x^2 - 2"
"123a1" 123 369 2 316 "(a4, 0, a4^2 + a4 - 4, -a4^2 + a4 + 4, -a4 + 1, a4^2 + a4)" "x^3 + x^2 - 4*x - 2"
"14a1" 14 370 2 12 "(-1, -a4 - 1, 1, a4 - 3, 2*a4 - 2, 2*a4 - 2)" "x^2 - 3"
"14a1" 14 370 2 892 "(1, 1/2*a6 - 1/2, -1, -1/8*a6^2 + 1/4*a6 + 23/8, -1/8*a6^2 - 1/4*a6 + 59/8, -a6 + 1)" "x^3 - 3*x^2 - 37*x + 71"
"14a1" 14 370 2 33 "(1, 2, 1, -1/2*a5 + 1/2, 1/2*a5 - 5/2, a5 - 3)" "x^2 - 8*x - 17"
"370b1" 370 370 2 892 "(1, 1/2*a6 - 1/2, -1, -1/8*a6^2 + 1/4*a6 + 23/8, -1/8*a6^2 - 1/4*a6 + 59/8, -a6 + 1)" "x^3 - 3*x^2 - 37*x + 71"
"370b1" 370 370 2 33 "(1, 2, 1, -1/2*a5 + 1/2, 1/2*a5 - 5/2, a5 - 3)" "x^2 - 8*x - 17"
"14a1" 14 371 2 3.08E+018 "(a5, 3/4*a5^10 + 3/8*a5^9 - 121/8*a5^8 - 53/8*a5^7 + 215/2*a5^6 + 313/8*a5^5 - 2513/8*a5^4 - 715/8*a5^3 + 315*a5^2 + 127/2*a5 - 38, -1/2*a5^10 - 1/4*a5^9 + 10*a5^8 + 9/2*a5^7 - 281/4*a5^6 - 109/4*a5^5 + 403/2*a5^4 + 129/2*a5^3 - 779/4*a5^2 - 97/2*a5 + 21, 1, 3*a5^10 + 3/2*a5^9 - 243/4*a5^8 - 107/4*a5^7 + 1733/4*a5^6 + 160*a5^5 - 5065/4*a5^4 - 1487/4*a5^3 + 5027/4*a5^2 + 271*a5 - 144, -13/8*a5^10 - 7/8*a5^9 + 263/8*a5^8 + 31/2*a5^7 - 1875/8*a5^6 - 735/8*a5^5 + 5485/8*a5^4 + 841/4*a5^3 - 1365/2*a5^2 - 148*a5 + 80)" "x^11 + x^10 - 20*x^9 - 19*x^8 + 140*x^7 + 125*x^6 - 396*x^5 - 333*x^4 + 359*x^3 + 298*x^2 - 4*x - 24"
"53a1" 53 371 2 229 "(a3, -a3, -a3^2 + 1, -1, a3^2 - a3 - 4, a3 - 4)" "x^3 - 4*x - 1"
"371b1" 371 371 2 3.08E+018 "(a5, 3/4*a5^10 + 3/8*a5^9 - 121/8*a5^8 - 53/8*a5^7 + 215/2*a5^6 + 313/8*a5^5 - 2513/8*a5^4 - 715/8*a5^3 + 315*a5^2 + 127/2*a5 - 38, -1/2*a5^10 - 1/4*a5^9 + 10*a5^8 + 9/2*a5^7 - 281/4*a5^6 - 109/4*a5^5 + 403/2*a5^4 + 129/2*a5^3 - 779/4*a5^2 - 97/2*a5 + 21, 1, 3*a5^10 + 3/2*a5^9 - 243/4*a5^8 - 107/4*a5^7 + 1733/4*a5^6 + 160*a5^5 - 5065/4*a5^4 - 1487/4*a5^3 + 5027/4*a5^2 + 271*a5 - 144, -13/8*a5^10 - 7/8*a5^9 + 263/8*a5^8 + 31/2*a5^7 - 1875/8*a5^6 - 735/8*a5^5 + 5485/8*a5^4 + 841/4*a5^3 - 1365/2*a5^2 - 148*a5 + 80)" "x^11 + x^10 - 20*x^9 - 19*x^8 + 140*x^7 + 125*x^6 - 396*x^5 - 333*x^4 + 359*x^3 + 298*x^2 - 4*x - 24"
"371b1" 371 371 2 7238265542032 "(a4, 1/8*a4^8 - 15/8*a4^6 - 3/8*a4^5 + 35/4*a4^4 + 23/8*a4^3 - 13*a4^2 - 7/2*a4 + 4, 1/8*a4^8 - 11/8*a4^6 + 5/8*a4^5 + 17/4*a4^4 - 37/8*a4^3 - 3*a4^2 + 7*a4, -1, -1/4*a4^7 + 11/4*a4^5 - 1/4*a4^4 - 17/2*a4^3 + 1/4*a4^2 + 6*a4 + 2, a4^4 + a4^3 - 7*a4^2 - 5*a4 + 8)" "x^9 - 15*x^7 + x^6 + 74*x^5 - 9*x^4 - 132*x^3 + 24*x^2 + 64*x - 16"
"14a1" 14 372 2 17 "(0, -1, 1/2*a4 - 1, 1/2*a4 - 3, -a4 + 6, -a4 + 8)" "x^2 - 10*x + 8"
"124a1" 124 372 2 17 "(0, -1, 1/2*a4 - 1, 1/2*a4 - 3, -a4 + 6, -a4 + 8)" "x^2 - 10*x + 8"
"373a1" 373 373 2 1.44E+031 "(a2, 10962/1330649*a2^16 - 265741/2661298*a2^15 + 489372/1330649*a2^14 + 1557461/2661298*a2^13 - 18088447/2661298*a2^12 + 9973416/1330649*a2^11 + 48773751/1330649*a2^10 - 202067069/2661298*a2^9 - 192189119/2661298*a2^8 + 319203756/1330649*a2^7 + 73893629/2661298*a2^6 - 846614357/2661298*a2^5 + 115213101/2661298*a2^4 + 459872889/2661298*a2^3 - 28306907/1330649*a2^2 - 81401149/2661298*a2 - 814958/1330649, -407799/2661298*a2^16 + 748889/1330649*a2^15 + 7168899/2661298*a2^14 - 29547049/2661298*a2^13 - 22986124/1330649*a2^12 + 113930640/1330649*a2^11 + 128101461/2661298*a2^10 - 879317883/2661298*a2^9 - 61910858/1330649*a2^8 + 1795836473/2661298*a2^7 - 63296739/2661298*a2^6 - 1875483221/2661298*a2^5 + 130028319/2661298*a2^4 + 442512119/1330649*a2^3 - 10590271/2661298*a2^2 - 71735682/1330649*a2 - 5909922/1330649, -132782/1330649*a2^16 + 1533075/2661298*a2^15 + 1209121/1330649*a2^14 - 26739099/2661298*a2^13 + 7723523/2661298*a2^12 + 88186848/1330649*a2^11 - 74026625/1330649*a2^10 - 567955415/2661298*a2^9 + 576995227/2661298*a2^8 + 485531762/1330649*a2^7 - 939553863/2661298*a2^6 - 883437933/2661298*a2^5 + 632351857/2661298*a2^4 + 372074013/2661298*a2^3 - 56650959/1330649*a2^2 - 44855475/2661298*a2 - 4821929/1330649, 149313/1330649*a2^16 - 3344217/5322596*a2^15 - 2625427/2661298*a2^14 + 56732533/5322596*a2^13 - 19121565/5322596*a2^12 - 89565281/1330649*a2^11 + 82372259/1330649*a2^10 + 1078781059/5322596*a2^9 - 1219660959/5322596*a2^8 - 839607101/2661298*a2^7 + 1854259197/5322596*a2^6 + 1379889043/5322596*a2^5 - 1125253243/5322596*a2^4 - 562428377/5322596*a2^3 + 80147103/2661298*a2^2 + 102871355/5322596*a2 + 15162753/2661298, 1070361/5322596*a2^16 - 1496987/1330649*a2^15 - 7913485/5322596*a2^14 + 95474451/5322596*a2^13 - 27696311/2661298*a2^12 - 134826293/1330649*a2^11 + 685775097/5322596*a2^10 + 1306878505/5322596*a2^9 - 581664567/1330649*a2^8 - 1263561145/5322596*a2^7 + 3337708399/5322596*a2^6 + 201908005/5322596*a2^5 - 2028216973/5322596*a2^4 + 62692706/1330649*a2^3 + 375128761/5322596*a2^2 - 19459385/1330649*a2 + 5626240/1330649)" "x^17 - 4*x^16 - 18*x^15 + 85*x^14 + 111*x^13 - 713*x^12 - 211*x^11 + 3017*x^10 - 469*x^9 - 6832*x^8 + 2513*x^7 + 8146*x^6 - 3634*x^5 - 4743*x^4 + 2092*x^3 + 1142*x^2 - 417*x - 62"
"14a1" 14 374 2 55585 "(-1, -a3 - 1, a3^2 + 2*a3 - 3, a3^3 + a3^2 - 8*a3 + 2, 1, -2*a3^3 - 4*a3^2 + 11*a3 + 3)" "x^4 + 5*x^3 - x^2 - 22*x - 1"
"14a1" 14 374 2 17417 "(1, 1/2*a4 - 1/2, 1/4*a4^3 - a4^2 - 35/4*a4 + 47/2, -1/8*a4^3 + 3/8*a4^2 + 33/8*a4 - 67/8, 1, -3/4*a4^3 + 11/4*a4^2 + 109/4*a4 - 269/4)" "x^4 - 6*x^3 - 28*x^2 + 174*x - 205"
"14a1" 14 376 2 13448 "(0, -1/2*a3, -1/16*a3^3 - 3/8*a3^2 + 5/4*a3 + 6, -1/8*a3^3 - 1/2*a3^2 + 7/2*a3 + 10, 3/16*a3^3 + 5/8*a3^2 - 19/4*a3 - 8, 3/16*a3^3 + 5/8*a3^2 - 23/4*a3 - 14)" "x^4 + 6*x^3 - 20*x^2 - 128*x - 128"
"14a1" 14 377 2 85823052923200 "(a5, 3/4*a5^8 - 37/4*a5^6 + 133/4*a5^4 - 1/4*a5^3 - 31*a5^2 - 17/4*a5 + 7/4, 1/2*a5^8 - 13/2*a5^6 + 51/2*a5^4 - 1/2*a5^3 - 29*a5^2 - 1/2*a5 + 9/2, -1/4*a5^8 - 1/2*a5^7 + 13/4*a5^6 + 6*a5^5 - 51/4*a5^4 - 83/4*a5^3 + 15*a5^2 + 75/4*a5 + 5/4, -1/2*a5^8 + 13/2*a5^6 - a5^5 - 49/2*a5^4 + 15/2*a5^3 + 23*a5^2 - 11/2*a5 - 3/2, 1)" "x^9 - x^8 - 13*x^7 + 13*x^6 + 51*x^5 - 50*x^4 - 59*x^3 + 45*x^2 + 20*x - 3"
"14a1" 14 377 2 1326502796 "(a4, -a4^6 + 2*a4^5 + 8*a4^4 - 15*a4^3 - 7*a4^2 + 8*a4 + 1, -a4^6 + 2*a4^5 + 8*a4^4 - 15*a4^3 - 7*a4^2 + 9*a4, 4*a4^6 - 3*a4^5 - 40*a4^4 + 16*a4^3 + 83*a4^2 + 28*a4 - 6, -5*a4^6 + 5*a4^5 + 49*a4^4 - 32*a4^3 - 97*a4^2 - 13*a4 + 11, -1)" "x^7 - 3*x^6 - 8*x^5 + 26*x^4 + 9*x^3 - 36*x^2 - 14*x + 3"
"14a1" 14 377 2 12 "(a1, a1 + 1, -2*a1, a1 + 3, 2, -1)" "x^2 - 3"
"758a1" 758 379 2 1.25E+019 "(a0, -2*a0^12 - 5*a0^11 + 23*a0^10 + 54*a0^9 - 91*a0^8 - 187*a0^7 + 164*a0^6 + 262*a0^5 - 121*a0^4 - 154*a0^3 + 20*a0^2 + 33*a0 + 2, a0^12 + a0^11 - 12*a0^10 - a0^9 + 52*a0^8 - 62*a0^7 - 105*a0^6 + 246*a0^5 + 67*a0^4 - 255*a0^3 + 4*a0^2 + 46*a0 + 1, 4*a0^12 + 13*a0^11 - 46*a0^10 - 162*a0^9 + 180*a0^8 + 704*a0^7 - 321*a0^6 - 1330*a0^5 + 286*a0^4 + 1020*a0^3 - 99*a0^2 - 203*a0 - 8, -3*a0^11 - 4*a0^10 + 42*a0^9 + 39*a0^8 - 213*a0^7 - 103*a0^6 + 478*a0^5 + 49*a0^4 - 413*a0^3 + 38*a0^2 + 83*a0 - 3, 9*a0^12 + 31*a0^11 - 85*a0^10 - 341*a0^9 + 229*a0^8 + 1234*a0^7 - 239*a0^6 - 1902*a0^5 + 145*a0^4 + 1200*a0^3 - 77*a0^2 - 200*a0 - 8)" "x^13 + 5*x^12 - 5*x^11 - 56*x^10 - 27*x^9 + 210*x^8 + 184*x^7 - 347*x^6 - 346*x^5 + 252*x^4 + 246*x^3 - 60*x^2 - 48*x - 1"
"758a1" 758 379 2 2.42E+034 "(a1, 239646933/1793175190*a1^17 - 484282877/1793175190*a1^16 - 2918698602/896587595*a1^15 + 10920077991/1793175190*a1^14 + 29192188967/896587595*a1^13 - 49015280444/896587595*a1^12 - 309792337413/1793175190*a1^11 + 446493548451/1793175190*a1^10 + 468794375957/896587595*a1^9 - 217714639577/358635038*a1^8 - 160785930047/179317519*a1^7 + 690161150041/896587595*a1^6 + 143607053551/179317519*a1^5 - 825796553337/1793175190*a1^4 - 265893375512/896587595*a1^3 + 37055169135/358635038*a1^2 + 15664352337/896587595*a1 - 3492196834/896587595, -587362301/3586350380*a1^17 + 1362705089/3586350380*a1^16 + 3490982682/896587595*a1^15 - 31159994897/3586350380*a1^14 - 33784895822/896587595*a1^13 + 142584136593/1793175190*a1^12 + 685645325291/3586350380*a1^11 - 1335062480207/3586350380*a1^10 - 975760111749/1793175190*a1^9 + 678126786911/717270076*a1^8 + 306882475889/358635038*a1^7 - 2287907721217/1793175190*a1^6 - 239276091071/358635038*a1^5 + 2998847142899/3586350380*a1^4 + 164405587057/896587595*a1^3 - 149169579219/717270076*a1^2 + 15788512921/1793175190*a1 + 5934308694/896587595, 345660171/1793175190*a1^17 - 702742249/1793175190*a1^16 - 4120088259/896587595*a1^15 + 15812721467/1793175190*a1^14 + 40042452629/896587595*a1^13 - 70877456353/896587595*a1^12 - 409354057071/1793175190*a1^11 + 645708072847/1793175190*a1^10 + 591085357224/896587595*a1^9 - 315794194981/358635038*a1^8 - 191825947930/179317519*a1^7 + 1008875577592/896587595*a1^6 + 161672018357/179317519*a1^5 - 1220808555709/1793175190*a1^4 - 287618713729/896587595*a1^3 + 54423378047/358635038*a1^2 + 20699218389/896587595*a1 - 4083266708/896587595, -132736008/896587595*a1^17 + 285175122/896587595*a1^16 + 3108067204/896587595*a1^15 - 6410410811/896587595*a1^14 - 29427805654/896587595*a1^13 + 57409574768/896587595*a1^12 + 144807378128/896587595*a1^11 - 261431891741/896587595*a1^10 - 395843560339/896587595*a1^9 + 128154480581/179317519*a1^8 + 118727431138/179317519*a1^7 - 826932759102/896587595*a1^6 - 88759808824/179317519*a1^5 + 515880487037/896587595*a1^4 + 120250963559/896587595*a1^3 - 25509324900/179317519*a1^2 + 6461272046/896587595*a1 + 6332734098/896587595, -30264879/896587595*a1^17 - 6594934/896587595*a1^16 + 870582572/896587595*a1^15 + 230342647/896587595*a1^14 - 10275736617/896587595*a1^13 - 3222650196/896587595*a1^12 + 63928825349/896587595*a1^11 + 23296598632/896587595*a1^10 - 223604548322/896587595*a1^9 - 18609033847/179317519*a1^8 + 86531089630/179317519*a1^7 + 202344819449/896587595*a1^6 - 84643457170/179317519*a1^5 - 218774233984/896587595*a1^4 + 171397060597/896587595*a1^3 + 18772501151/179317519*a1^2 - 16314528032/896587595*a1 - 4256662976/896587595)" "x^18 - 3*x^17 - 22*x^16 + 69*x^15 + 190*x^14 - 638*x^13 - 807*x^12 + 3041*x^11 + 1680*x^10 - 7967*x^9 - 1220*x^8 + 11334*x^7 - 1006*x^6 - 8079*x^5 + 1938*x^4 + 2287*x^3 - 752*x^2 - 68*x + 24"
"14a1" 14 380 2 8 "(0, -a2, 1, 2*a2 - 6, -2, -3*a2 + 4)" "x^2 - 4*x + 2"
"14a1" 14 380 2 12 "(0, a3, 1, 2, -2*a3 + 2, -a3)" "x^2 - 2*x - 2"
"14a1" 14 381 2 1.57E+015 "(a4, 1, 1/6*a4^8 + 1/2*a4^7 - 7/3*a4^6 - 20/3*a4^5 + 29/3*a4^4 + 157/6*a4^3 - 59/6*a4^2 - 85/3*a4 - 16/3, -3/4*a4^8 - 5/4*a4^7 + 43/4*a4^6 + 65/4*a4^5 - 95/2*a4^4 - 247/4*a4^3 + 247/4*a4^2 + 251/4*a4 + 31/4, 5/12*a4^8 + 3/4*a4^7 - 73/12*a4^6 - 113/12*a4^5 + 169/6*a4^4 + 401/12*a4^3 - 499/12*a4^2 - 349/12*a4 + 17/12, 1/3*a4^8 + 1/2*a4^7 - 31/6*a4^6 - 19/3*a4^5 + 76/3*a4^4 + 67/3*a4^3 - 235/6*a4^2 - 109/6*a4 + 13/3)" "x^9 + 2*x^8 - 14*x^7 - 26*x^6 + 59*x^5 + 99*x^4 - 66*x^3 - 102*x^2 - 24*x - 1"
"381a1" 381 381 2 81509 "(a2, -1, -a2^4 - a2^3 + 3*a2^2 + a2 - 1, 2*a2^4 + 2*a2^3 - 8*a2^2 - 4*a2 + 4, -a2^3 - a2^2 + 2*a2 - 2, -a2^4 + 6*a2^2 - a2 - 5)" "x^5 + x^4 - 5*x^3 - 3*x^2 + 5*x + 2"
"381a1" 381 381 2 246832 "(a3, -1, 1/2*a3^4 - a3^3 - 5/2*a3^2 + 4*a3 + 1, -1/2*a3^3 + 7/2*a3, -1/2*a3^4 + 7/2*a3^2, -1/2*a3^3 + 7/2*a3 - 1)" "x^5 - 2*x^4 - 6*x^3 + 10*x^2 + 5*x - 4"
"14a1" 14 382 2 6809 "(1, -a2 + 1, -a2^3 + a2^2 + 5*a2 + 1, a2^3 - a2^2 - 4*a2, -a2^2 + 2*a2 + 3, a2^3 - 2*a2^2 - 3*a2 + 2)" "x^4 - x^3 - 5*x^2 + 1"
"14a1" 14 382 2 176684 "(-1, -1/2*a3 - 1/2, 1/32*a3^4 + 3/16*a3^3 - 5/8*a3^2 - 47/16*a3 + 123/32, 1/48*a3^4 + 1/6*a3^3 - 11/24*a3^2 - 10/3*a3 + 63/16, -7/192*a3^4 - 19/96*a3^3 + 17/24*a3^2 + 239/96*a3 - 67/64, -1/96*a3^4 - 7/48*a3^3 + 1/24*a3^2 + 155/48*a3 - 9/32)" "x^5 + 11*x^4 + 2*x^3 - 250*x^2 - 339*x + 927"
"14a1" 14 385 2 8 "(a3, a3 - 1, -1, -1, 1, -a3 + 3)" "x^2 - 2*x - 1"
"14a1" 14 385 2 148 "(a5, -a5^2 - a5 + 2, -1, -1, -1, a5^2 - a5 - 4)" "x^3 + 3*x^2 - x - 5"
"14a1" 14 385 2 148 "(a6, a6^2 - a6 - 2, 1, 1, 1, a6^2 - a6 - 2)" "x^3 - x^2 - 3*x + 1"
"14a1" 14 385 2 148 "(a4, a4^2 + a4 - 4, -1, 1, 1, -a4^2 - a4)" "x^3 + 3*x^2 - x - 5"
"14a1" 14 385 2 12 "(a2, a2 + 1, -1, 1, -1, a2 - 1)" "x^2 - 3"
"14a1" 14 385 2 11348 "(a7, -a7^2 + a7 + 4, 1, -1, -1, a7^3 - 2*a7^2 - 4*a7 + 3)" "x^4 - 2*x^3 - 6*x^2 + 8*x + 7"
"14a1" 14 385 2 11348 "(a7, -a7^2 + a7 + 4, 1, -1, -1, a7^3 - 2*a7^2 - 4*a7 + 3)" "x^4 - 2*x^3 - 6*x^2 + 8*x + 7"
"14a1" 14 386 2 5383160528 "(1, -a3 + 1, -3*a3^6 + 27/2*a3^5 + 29/2*a3^4 - 177/2*a3^3 - 43/2*a3^2 + 173/2*a3 + 69/2, 4*a3^6 - 18*a3^5 - 19*a3^4 + 117*a3^3 + 26*a3^2 - 109*a3 - 41, 3*a3^6 - 13*a3^5 - 17*a3^4 + 88*a3^3 + 35*a3^2 - 93*a3 - 41, -7/2*a3^6 + 15*a3^5 + 20*a3^4 - 100*a3^3 - 42*a3^2 + 100*a3 + 93/2)" "x^7 - 4*x^6 - 7*x^5 + 27*x^4 + 21*x^3 - 25*x^2 - 24*x - 5"
"43a1" 43 387 2 8 "(a6, 0, -a6 - 2, -a6 - 2, 2*a6 + 1, -2*a6 + 1)" "x^2 - 2"
"43a1" 43 387 2 568 "(a8, 0, -a8 + 2, -a8^2 + 6, -a8^2 - a8 + 5, 3)" "x^3 - 2*x^2 - 5*x + 8"
"43a1" 43 387 2 12 "(0, 0, -1/2*a7, 2, 3/4*a7, 5)" "x^2 - 48"
"258a1" 258 387 2 8 "(a5, 0, -a5 - 2, 2*a5 + 3, -a5 - 4, -5)" "x^2 + 2*x - 1"
"258a1" 258 387 2 568 "(a8, 0, -a8 + 2, -a8^2 + 6, -a8^2 - a8 + 5, 3)" "x^3 - 2*x^2 - 5*x + 8"
"14a1" 14 388 2 928652 "(0, 1/2*a1, -1/8*a1^3 + 1/4*a1^2 + 5/2*a1 - 2, 1/32*a1^4 - 9/8*a1^2 - 1/4*a1 + 8, 1/8*a1^3 - 1/4*a1^2 - 5/2*a1 + 4, -1/16*a1^4 + 2*a1^2 + 1/2*a1 - 10)" "x^5 - 4*x^4 - 36*x^3 + 120*x^2 + 320*x - 768"
"389a1" 389 389 2 148 "(a2, -a2, -a2^2 + 1, -1, a2^2 - 4, -3)" "x^3 - 4*x - 2"
"389a1" 389 389 2 8 "(a1, a1 - 2, -1, -2*a1 - 1, -2, 2*a1 + 1)" "x^2 - 2"
"14a1" 14 390 2 8 "(1, 1, 1, -1/2*a7 + 2, a7 - 4, -1)" "x^2 - 8*x - 16"
"14a1" 14 391 2 4.03E+021 "(a4, -9/14*a4^11 + 12/7*a4^10 + 19/2*a4^9 - 181/7*a4^8 - 89/2*a4^7 + 888/7*a4^6 + 460/7*a4^5 - 429/2*a4^4 - 30/7*a4^3 + 867/14*a4^2 + 7*a4 + 9/14, -1/14*a4^11 - 9/14*a4^10 + 3*a4^9 + 141/14*a4^8 - 69/2*a4^7 - 368/7*a4^6 + 1084/7*a4^5 + 205/2*a4^4 - 3677/14*a4^3 - 443/7*a4^2 + 201/2*a4 + 379/14, 3/14*a4^11 - 1/14*a4^10 - 9/2*a4^9 + 9/7*a4^8 + 35*a4^7 - 58/7*a4^6 - 851/7*a4^5 + 43/2*a4^4 + 2435/14*a4^3 - 191/14*a4^2 - 60*a4 - 82/7, 13/7*a4^11 - 39/14*a4^10 - 33*a4^9 + 295/7*a4^8 + 425/2*a4^7 - 1464/7*a4^6 - 4230/7*a4^5 + 366*a4^4 + 10195/14*a4^3 - 795/7*a4^2 - 256*a4 - 635/14, 15/7*a4^11 - 40/7*a4^10 - 32*a4^9 + 608/7*a4^8 + 153*a4^7 - 3030/7*a4^6 - 1678/7*a4^5 + 764*a4^4 + 303/7*a4^3 - 2012/7*a4^2 - 22*a4 + 97/7)" "x^12 - 4*x^11 - 12*x^10 + 62*x^9 + 27*x^8 - 321*x^7 + 108*x^6 + 625*x^5 - 362*x^4 - 372*x^3 + 116*x^2 + 97*x + 13"
"14a1" 14 392 2 8 "(0, 1/2*a6, 1/2*a6, 0, -4, -1/2*a6)" "x^2 - 32"
"14a1" 14 392 2 8 "(0, 1/2*a7, a7, 0, 6, -2*a7)" "x^2 - 8"
"14a1" 14 393 2 535221 "(a3, -1, 1/3*a3^4 - 2/3*a3^3 - 7/3*a3^2 + 4*a3 + 2, 1/3*a3^4 - 2/3*a3^3 - 4/3*a3^2 + 3*a3, -2/3*a3^4 - 2/3*a3^3 + 11/3*a3^2 + 5*a3 - 2, -a3^4 + a3^3 + 6*a3^2 - 3*a3 - 5)" "x^5 - 2*x^4 - 7*x^3 + 12*x^2 + 9*x - 9"
"786b1" 786 393 2 12062776 "(a4, 1, -a4^4 + 5*a4^2 - 2, a4^5 - a4^4 - 5*a4^3 + 4*a4^2 + 4*a4 - 1, a4^4 - a4^3 - 5*a4^2 + 3*a4 + 5, -a4^5 + 2*a4^4 + 5*a4^3 - 10*a4^2 - 4*a4 + 7)" "x^6 - x^5 - 7*x^4 + 5*x^3 + 13*x^2 - 4*x - 5"
"786b1" 786 393 2 8 "(a0, -1, -2*a0 - 2, 4, 1, 5)" "x^2 + 2*x - 1"
"14a1" 14 395 2 10273 "(a6, 2*a6^3 - a6^2 - 15*a6 + 6, 1, -a6 + 1, 2*a6^3 - a6^2 - 15*a6 + 4, -a6^2 - a6 + 6)" "x^4 - x^3 - 7*x^2 + 6*x - 1"
"14a1" 14 395 2 1.00E+018 "(a7, 1/32*a7^10 + 1/16*a7^9 - 25/32*a7^8 - 33/32*a7^7 + 221/32*a7^6 + 11/2*a7^5 - 823/32*a7^4 - 317/32*a7^3 + 569/16*a7^2 + 25/8*a7 - 35/4, -1, 7/32*a7^10 + 1/16*a7^9 - 143/32*a7^8 - 43/32*a7^7 + 1055/32*a7^6 + 75/8*a7^5 - 3305/32*a7^4 - 727/32*a7^3 + 1889/16*a7^2 + 71/8*a7 - 91/4, -1/16*a7^10 + 17/16*a7^8 - 1/16*a7^7 - 99/16*a7^6 + 7/8*a7^5 + 243/16*a7^4 - 57/16*a7^3 - 35/2*a7^2 + 17/4*a7 + 6, 1/8*a7^10 + 1/4*a7^9 - 21/8*a7^8 - 33/8*a7^7 + 157/8*a7^6 + 45/2*a7^5 - 491/8*a7^4 - 353/8*a7^3 + 277/4*a7^2 + 39/2*a7 - 13)" "x^11 - 21*x^9 + x^8 + 159*x^7 - 18*x^6 - 511*x^5 + 105*x^4 + 604*x^3 - 208*x^2 - 128*x + 48"
"395c1" 395 395 2 564 "(2, -1/2*a5 + 1, 1, -1/4*a5^2 + 3/2*a5 + 3, 1/4*a5^2 - 3, 0)" "x^3 - 4*x^2 - 16*x + 16"
"395c1" 395 395 2 1.00E+018 "(a7, 1/32*a7^10 + 1/16*a7^9 - 25/32*a7^8 - 33/32*a7^7 + 221/32*a7^6 + 11/2*a7^5 - 823/32*a7^4 - 317/32*a7^3 + 569/16*a7^2 + 25/8*a7 - 35/4, -1, 7/32*a7^10 + 1/16*a7^9 - 143/32*a7^8 - 43/32*a7^7 + 1055/32*a7^6 + 75/8*a7^5 - 3305/32*a7^4 - 727/32*a7^3 + 1889/16*a7^2 + 71/8*a7 - 91/4, -1/16*a7^10 + 17/16*a7^8 - 1/16*a7^7 - 99/16*a7^6 + 7/8*a7^5 + 243/16*a7^4 - 57/16*a7^3 - 35/2*a7^2 + 17/4*a7 + 6, 1/8*a7^10 + 1/4*a7^9 - 21/8*a7^8 - 33/8*a7^7 + 157/8*a7^6 + 45/2*a7^5 - 491/8*a7^4 - 353/8*a7^3 + 277/4*a7^2 + 39/2*a7 - 13)" "x^11 - 21*x^9 + x^8 + 159*x^7 - 18*x^6 - 511*x^5 + 105*x^4 + 604*x^3 - 208*x^2 - 128*x + 48"
"794a1" 794 397 2 245992 "(a2, a2 + 1, -a2^3 + 4*a2 - 1, -a2^3 - a2^2 + 3*a2 + 2, a2^4 + a2^3 - 5*a2^2 - 4*a2 + 5, a2^4 - 6*a2^2 + a2 + 6)" "x^5 - 6*x^3 + x^2 + 7*x - 1"
"794a1" 794 397 2 8 "(a0, 0, -2, a0 + 4, -2*a0 - 2, -2*a0 - 6)" "x^2 + 2*x - 1"
"794a1" 794 397 2 8 "(a1, -a1 + 3, a1 - 1, -2*a1 + 1, a1 + 1, 3*a1 - 1)" "x^2 - 2*x - 1"
"14a1" 14 399 2 1240016 "(a5, 1, -a5^3 + 5*a5, 1, a5^4 - 6*a5^2 + 3, -2*a5 + 2)" "x^5 - x^4 - 8*x^3 + 6*x^2 + 13*x - 3"
"14a1" 14 399 2 404 "(a4, 1, -a4^2 + 5, -1, -2*a4^2 - 2*a4 + 12, 2*a4^2 + 2*a4 - 10)" "x^3 - x^2 - 7*x + 9"
"14a1" 14 399 2 148 "(a3, -1, a3^2 - 1, -1, -2*a3^2 + 2*a3 + 4, -2*a3^2 + 2*a3 + 6)" "x^3 - x^2 - 3*x + 1"
"14a1" 14 399 2 368464 "(a6, -1, a6^4 - 3*a6^3 - 4*a6^2 + 13*a6 - 1, 1, -2*a6^4 + 4*a6^3 + 10*a6^2 - 18*a6 + 2, a6^4 - 4*a6^3 - 4*a6^2 + 20*a6 - 3)" "x^5 - 3*x^4 - 4*x^3 + 14*x^2 - 3*x - 1"
"14a1" 14 399 2 368464 "(a6, -1, a6^4 - 3*a6^3 - 4*a6^2 + 13*a6 - 1, 1, -2*a6^4 + 4*a6^3 + 10*a6^2 - 18*a6 + 2, a6^4 - 4*a6^3 - 4*a6^2 + 20*a6 - 3)" "x^5 - 3*x^4 - 4*x^3 + 14*x^2 - 3*x - 1"
"14a1" 14 399 2 1240016 "(a5, 1, -a5^3 + 5*a5, 1, a5^4 - 6*a5^2 + 3, -2*a5 + 2)" "x^5 - x^4 - 8*x^3 + 6*x^2 + 13*x - 3"
"14a1" 14 401 2 7.61E+041 "(a1, -18286877149/2056085485264*a1^20 - 11127199047/2056085485264*a1^19 + 83946583113/257010685658*a1^18 + 82268698561/514021371316*a1^17 - 10577086239965/2056085485264*a1^16 - 4006759400165/2056085485264*a1^15 + 5820872970774/128505342829*a1^14 + 26143714096043/2056085485264*a1^13 - 31289587591503/128505342829*a1^12 - 100786701349185/2056085485264*a1^11 + 1682873453689943/2056085485264*a1^10 + 122664373913815/1028042742632*a1^9 - 3480210083621745/2056085485264*a1^8 - 413112998448921/2056085485264*a1^7 + 2090208291142399/1028042742632*a1^6 + 521232062879477/2056085485264*a1^5 - 2588114268141401/2056085485264*a1^4 - 216362373657685/1028042742632*a1^3 + 634884906799859/2056085485264*a1^2 + 70645897189647/1028042742632*a1 - 3293700981999/514021371316, -722413535/128505342829*a1^20 + 4850669160/128505342829*a1^19 + 17729132132/128505342829*a1^18 - 616176543847/514021371316*a1^17 - 545133209029/514021371316*a1^16 + 4061635213501/257010685658*a1^15 - 81942846175/257010685658*a1^14 - 28814567024775/257010685658*a1^13 + 6461969206283/128505342829*a1^12 + 59717775138331/128505342829*a1^11 - 160937518187779/514021371316*a1^10 - 294890352574975/257010685658*a1^9 + 459977117780719/514021371316*a1^8 + 853299070638225/514021371316*a1^7 - 673509990918971/514021371316*a1^6 - 695729399878955/514021371316*a1^5 + 119791311761006/128505342829*a1^4 + 302525984112977/514021371316*a1^3 - 68216128320123/257010685658*a1^2 - 28194703453239/257010685658*a1 + 1197867446729/128505342829, 11788227381/1028042742632*a1^20 - 17556105935/1028042742632*a1^19 - 175917004357/514021371316*a1^18 + 277765645839/514021371316*a1^17 + 4221110609895/1028042742632*a1^16 - 7240673316675/1028042742632*a1^15 - 3198938144554/128505342829*a1^14 + 50222989912785/1028042742632*a1^13 + 39080024046237/514021371316*a1^12 - 200432877759707/1028042742632*a1^11 - 80842481868219/1028042742632*a1^10 + 116739845694491/257010685658*a1^9 - 158230419832287/1028042742632*a1^8 - 623823499506267/1028042742632*a1^7 + 63600503938346/128505342829*a1^6 + 471363605727771/1028042742632*a1^5 - 464992827043603/1028042742632*a1^4 - 26823439523891/128505342829*a1^3 + 139429229628541/1028042742632*a1^2 + 26480698676661/514021371316*a1 - 286007594119/257010685658, -65872818475/1028042742632*a1^20 + 24504892221/1028042742632*a1^19 + 275445436750/128505342829*a1^18 - 94128553210/128505342829*a1^17 - 31019594825691/1028042742632*a1^16 + 9424250012195/1028042742632*a1^15 + 29901763784562/128505342829*a1^14 - 61663707257231/1028042742632*a1^13 - 551547004674839/514021371316*a1^12 + 225232260705723/1028042742632*a1^11 + 3120061386536981/1028042742632*a1^10 - 112655572100787/257010685658*a1^9 - 5350818255511181/1028042742632*a1^8 + 422995988582409/1028042742632*a1^7 + 1328612115857249/257010685658*a1^6 - 25831277280967/1028042742632*a1^5 - 2767570136776731/1028042742632*a1^4 - 58048134220281/257010685658*a1^3 + 593287325531071/1028042742632*a1^2 + 53353117310705/514021371316*a1 - 2788481204299/257010685658, 5922142461/514021371316*a1^20 - 4388103687/257010685658*a1^19 - 190854757593/514021371316*a1^18 + 282772054063/514021371316*a1^17 + 1293881759277/257010685658*a1^16 - 3745952572257/514021371316*a1^15 - 9667642818631/257010685658*a1^14 + 26267034142439/514021371316*a1^13 + 88028827271723/514021371316*a1^12 - 104417140872075/514021371316*a1^11 - 256484825359039/514021371316*a1^10 + 232486914297775/514021371316*a1^9 + 489257916738043/514021371316*a1^8 - 261224184161481/514021371316*a1^7 - 601810751729847/514021371316*a1^6 + 96962568271683/514021371316*a1^5 + 430021502626571/514021371316*a1^4 + 37497517466363/514021371316*a1^3 - 129911109286611/514021371316*a1^2 - 5918147205798/128505342829*a1 + 1164757232946/128505342829)" "x^21 - 35*x^19 + 521*x^17 + 2*x^16 - 4305*x^15 - 51*x^14 + 21617*x^13 + 519*x^12 - 67876*x^11 - 2749*x^10 + 132085*x^9 + 8292*x^8 - 152221*x^7 - 14353*x^6 + 93934*x^5 + 12831*x^4 - 24699*x^3 - 4111*x^2 + 1058*x - 44"
"14a1" 14 402 2 41 "(1, -1, -1/2*a5, 1/2*a5, 4, 4)" "x^2 + 2*x - 40"
"14a1" 14 402 2 316 "(1, 1, -1/2*a6 + 3/2, 1/8*a6^2 - 17/8, a6 - 1, -3/8*a6^2 + 1/2*a6 + 39/8)" "x^3 - 3*x^2 - 25*x + 43"
"14a1" 14 402 2 12 "(-1, -1, -1/2*a4 - 3/2, -1/4*a4 + 9/4, -2, 1/4*a4 - 1/4)" "x^2 + 6*x - 39"
"201b1" 201 402 2 316 "(1, 1, -1/2*a6 + 3/2, 1/8*a6^2 - 17/8, a6 - 1, -3/8*a6^2 + 1/2*a6 + 39/8)" "x^3 - 3*x^2 - 25*x + 43"
"201b1" 201 402 2 41 "(1, -1, -1/2*a5, 1/2*a5, 4, 4)" "x^2 + 2*x - 40"
"14a1" 14 403 2 206371677133 "(a4, -a4^5 - a4^4 + 7*a4^3 + 5*a4^2 - 10*a4 - 4, -a4^7 + 10*a4^5 - a4^4 - 29*a4^3 + 25*a4 + 8, 2*a4^6 + 2*a4^5 - 15*a4^4 - 10*a4^3 + 25*a4^2 + 10*a4 - 2, a4^6 + a4^5 - 7*a4^4 - 4*a4^3 + 11*a4^2 + a4 - 3, 1)" "x^8 + x^7 - 11*x^6 - 10*x^5 + 37*x^4 + 33*x^3 - 36*x^2 - 33*x - 4"
"1209a1" 1209 403 2 206371677133 "(a4, -a4^5 - a4^4 + 7*a4^3 + 5*a4^2 - 10*a4 - 4, -a4^7 + 10*a4^5 - a4^4 - 29*a4^3 + 25*a4 + 8, 2*a4^6 + 2*a4^5 - 15*a4^4 - 10*a4^3 + 25*a4^2 + 10*a4 - 2, a4^6 + a4^5 - 7*a4^4 - 4*a4^3 + 11*a4^2 + a4 - 3, 1)" "x^8 + x^7 - 11*x^6 - 10*x^5 + 37*x^4 + 33*x^3 - 36*x^2 - 33*x - 4"
"1209a1" 1209 403 2 1571281045 "(a2, a2^5 - 3*a2^4 - 3*a2^3 + 13*a2^2 - 6*a2, -a2^5 + 2*a2^4 + 5*a2^3 - 9*a2^2 - 2*a2 + 4, a2^4 - 2*a2^3 - 5*a2^2 + 8*a2 + 2, -a2^6 + 3*a2^5 + 3*a2^4 - 14*a2^3 + 7*a2^2 + 5*a2 - 1, -1)" "x^7 - 2*x^6 - 9*x^5 + 17*x^4 + 20*x^3 - 37*x^2 + x + 4"
"14a1" 14 404 2 34707928896 "(0, a2, 8*a2^6 + 8*a2^5 - 113*a2^4 - 52*a2^3 + 368*a2^2 - 72*a2 - 154, -18*a2^6 - 17*a2^5 + 256*a2^4 + 105*a2^3 - 844*a2^2 + 189*a2 + 360, -2*a2^6 - 2*a2^5 + 28*a2^4 + 13*a2^3 - 90*a2^2 + 17*a2 + 40, 20*a2^6 + 18*a2^5 - 286*a2^4 - 106*a2^3 + 951*a2^2 - 232*a2 - 406)" "x^7 - 2*x^6 - 17*x^5 + 36*x^4 + 64*x^3 - 148*x^2 + 11*x + 58"
"405a1" 405 405 2 12 "(a6, 0, 1, -a6 - 4, -a6 - 5, 2*a6)" "x^2 + 2*x - 2"
"405a1" 405 405 2 12 "(a7, 0, -1, a7 - 4, -a7 + 5, -2*a7)" "x^2 - 2*x - 2"
"405c1" 405 405 2 564 "(a8, 0, -1, a8 + 2, a8^2 - 3, -a8^2 + 5)" "x^3 + x^2 - 5*x - 3"
"405c1" 405 405 2 564 "(a9, 0, 1, -a9 + 2, -a9^2 + 3, -a9^2 + 5)" "x^3 - x^2 - 5*x + 3"
"14a1" 14 406 2 568 "(-1, -1/2*a5 - 1/2, 1/8*a5^2 + 1/2*a5 - 5/8, -1, -1/4*a5^2 - 1/2*a5 + 23/4, -1/8*a5^2 - 1/2*a5 + 37/8)" "x^3 + 5*x^2 - 25*x - 61"
"14a1" 14 406 2 12 "(1, 2, a4 - 5, -1, -2*a4 + 12, -a4 + 5)" "x^2 - 12*x + 33"
"14a1" 14 406 2 11348 "(1, -1/2*a6 + 1/2, -1/32*a6^3 - 3/32*a6^2 + 41/32*a6 + 59/32, 1, 1/2*a6 + 3/2, 3/32*a6^3 - 7/32*a6^2 - 91/32*a6 + 63/32)" "x^4 - 2*x^3 - 40*x^2 + 50*x + 119"
"58a1" 58 406 2 568 "(-1, -1/2*a5 - 1/2, 1/8*a5^2 + 1/2*a5 - 5/8, -1, -1/4*a5^2 - 1/2*a5 + 23/4, -1/8*a5^2 - 1/2*a5 + 37/8)" "x^3 + 5*x^2 - 25*x - 61"
"58a1" 58 406 2 11348 "(1, -1/2*a6 + 1/2, -1/32*a6^3 - 3/32*a6^2 + 41/32*a6 + 59/32, 1, 1/2*a6 + 3/2, 3/32*a6^3 - 7/32*a6^2 - 91/32*a6 + 63/32)" "x^4 - 2*x^3 - 40*x^2 + 50*x + 119"
"14a1" 14 407 2 4.30E+020 "(a3, -370/249*a3^11 + 52/249*a3^10 + 6619/249*a3^9 - 934/249*a3^8 - 40324/249*a3^7 + 1087/83*a3^6 + 94670/249*a3^5 + 5092/249*a3^4 - 67508/249*a3^3 - 10735/249*a3^2 + 3599/249*a3 - 66/83, 142/249*a3^11 + 11/249*a3^10 - 2512/249*a3^9 - 188/249*a3^8 + 15010/249*a3^7 + 704/83*a3^6 - 33614/249*a3^5 - 10396/249*a3^4 + 19526/249*a3^3 + 11563/249*a3^2 + 2806/249*a3 - 164/83, -239/249*a3^11 + 113/249*a3^10 + 4256/249*a3^9 - 2135/249*a3^8 - 25856/249*a3^7 + 4078/83*a3^6 + 61468/249*a3^5 - 22588/249*a3^4 - 49207/249*a3^3 + 12121/249*a3^2 + 8362/249*a3 - 153/83, 1, 350/249*a3^11 + 18/83*a3^10 - 6250/249*a3^9 - 285/83*a3^8 + 38086/249*a3^7 + 6716/249*a3^6 - 89371/249*a3^5 - 8440/83*a3^4 + 61757/249*a3^3 + 7256/83*a3^2 - 320/249*a3 + 1199/249)" "x^12 - x^11 - 18*x^10 + 18*x^9 + 111*x^8 - 104*x^7 - 274*x^6 + 212*x^5 + 255*x^4 - 129*x^3 - 78*x^2 + 4*x + 1"
"14a1" 14 407 2 1.30E+019 "(a2, 10/59*a2^10 - 1/59*a2^9 - 156/59*a2^8 + 831/59*a2^6 + 78/59*a2^5 - 1732/59*a2^4 - 330/59*a2^3 + 1171/59*a2^2 + 305/59*a2 - 196/59, -83/59*a2^10 + 26/59*a2^9 + 1342/59*a2^8 - 6*a2^7 - 7564/59*a2^6 + 1630/59*a2^5 + 17420/59*a2^4 - 2512/59*a2^3 - 14457/59*a2^2 + 448/59*a2 + 3090/59, 61/59*a2^10 - 12/59*a2^9 - 987/59*a2^8 + 3*a2^7 + 5547/59*a2^6 - 893/59*a2^5 - 12701/59*a2^4 + 1409/59*a2^3 + 10512/59*a2^2 - 57/59*a2 - 2234/59, -1, 100/59*a2^10 - 10/59*a2^9 - 1619/59*a2^8 + 2*a2^7 + 9136/59*a2^6 - 459/59*a2^5 - 21096/59*a2^4 + 181/59*a2^3 + 17610/59*a2^2 + 1044/59*a2 - 3671/59)" "x^11 - 2*x^10 - 16*x^9 + 32*x^8 + 89*x^7 - 179*x^6 - 201*x^5 + 407*x^4 + 168*x^3 - 333*x^2 - 51*x + 75"
"14a1" 14 408 2 57 "(0, 1, a5 - 2, 4, -a5, -a5 + 2)" "x^2 - 3*x - 12"
"14a1" 14 408 2 17 "(0, -1, -1/2*a4 - 1/2, a4 - 1, -1/2*a4 - 9/2, 1/2*a4 - 3/2)" "x^2 - 17"
"51a1" 51 408 2 57 "(0, 1, a5 - 2, 4, -a5, -a5 + 2)" "x^2 - 3*x - 12"
"51a1" 51 408 2 17 "(0, -1, -1/2*a4 - 1/2, a4 - 1, -1/2*a4 - 9/2, 1/2*a4 - 3/2)" "x^2 - 17"
"14a1" 14 409 2 3.18E+039 "(a1, 5906164375/162850891556*a1^19 - 15774159671/81425445778*a1^18 - 107686582751/162850891556*a1^17 + 798722115271/162850891556*a1^16 + 481520956263/162850891556*a1^15 - 2050473493008/40712722889*a1^14 + 2498437987155/162850891556*a1^13 + 21972471737353/81425445778*a1^12 - 7959712712957/40712722889*a1^11 - 131831067667341/162850891556*a1^10 + 30712236161176/40712722889*a1^9 + 221211978185803/162850891556*a1^8 - 55611571523398/40712722889*a1^7 - 48608103951096/40712722889*a1^6 + 46652982992112/40712722889*a1^5 + 17979458538027/40712722889*a1^4 - 28038937609583/81425445778*a1^3 - 2326223684821/162850891556*a1^2 + 443586426186/40712722889*a1 - 44065152976/40712722889, -2560786107/162850891556*a1^19 + 9076732659/162850891556*a1^18 + 60298895933/162850891556*a1^17 - 229379147681/162850891556*a1^16 - 275927126505/81425445778*a1^15 + 2347011223577/162850891556*a1^14 + 597961855763/40712722889*a1^13 - 3120181347050/40712722889*a1^12 - 4248976214165/162850891556*a1^11 + 36854713614423/162850891556*a1^10 - 613197361755/40712722889*a1^9 - 59975401748255/162850891556*a1^8 + 21817021655123/162850891556*a1^7 + 12621195418983/40712722889*a1^6 - 32869974381839/162850891556*a1^5 - 9941198174579/81425445778*a1^4 + 19691957684943/162850891556*a1^3 + 4110537282939/162850891556*a1^2 - 1895999523577/81425445778*a1 - 33987898180/40712722889, 25967484603/162850891556*a1^19 - 57287577643/81425445778*a1^18 - 136636999142/40712722889*a1^17 + 2908280870845/162850891556*a1^16 + 3943405627137/162850891556*a1^15 - 29902354806501/162850891556*a1^14 - 1852661628937/40712722889*a1^13 + 159894514950179/162850891556*a1^12 - 11094767296944/40712722889*a1^11 - 237527794880135/81425445778*a1^10 + 133859388171295/81425445778*a1^9 + 775451110931723/162850891556*a1^8 - 140433841924434/40712722889*a1^7 - 635389645330641/162850891556*a1^6 + 128860831319787/40712722889*a1^5 + 194732099068897/162850891556*a1^4 - 42558736550317/40712722889*a1^3 + 1528087372629/81425445778*a1^2 + 3059320582297/81425445778*a1 - 14140300195/40712722889, 10914238563/325701783112*a1^19 - 29673377197/162850891556*a1^18 - 205434567225/325701783112*a1^17 + 1520932471077/325701783112*a1^16 + 1066479838551/325701783112*a1^15 - 7946023085995/162850891556*a1^14 + 2622590359827/325701783112*a1^13 + 43689523869755/162850891556*a1^12 - 23469433898305/162850891556*a1^11 - 272921271717275/325701783112*a1^10 + 93548041203723/162850891556*a1^9 + 489467605119575/325701783112*a1^8 - 42211064794523/40712722889*a1^7 - 242484222571247/162850891556*a1^6 + 140271650291825/162850891556*a1^5 + 117544975345383/162850891556*a1^4 - 11034497100645/40712722889*a1^3 - 39745436607747/325701783112*a1^2 + 3899677406031/162850891556*a1 + 435370372621/81425445778, 32049403425/162850891556*a1^19 - 33909880642/40712722889*a1^18 - 692164300671/162850891556*a1^17 + 3439765523177/162850891556*a1^16 + 5339890532871/162850891556*a1^15 - 8839357204006/40712722889*a1^14 - 14317952707495/162850891556*a1^13 + 47328312802098/40712722889*a1^12 - 12602053520053/81425445778*a1^11 - 565386893447353/162850891556*a1^10 + 59039918075223/40712722889*a1^9 + 937073342406945/162850891556*a1^8 - 264395441890469/81425445778*a1^7 - 401484825414553/81425445778*a1^6 + 247631367575193/81425445778*a1^5 + 145072020213637/81425445778*a1^4 - 41882994058594/40712722889*a1^3 - 20644361846253/162850891556*a1^2 + 1932254681161/40712722889*a1 + 157473499787/40712722889)" "x^20 - 5*x^19 - 19*x^18 + 126*x^17 + 100*x^16 - 1283*x^15 + 247*x^14 + 6767*x^13 - 4554*x^12 - 19689*x^11 + 18771*x^10 + 31011*x^9 - 35515*x^8 - 23548*x^7 + 31466*x^6 + 5354*x^5 - 10552*x^4 + 1129*x^3 + 523*x^2 - 54*x - 4"
"14a1" 14 410 2 404 "(1, -1/2*a8 + 1/2, -1, 2, -1/4*a8^2 + 1/2*a8 + 15/4, -1/4*a8^2 + 3/2*a8 + 27/4)" "x^3 - 3*x^2 - 29*x - 1"
"14a1" 14 410 2 17 "(-1, 2, 1, 1/2*a6 - 3/2, -1/2*a6 + 7/2, 4)" "x^2 - 10*x - 43"
"14a1" 14 410 2 17 "(-1, 2, 1, 1/2*a6 - 3/2, -1/2*a6 + 7/2, 4)" "x^2 - 10*x - 43"
"14a1" 14 410 2 24 "(1, a7 - 1, 1, -2, -2*a7 + 2, 4)" "x^2 - 2*x - 5"
"14a1" 14 410 2 12 "(-1, a5 + 1, -1, 2, 0, -2*a5 + 2)" "x^2 - 3"
"14a1" 14 411 2 676151079439660 "(a4, -1, -1/8*a4^8 + 2*a4^6 - 5/8*a4^5 - 43/4*a4^4 + 45/8*a4^3 + 165/8*a4^2 - 41/4*a4 - 6, 3/16*a4^8 - 1/8*a4^7 - 11/4*a4^6 + 35/16*a4^5 + 51/4*a4^4 - 179/16*a4^3 - 309/16*a4^2 + 63/4*a4 + 21/4, 1/8*a4^8 + 1/4*a4^7 - 3/2*a4^6 - 23/8*a4^5 + 11/2*a4^4 + 71/8*a4^3 - 55/8*a4^2 - 9/2*a4 + 3/2, -3/8*a4^8 - 1/4*a4^7 + 11/2*a4^6 + 21/8*a4^5 - 25*a4^4 - 53/8*a4^3 + 273/8*a4^2 - 7/2)" "x^9 - 16*x^7 + x^6 + 82*x^5 - 9*x^4 - 141*x^3 + 18*x^2 + 52*x + 8"
"822d1" 822 411 2 676151079439660 "(a4, -1, -1/8*a4^8 + 2*a4^6 - 5/8*a4^5 - 43/4*a4^4 + 45/8*a4^3 + 165/8*a4^2 - 41/4*a4 - 6, 3/16*a4^8 - 1/8*a4^7 - 11/4*a4^6 + 35/16*a4^5 + 51/4*a4^4 - 179/16*a4^3 - 309/16*a4^2 + 63/4*a4 + 21/4, 1/8*a4^8 + 1/4*a4^7 - 3/2*a4^6 - 23/8*a4^5 + 11/2*a4^4 + 71/8*a4^3 - 55/8*a4^2 - 9/2*a4 + 3/2, -3/8*a4^8 - 1/4*a4^7 + 11/2*a4^6 + 21/8*a4^5 - 25*a4^4 - 53/8*a4^3 + 273/8*a4^2 - 7/2)" "x^9 - 16*x^7 + x^6 + 82*x^5 - 9*x^4 - 141*x^3 + 18*x^2 + 52*x + 8"
"822d1" 822 411 2 352588 "(a3, 1, -a3^4 - a3^3 + 7*a3^2 + 9*a3 + 1, -a3^4 + 6*a3^2 + 4*a3, a3^4 + a3^3 - 7*a3^2 - 11*a3, 2*a3^4 - a3^3 - 13*a3^2 - 3*a3 + 5)" "x^5 + x^4 - 7*x^3 - 10*x^2 + 1"
"14a1" 14 413 2 229 "(-1, -1/2*a1 - 1/2, -a1 - 3, -1, -1/2*a1 - 1/2, -3/4*a1^2 - 7/2*a1 + 13/4)" "x^3 + 9*x^2 + 11*x - 29"
"14a1" 14 414 2 28 "(1, 0, 1/2*a6 - 1/2, 2, -1/2*a6 + 1/2, -a6 + 3)" "x^2 - 6*x - 19"
"14a1" 14 414 2 28 "(-1, 0, 1/2*a4 + 1/2, 2, -1/2*a4 - 1/2, a4 + 3)" "x^2 + 6*x - 19"
"14a1" 14 415 2 5.84E+019 "(a4, -a4^10 - 7/4*a4^9 + 65/4*a4^8 + 119/4*a4^7 - 83*a4^6 - 164*a4^5 + 483/4*a4^4 + 1195/4*a4^3 + 213/4*a4^2 - 93/2*a4 - 6, 1, 1/4*a4^9 - 1/4*a4^8 - 15/4*a4^7 + 7/2*a4^6 + 18*a4^5 - 61/4*a4^4 - 115/4*a4^3 + 83/4*a4^2 + 7*a4 - 4, 3/4*a4^10 + 9/4*a4^9 - 51/4*a4^8 - 37*a4^7 + 137/2*a4^6 + 789/4*a4^5 - 425/4*a4^4 - 1401/4*a4^3 - 91/2*a4^2 + 133/2*a4 + 6, -a4^3 - a4^2 + 6*a4 + 4)" "x^11 - 20*x^9 - x^8 + 146*x^7 + 15*x^6 - 464*x^5 - 76*x^4 + 567*x^3 + 136*x^2 - 100*x - 8"
"83a1" 83 415 2 5.84E+019 "(a4, -a4^10 - 7/4*a4^9 + 65/4*a4^8 + 119/4*a4^7 - 83*a4^6 - 164*a4^5 + 483/4*a4^4 + 1195/4*a4^3 + 213/4*a4^2 - 93/2*a4 - 6, 1, 1/4*a4^9 - 1/4*a4^8 - 15/4*a4^7 + 7/2*a4^6 + 18*a4^5 - 61/4*a4^4 - 115/4*a4^3 + 83/4*a4^2 + 7*a4 - 4, 3/4*a4^10 + 9/4*a4^9 - 51/4*a4^8 - 37*a4^7 + 137/2*a4^6 + 789/4*a4^5 - 425/4*a4^4 - 1401/4*a4^3 - 91/2*a4^2 + 133/2*a4 + 6, -a4^3 - a4^2 + 6*a4 + 4)" "x^11 - 20*x^9 - x^8 + 146*x^7 + 15*x^6 - 464*x^5 - 76*x^4 + 567*x^3 + 136*x^2 - 100*x - 8"
"14a1" 14 416 2 13448 "(0, -1/2*a5, -1/4*a5^2 + 6, -1/16*a5^3 + 7/4*a5, 1/16*a5^3 - 9/4*a5, 1)" "x^4 - 52*x^2 + 512"
"14a1" 14 416 2 17 "(0, a2, -a2 - 2, -a2 - 2, -2, -1)" "x^2 + x - 4"
"14a1" 14 416 2 17 "(0, a4, a4 - 2, -a4 + 2, 2, -1)" "x^2 - x - 4"
"26a1" 26 416 2 17 "(0, a4, a4 - 2, -a4 + 2, 2, -1)" "x^2 - x - 4"
"26a1" 26 416 2 17 "(0, a2, -a2 - 2, -a2 - 2, -2, -1)" "x^2 + x - 4"
"14a1" 14 417 2 229 "(a3, 1, -a3^2 - a3 + 4, a3^2 - 1, -a3^2 + a3 + 4, 2*a3^2 - 4)" "x^3 - 4*x - 1"
"139a1" 139 417 2 4493904352 "(a5, 1, -1/2*a5^3 + 7/2*a5 - 1, 1/4*a5^6 - 5/2*a5^4 + 21/4*a5^2 + 1, -1/4*a5^6 - 1/2*a5^5 + 3*a5^4 + 4*a5^3 - 39/4*a5^2 - 11/2*a5 + 4, -1/4*a5^6 + 5/2*a5^4 - 1/2*a5^3 - 25/4*a5^2 + 3/2*a5 + 4)" "x^7 - 14*x^5 + 2*x^4 + 57*x^3 - 14*x^2 - 56*x + 8"
"139a1" 139 417 2 782167196 "(a4, -1, 1/2*a4^6 + a4^5 - 7/2*a4^4 - 11/2*a4^3 + 6*a4^2 + 11/2*a4 - 1, -3/4*a4^6 - 7/4*a4^5 + 5*a4^4 + 37/4*a4^3 - 41/4*a4^2 - 10*a4 + 3, -1/4*a4^6 + 1/4*a4^5 + 7/2*a4^4 - 1/4*a4^3 - 37/4*a4^2 - 3/2*a4 + 2, 1/4*a4^6 - 1/4*a4^5 - 9/2*a4^4 + 1/4*a4^3 + 65/4*a4^2 - 1/2*a4 - 10)" "x^7 + 3*x^6 - 6*x^5 - 19*x^4 + 9*x^3 + 30*x^2 - 8"
"417a1" 417 417 2 4493904352 "(a5, 1, -1/2*a5^3 + 7/2*a5 - 1, 1/4*a5^6 - 5/2*a5^4 + 21/4*a5^2 + 1, -1/4*a5^6 - 1/2*a5^5 + 3*a5^4 + 4*a5^3 - 39/4*a5^2 - 11/2*a5 + 4, -1/4*a5^6 + 5/2*a5^4 - 1/2*a5^3 - 25/4*a5^2 + 3/2*a5 + 4)" "x^7 - 14*x^5 + 2*x^4 + 57*x^3 - 14*x^2 - 56*x + 8"
"417a1" 417 417 2 229 "(a2, -1, a2^2 - a2 - 2, a2^2 - 1, 1, -a2^2 + a2 + 1)" "x^3 - 4*x - 1"
"14a1" 14 418 2 17 "(-1, 1/2*a4 + 1/2, 2, -1/2*a4 + 3/2, 1, 1/2*a4 - 3/2)" "x^2 - 17"
"14a1" 14 418 2 469 "(1, 1/2*a7 - 1/2, -1/2*a7 + 5/2, -1/4*a7^2 + 1/2*a7 + 15/4, -1, 1/4*a7^2 - 1/2*a7 - 7/4)" "x^3 - 5*x^2 - 13*x + 49"
"38a1" 38 418 2 621 "(-1, 1/2*a6 + 1/2, -1/4*a6^2 - 1/2*a6 + 11/4, 1/4*a6^2 - 1/2*a6 - 27/4, -1, 1/4*a6^2 - 1/2*a6 - 19/4)" "x^3 + 3*x^2 - 21*x - 47"
"38a1" 38 418 2 17 "(-1, 1/2*a4 + 1/2, 2, -1/2*a4 + 3/2, 1, 1/2*a4 - 3/2)" "x^2 - 17"
"1676a1" 1676 419 2 6.91E+057 "(a1, 11600552657805477/618506107859120384*a1^25 - 1445919658165295/309253053929560192*a1^24 - 489898657622267755/618506107859120384*a1^23 + 107914954606597717/618506107859120384*a1^22 + 8985089110311196755/618506107859120384*a1^21 - 1677761853489598063/618506107859120384*a1^20 - 93908850339439447893/618506107859120384*a1^19 + 13918818822044869947/618506107859120384*a1^18 + 308521474664772454481/309253053929560192*a1^17 - 64913077960712591713/618506107859120384*a1^16 - 2653463884228242370997/618506107859120384*a1^15 + 158054791007502082829/618506107859120384*a1^14 + 7542124894930787266803/618506107859120384*a1^13 - 114826826055616751971/618506107859120384*a1^12 - 13997662661670064334423/618506107859120384*a1^11 - 303774076907980503369/618506107859120384*a1^10 + 16402726266989189697963/618506107859120384*a1^9 + 721388016885671188593/618506107859120384*a1^8 - 2858156076211631583195/154626526964780096*a1^7 - 131421687286070081665/154626526964780096*a1^6 + 133526089632281764867/19328315870597512*a1^5 + 3114222442535169313/19328315870597512*a1^4 - 5479963010523513969/4832078967649378*a1^3 + 347436269895930943/9664157935298756*a1^2 + 115195871402394161/2416039483824689*a1 - 9403602456845085/2416039483824689, -15339110851698681/618506107859120384*a1^25 + 1659882976959243/154626526964780096*a1^24 + 647804819296844439/618506107859120384*a1^23 - 261094882733415019/618506107859120384*a1^22 - 11883707853507702469/618506107859120384*a1^21 + 4379051822405265577/618506107859120384*a1^20 + 124269331201630752739/618506107859120384*a1^19 - 40851748330058436361/618506107859120384*a1^18 - 204353554500038141865/154626526964780096*a1^17 + 232298733292163357085/618506107859120384*a1^16 + 3522271328534996747539/618506107859120384*a1^15 - 833773198676597351211/618506107859120384*a1^14 - 10047619638821988328637/618506107859120384*a1^13 + 1911697358637588946733/618506107859120384*a1^12 + 18759839398286226300949/618506107859120384*a1^11 - 2833518240599129473281/618506107859120384*a1^10 - 22190495513779505976209/618506107859120384*a1^9 + 2802903817103605614913/618506107859120384*a1^8 + 7838747736618934727003/309253053929560192*a1^7 - 7422528181590734491/2416039483824689*a1^6 - 745747450776653745449/77313263482390048*a1^5 + 51094395904343293019/38656631741195024*a1^4 + 31404172083373982729/19328315870597512*a1^3 - 2622227156419926079/9664157935298756*a1^2 - 358926392933727053/4832078967649378*a1 + 23150340870738341/2416039483824689, -8863839496337407/309253053929560192*a1^25 - 891227784723507/38656631741195024*a1^24 + 385167517531066755/309253053929560192*a1^23 + 296011659624924835/309253053929560192*a1^22 - 7296357727589355205/309253053929560192*a1^21 - 5316969070158088675/309253053929560192*a1^20 + 79079629987114027495/309253053929560192*a1^19 + 54137797970389542119/309253053929560192*a1^18 - 270475397670112461457/154626526964780096*a1^17 - 343712030514259712015/309253053929560192*a1^16 + 2430211827232656201389/309253053929560192*a1^15 + 1408518450537328044749/309253053929560192*a1^14 - 7233604422337648843241/309253053929560192*a1^13 - 3723633221392188900391/309253053929560192*a1^12 + 14065380090305185317589/309253053929560192*a1^11 + 6154287517520404208367/309253053929560192*a1^10 - 17214441168598886170513/309253053929560192*a1^9 - 5932646140944618265895/309253053929560192*a1^8 + 3097908679538199990775/77313263482390048*a1^7 + 1463080099193828555373/154626526964780096*a1^6 - 580251204341804069003/38656631741195024*a1^5 - 67739723955687955103/38656631741195024*a1^4 + 45087263596456571019/19328315870597512*a1^3 - 420740139153670539/9664157935298756*a1^2 - 422904240001996079/4832078967649378*a1 + 20162886288801526/2416039483824689, 2624951423839507/309253053929560192*a1^25 + 864714761109041/77313263482390048*a1^24 - 115190386680000141/309253053929560192*a1^23 - 141931181194005311/309253053929560192*a1^22 + 2206926087781757503/309253053929560192*a1^21 + 2515920062426191125/309253053929560192*a1^20 - 24231593512952764345/309253053929560192*a1^19 - 25245059275215458725/309253053929560192*a1^18 + 42057341458042821857/77313263482390048*a1^17 + 157823923829239306385/309253053929560192*a1^16 - 768596413957611044153/309253053929560192*a1^15 - 637436787342126079951/309253053929560192*a1^14 + 2332253342452014421831/309253053929560192*a1^13 + 1668307758579552752553/309253053929560192*a1^12 - 4638386215069439223647/309253053929560192*a1^11 - 2761098638629791825261/309253053929560192*a1^10 + 5836044142774413189363/309253053929560192*a1^9 + 2733789611335979463661/309253053929560192*a1^8 - 2179139808976009405541/154626526964780096*a1^7 - 11464838695214791855/2416039483824689*a1^6 + 216225308932095586355/38656631741195024*a1^5 + 22175334591203582665/19328315870597512*a1^4 - 2384269020723186934/2416039483824689*a1^3 - 168604006548282602/2416039483824689*a1^2 + 144988979787663183/2416039483824689*a1 + 2533241512306150/2416039483824689, 18286899019576087/618506107859120384*a1^25 - 5894344397986029/309253053929560192*a1^24 - 766111264106621881/618506107859120384*a1^23 + 471168870486082791/618506107859120384*a1^22 + 13922639055892491201/618506107859120384*a1^21 - 8069778480182433605/618506107859120384*a1^20 - 144001763638989605479/618506107859120384*a1^19 + 77397866044694049257/618506107859120384*a1^18 + 467579448862133101323/309253053929560192*a1^17 - 456656313606355035067/618506107859120384*a1^16 - 3970050046577309300871/618506107859120384*a1^15 + 1719687671324427722719/618506107859120384*a1^14 + 11130371603133618637169/618506107859120384*a1^13 - 4174582169576353238401/618506107859120384*a1^12 - 20361915844234980816541/618506107859120384*a1^11 + 6503610407720369451005/618506107859120384*a1^10 + 23492863605680564906457/618506107859120384*a1^9 - 6410159455082569400069/618506107859120384*a1^8 - 4015981862327647639385/154626526964780096*a1^7 + 965970510415925839073/154626526964780096*a1^6 + 364245782918146239653/38656631741195024*a1^5 - 41070925522691941949/19328315870597512*a1^4 - 14040041850842425621/9664157935298756*a1^3 + 1609898669988803781/4832078967649378*a1^2 + 120809385477014950/2416039483824689*a1 - 20763481876800285/2416039483824689)" "x^26 - 2*x^25 - 43*x^24 + 85*x^23 + 807*x^22 - 1571*x^21 - 8689*x^20 + 16575*x^19 + 59362*x^18 - 110217*x^17 - 268789*x^16 + 481513*x^15 + 817911*x^14 - 1398615*x^13 - 1658267*x^12 + 2674771*x^11 + 2166607*x^10 - 3262315*x^9 - 1701132*x^8 + 2384864*x^7 + 697992*x^6 - 932912*x^5 - 104448*x^4 + 158080*x^3 - 4736*x^2 - 6656*x + 512"
"422a1" 422 422 2 43983893 "(1, -a5 + 1, 4*a5^5 - 10*a5^4 - 31*a5^3 + 47*a5^2 + 57*a5 + 10, -3*a5^5 + 8*a5^4 + 22*a5^3 - 39*a5^2 - 36*a5 - 2, -2*a5^5 + 4*a5^4 + 18*a5^3 - 17*a5^2 - 39*a5 - 11, -6*a5^5 + 15*a5^4 + 46*a5^3 - 71*a5^2 - 80*a5 - 11)" "x^6 - 2*x^5 - 9*x^4 + 8*x^3 + 20*x^2 + 9*x + 1"
"14a1" 14 423 2 316 "(a8, 0, -a8 - 1, -a8^2 - 2*a8 + 1, a8^2 + 2*a8 - 5, 2*a8)" "x^3 + 2*x^2 - 3*x - 2"
"14a1" 14 423 2 17 "(a7, 0, a7 - 1, -a7 + 1, -a7 - 3, 2*a7 - 4)" "x^2 - x - 4"
"14a1" 14 423 2 316 "(a9, 0, -a9 + 1, -a9^2 + 2*a9 + 1, -a9^2 + 2*a9 + 5, -2*a9)" "x^3 - 2*x^2 - 3*x + 2"
"141a1" 141 423 2 316 "(a9, 0, -a9 + 1, -a9^2 + 2*a9 + 1, -a9^2 + 2*a9 + 5, -2*a9)" "x^3 - 2*x^2 - 3*x + 2"
"141a1" 141 423 2 316 "(a8, 0, -a8 - 1, -a8^2 - 2*a8 + 1, a8^2 + 2*a8 - 5, 2*a8)" "x^3 + 2*x^2 - 3*x - 2"
"141a1" 141 423 2 17 "(a7, 0, a7 - 1, -a7 + 1, -a7 - 3, 2*a7 - 4)" "x^2 - x - 4"
"14a1" 14 424 2 4321108 "(0, -a3, 1/2*a3^4 + 1/2*a3^3 - 7/2*a3^2 - 5/2*a3 + 2, a3^3 - 7*a3, -1/2*a3^4 - 1/2*a3^3 + 7/2*a3^2 + 5/2*a3, -a3^3 - a3^2 + 7*a3 + 6)" "x^5 + x^4 - 13*x^3 - 9*x^2 + 42*x + 16"
"53a1" 53 424 2 316 "(0, -1/2*a2, -1/4*a2^2 - a2 + 3, 2, -1/4*a2^2 + 5, 1/4*a2^2 + a2 - 4)" "x^3 + 4*x^2 - 12*x - 16"
"53a1" 53 424 2 8 "(0, -a0, -2, 2*a0, 2*a0 - 4, -2*a0 - 1)" "x^2 - 2*x - 1"
"53a1" 53 424 2 4321108 "(0, -a3, 1/2*a3^4 + 1/2*a3^3 - 7/2*a3^2 - 5/2*a3 + 2, a3^3 - 7*a3, -1/2*a3^4 - 1/2*a3^3 + 7/2*a3^2 + 5/2*a3, -a3^3 - a3^2 + 7*a3 + 6)" "x^5 + x^4 - 13*x^3 - 9*x^2 + 42*x + 16"
"53a1" 53 424 2 148 "(0, -1/2*a1, -1/4*a1^2 + a1 + 1, 1/4*a1^2 - 5, 1/4*a1^2 - a1 - 3, 1/2*a1^2 - 5)" "x^3 - 2*x^2 - 12*x + 8"
"106a1" 106 424 2 316 "(0, -1/2*a2, -1/4*a2^2 - a2 + 3, 2, -1/4*a2^2 + 5, 1/4*a2^2 + a2 - 4)" "x^3 + 4*x^2 - 12*x - 16"
"106a1" 106 424 2 4321108 "(0, -a3, 1/2*a3^4 + 1/2*a3^3 - 7/2*a3^2 - 5/2*a3 + 2, a3^3 - 7*a3, -1/2*a3^4 - 1/2*a3^3 + 7/2*a3^2 + 5/2*a3, -a3^3 - a3^2 + 7*a3 + 6)" "x^5 + x^4 - 13*x^3 - 9*x^2 + 42*x + 16"
"14a1" 14 425 2 12 "(a4, -a4 - 1, 0, a4 + 1, a4 + 3, 4)" "x^2 - 3"
"14a1" 14 425 2 8 "(a5, -a5 + 3, 0, a5 + 1, -a5 - 3, -2*a5 + 2)" "x^2 - 2*x - 1"
"14a1" 14 425 2 6224 "(a7, -a7^3 + a7^2 + 4*a7 - 2, 0, -a7 + 3, a7^2 + a7 - 4, 3*a7^3 - 2*a7^2 - 13*a7 + 8)" "x^4 - 2*x^3 - 4*x^2 + 8*x - 1"
"14a1" 14 425 2 6224 "(a6, -a6^3 - a6^2 + 4*a6 + 2, 0, -a6 - 3, a6^2 - a6 - 4, 3*a6^3 + 2*a6^2 - 13*a6 - 8)" "x^4 + 2*x^3 - 4*x^2 - 8*x - 1"
"425b1" 425 425 2 1893456 "(a8, -1/2*a8^3 + 1/2*a8^2 + 7/2*a8 - 5/2, 0, -1/2*a8^4 - 1/2*a8^3 + 7/2*a8^2 + 5/2*a8 - 2, 1/2*a8^4 - 4*a8^2 + a8 + 9/2, -a8^3 + 6*a8 - 2)" "x^5 + x^4 - 10*x^3 - 6*x^2 + 21*x - 3"
"425b1" 425 425 2 1893456 "(a9, -1/2*a9^3 - 1/2*a9^2 + 7/2*a9 + 5/2, 0, 1/2*a9^4 - 1/2*a9^3 - 7/2*a9^2 + 5/2*a9 + 2, 1/2*a9^4 - 4*a9^2 - a9 + 9/2, -a9^3 + 6*a9 + 2)" "x^5 - x^4 - 10*x^3 + 6*x^2 + 21*x + 3"
"14a1" 14 426 2 17 "(-1, 1, -a4 - 3, -a4 + 1, a4 + 1, 2)" "x^2 + 3*x - 2"
"14a1" 14 426 2 568 "(1, -1, -1/2*a5 - 1/2, 1/8*a5^2 + a5 - 1/8, -1/8*a5^2 + 41/8, -1/4*a5^2 - 2*a5 + 9/4)" "x^3 + 11*x^2 + 7*x - 83"
"426a1" 426 426 2 8 "(-1, -1, a3 + 3, 3/2*a3 + 2, -1/2*a3 + 4, -a3 - 6)" "x^2 + 4*x - 4"
"426a1" 426 426 2 469 "(1, 1, -a6 - 1, a6 + 1, 1/2*a6^2 + 3/2*a6 - 2, -1/2*a6^2 - 1/2*a6 + 7)" "x^3 + 4*x^2 - 7*x - 14"
"426a1" 426 426 2 568 "(1, -1, -1/2*a5 - 1/2, 1/8*a5^2 + a5 - 1/8, -1/8*a5^2 + 41/8, -1/4*a5^2 - 2*a5 + 9/4)" "x^3 + 11*x^2 + 7*x - 83"
"426a1" 426 426 2 17 "(-1, 1, -a4 - 3, -a4 + 1, a4 + 1, 2)" "x^2 + 3*x - 2"
"14a1" 14 427 2 121243842238125 "(a6, -5/16*a6^8 + 9/8*a6^7 + 37/16*a6^6 - 85/8*a6^5 - 15/8*a6^4 + 217/8*a6^3 - 161/16*a6^2 - 161/16*a6 + 7/4, 1/8*a6^8 - 1/4*a6^7 - 9/8*a6^6 + 5/4*a6^5 + 15/4*a6^4 + 3/4*a6^3 - 43/8*a6^2 - 43/8*a6 + 5/2, -1, -1/16*a6^8 + 5/8*a6^7 - 15/16*a6^6 - 41/8*a6^5 + 93/8*a6^4 + 85/8*a6^3 - 461/16*a6^2 - 13/16*a6 + 27/4, 1/8*a6^8 - 1/4*a6^7 - 9/8*a6^6 + 5/4*a6^5 + 19/4*a6^4 - 5/4*a6^3 - 83/8*a6^2 + 21/8*a6 + 9/2)" "x^9 - 5*x^8 - 3*x^7 + 45*x^6 - 32*x^5 - 108*x^4 + 123*x^3 + 30*x^2 - 43*x + 4"
"427a1" 427 427 2 121243842238125 "(a6, -5/16*a6^8 + 9/8*a6^7 + 37/16*a6^6 - 85/8*a6^5 - 15/8*a6^4 + 217/8*a6^3 - 161/16*a6^2 - 161/16*a6 + 7/4, 1/8*a6^8 - 1/4*a6^7 - 9/8*a6^6 + 5/4*a6^5 + 15/4*a6^4 + 3/4*a6^3 - 43/8*a6^2 - 43/8*a6 + 5/2, -1, -1/16*a6^8 + 5/8*a6^7 - 15/16*a6^6 - 41/8*a6^5 + 93/8*a6^4 + 85/8*a6^3 - 461/16*a6^2 - 13/16*a6 + 27/4, 1/8*a6^8 - 1/4*a6^7 - 9/8*a6^6 + 5/4*a6^5 + 19/4*a6^4 - 5/4*a6^3 - 83/8*a6^2 + 21/8*a6 + 9/2)" "x^9 - 5*x^8 - 3*x^7 + 45*x^6 - 32*x^5 - 108*x^4 + 123*x^3 + 30*x^2 - 43*x + 4"
"427b1" 427 427 2 121243842238125 "(a6, -5/16*a6^8 + 9/8*a6^7 + 37/16*a6^6 - 85/8*a6^5 - 15/8*a6^4 + 217/8*a6^3 - 161/16*a6^2 - 161/16*a6 + 7/4, 1/8*a6^8 - 1/4*a6^7 - 9/8*a6^6 + 5/4*a6^5 + 15/4*a6^4 + 3/4*a6^3 - 43/8*a6^2 - 43/8*a6 + 5/2, -1, -1/16*a6^8 + 5/8*a6^7 - 15/16*a6^6 - 41/8*a6^5 + 93/8*a6^4 + 85/8*a6^3 - 461/16*a6^2 - 13/16*a6 + 27/4, 1/8*a6^8 - 1/4*a6^7 - 9/8*a6^6 + 5/4*a6^5 + 19/4*a6^4 - 5/4*a6^3 - 83/8*a6^2 + 21/8*a6 + 9/2)" "x^9 - 5*x^8 - 3*x^7 + 45*x^6 - 32*x^5 - 108*x^4 + 123*x^3 + 30*x^2 - 43*x + 4"
"427b1" 427 427 2 761860861 "(a5, -2*a5^6 + 5*a5^5 + 13*a5^4 - 31*a5^3 - 21*a5^2 + 38*a5 + 13, a5^6 - 2*a5^5 - 7*a5^4 + 12*a5^3 + 13*a5^2 - 14*a5 - 7, 1, -a5^6 + 2*a5^5 + 7*a5^4 - 13*a5^3 - 13*a5^2 + 18*a5 + 9, a5^6 - 4*a5^5 - 6*a5^4 + 26*a5^3 + 10*a5^2 - 34*a5 - 9)" "x^7 - 4*x^6 - 3*x^5 + 26*x^4 - 12*x^3 - 38*x^2 + 23*x + 11"
"14a1" 14 429 2 12 "(a3, -1, -a3 - 1, -2, -1, -1)" "x^2 - 3"
"14a1" 14 429 2 8 "(a2, 1, a2 - 1, -2*a2 - 4, 1, -1)" "x^2 + 2*x - 1"
"14a1" 14 429 2 148 "(a6, 1, -a6^2 + a6 + 4, -a6^2 + 3, -1, -1)" "x^3 - 3*x^2 - x + 5"
"14a1" 14 429 2 8468 "(a7, -1, a7^3 - 6*a7 - 1, a7^3 - 5*a7, -1, 1)" "x^4 + 2*x^3 - 6*x^2 - 12*x - 1"
"14a1" 14 429 2 148 "(a5, 1, -a5^2 + a5 + 2, -a5^2 + 2*a5 + 1, 1, 1)" "x^3 - x^2 - 3*x + 1"
"14a1" 14 429 2 564 "(a4, -1, a4^2 + a4 - 4, a4^2 - 3, 1, -1)" "x^3 + x^2 - 5*x - 3"
"14a1" 14 429 2 8468 "(a7, -1, a7^3 - 6*a7 - 1, a7^3 - 5*a7, -1, 1)" "x^4 + 2*x^3 - 6*x^2 - 12*x - 1"
"14a1" 14 430 2 316 "(-1, -1/2*a7 - 1/2, -1, 1/8*a7^2 - 1/4*a7 - 35/8, -1/4*a7^2 - a7 + 29/4, -3/8*a7^2 - 1/4*a7 + 49/8)" "x^3 - x^2 - 29*x + 37"
"430a1" 430 430 2 12 "(-1, -1/2*a4 - 1/2, 1, a4 + 4, 1/2*a4 + 5/2, -a4 - 2)" "x^2 + 6*x - 3"
"430a1" 430 430 2 8 "(1, 1/2*a6 - 1/2, 1, 1, -1/2*a6 + 5/2, -a6 + 2)" "x^2 - 2*x - 7"
"430a1" 430 430 2 24 "(1, 1/2*a5 - 1/2, -1, 1, -1/2*a5 + 5/2, -1)" "x^2 - 2*x - 23"
"430a1" 430 430 2 316 "(-1, -1/2*a7 - 1/2, -1, 1/8*a7^2 - 1/4*a7 - 35/8, -1/4*a7^2 - a7 + 29/4, -3/8*a7^2 - 1/4*a7 + 49/8)" "x^3 - x^2 - 29*x + 37"
"431a1" 431 431 2 2.78E+048 "(a5, 7935096512256799/3739222839496792400*a5^23 + 810620141708163/3739222839496792400*a5^22 - 173528413706803033/1869611419748396200*a5^21 - 23895258075624573/3739222839496792400*a5^20 + 3321529293701165417/1869611419748396200*a5^19 + 252660572416622679/3739222839496792400*a5^18 - 73061583647644979333/3739222839496792400*a5^17 - 75898348765588621/373922283949679240*a5^16 + 509534382412117002413/3739222839496792400*a5^15 - 3325298853080540599/1869611419748396200*a5^14 - 1172645596977846012287/1869611419748396200*a5^13 + 903232533678644389/46740285493709905*a5^12 + 3592287897607973222257/1869611419748396200*a5^11 - 146985643477082908299/1869611419748396200*a5^10 - 14402977230229462788321/3739222839496792400*a5^9 + 590485552799907048989/3739222839496792400*a5^8 + 9016487276459122122203/1869611419748396200*a5^7 - 20629371559270104601/149568913579871696*a5^6 - 6400831287872758553179/1869611419748396200*a5^5 + 27385716846365639607/3739222839496792400*a5^4 + 4165925951152361601299/3739222839496792400*a5^3 + 1735042892911132546/46740285493709905*a5^2 - 321943156993297734389/3739222839496792400*a5 + 5458880528184681463/1869611419748396200, -3001918608458321/1869611419748396200*a5^23 - 12759708706795807/1869611419748396200*a5^22 + 287562107923492403/3739222839496792400*a5^21 + 501204055954295587/1869611419748396200*a5^20 - 1502875401940431783/934805709874198100*a5^19 - 16932298038253081847/3739222839496792400*a5^18 + 71928844431916175609/3739222839496792400*a5^17 + 16082743684625791651/373922283949679240*a5^16 - 543060246362583052439/3739222839496792400*a5^15 - 942558898465922137941/3739222839496792400*a5^14 + 672495179452626345253/934805709874198100*a5^13 + 43971863404446227282/46740285493709905*a5^12 - 4402363403637250822151/1869611419748396200*a5^11 - 4160062215272089935323/1869611419748396200*a5^10 + 9344614349012167227349/1869611419748396200*a5^9 + 749898640478464070373/233701427468549525*a5^8 - 24465019598760262751343/3739222839496792400*a5^7 - 194198287645854433175/74784456789935848*a5^6 + 4449007914580759656591/934805709874198100*a5^5 + 3820952747901107923889/3739222839496792400*a5^4 - 5722288875361777878787/3739222839496792400*a5^3 - 65155149072801915771/373922283949679240*a5^2 + 432741984388948972677/3739222839496792400*a5 + 13141980820492227997/3739222839496792400, -35787630121593423/934805709874198100*a5^23 + 60838198471411969/934805709874198100*a5^22 + 2762862931361266489/1869611419748396200*a5^21 - 1199874237164921817/467402854937099050*a5^20 - 5701355671340015062/233701427468549525*a5^19 + 81164032958702374919/1869611419748396200*a5^18 + 420267533363728485827/1869611419748396200*a5^17 - 76932407036315675173/186961141974839620*a5^16 - 2364107843674217645287/1869611419748396200*a5^15 + 4484158474116657032417/1869611419748396200*a5^14 + 2082273536237051378129/467402854937099050*a5^13 - 414568701735154291454/46740285493709905*a5^12 - 9027675086674334802323/934805709874198100*a5^11 + 19344563224878302703031/934805709874198100*a5^10 + 11193625240884537479557/934805709874198100*a5^9 - 6827092791113231079522/233701427468549525*a5^8 - 12859267713092377364969/1869611419748396200*a5^7 + 423349137133297982245/18696114197483962*a5^6 + 78779879839721496879/233701427468549525*a5^5 - 14513082675683417024733/1869611419748396200*a5^4 + 1380624963049885371359/1869611419748396200*a5^3 + 127841944903195665451/186961141974839620*a5^2 - 199872708878746885179/1869611419748396200*a5 + 2536591119424755451/1869611419748396200, 67451628528872241/934805709874198100*a5^23 - 178381295431168471/1869611419748396200*a5^22 - 5263676873162652613/1869611419748396200*a5^21 + 883990536502760732/233701427468549525*a5^20 + 88165023682539439007/1869611419748396200*a5^19 - 60082273243396943499/934805709874198100*a5^18 - 828758988874183178759/1869611419748396200*a5^17 + 228817619540220105807/373922283949679240*a5^16 + 1199086738530658518801/467402854937099050*a5^15 - 6695788342786408228039/1869611419748396200*a5^14 - 2203960559996380512259/233701427468549525*a5^13 + 2484792598180848632307/186961141974839620*a5^12 + 5117534687443172292929/233701427468549525*a5^11 - 29055452393678218321127/934805709874198100*a5^10 - 7204941516849953122536/233701427468549525*a5^9 + 82034651111372343981617/1869611419748396200*a5^8 + 44915454252547421150973/1869611419748396200*a5^7 - 631979535643729838637/18696114197483962*a5^6 - 16212915484088264656369/1869611419748396200*a5^5 + 10536673360327159360893/934805709874198100*a5^4 + 2137673101958312288797/1869611419748396200*a5^3 - 314055386251067002129/373922283949679240*a5^2 + 10488029403829973459/934805709874198100*a5 - 8195451031441757417/1869611419748396200, -3965788332294317/93480570987419810*a5^23 + 3634312478198232/46740285493709905*a5^22 + 611279236173504637/373922283949679240*a5^21 - 573916898969329491/186961141974839620*a5^20 - 5028730118744766573/186961141974839620*a5^19 + 3887258035684495681/74784456789935848*a5^18 + 92094632736615785917/373922283949679240*a5^17 - 92280444266947515073/186961141974839620*a5^16 - 512090653399603532709/373922283949679240*a5^15 + 1078291414505118846211/373922283949679240*a5^14 + 441096077126211234921/93480570987419810*a5^13 - 999910732526446038811/93480570987419810*a5^12 - 364938383406133393559/37392228394967924*a5^11 + 4683768668335092704381/186961141974839620*a5^10 + 1003342404512496038719/93480570987419810*a5^9 - 6646727273593904524437/186961141974839620*a5^8 - 1327357990671847060093/373922283949679240*a5^7 + 1039734140656992144775/37392228394967924*a5^6 - 587746046558773202937/186961141974839620*a5^5 - 3658445731262792228403/373922283949679240*a5^4 + 790005540385847834561/373922283949679240*a5^3 + 189052398495358553097/186961141974839620*a5^2 - 16741947394844237877/74784456789935848*a5 - 1614440688059823903/373922283949679240)" "x^24 - x^23 - 40*x^22 + 40*x^21 + 692*x^20 - 687*x^19 - 6790*x^18 + 6631*x^17 + 41657*x^16 - 39533*x^15 - 166175*x^14 + 150668*x^13 + 434546*x^12 - 367120*x^11 - 733353*x^10 + 555013*x^9 + 766426*x^8 - 486022*x^7 - 458392*x^6 + 216189*x^5 + 133642*x^4 - 39443*x^3 - 11021*x^2 + 2767*x + 13"
"14a1" 14 433 2 6.78E+028 "(a3, 3364/49429*a3^15 - 28373/98858*a3^14 - 107815/98858*a3^13 + 258788/49429*a3^12 + 350948/49429*a3^11 - 3787471/98858*a3^10 - 2600707/98858*a3^9 + 7085854/49429*a3^8 + 3337167/49429*a3^7 - 14044214/49429*a3^6 - 12055899/98858*a3^5 + 13153828/49429*a3^4 + 12276925/98858*a3^3 - 7391141/98858*a3^2 - 1965284/49429*a3 - 162529/98858, 7937/49429*a3^15 - 80035/98858*a3^14 - 239229/98858*a3^13 + 793664/49429*a3^12 + 600510/49429*a3^11 - 12594013/98858*a3^10 - 2013751/98858*a3^9 + 25390228/49429*a3^8 + 503083/49429*a3^7 - 54050496/49429*a3^6 - 10121395/98858*a3^5 + 54992077/49429*a3^4 + 28175043/98858*a3^3 - 33332341/98858*a3^2 - 5344871/49429*a3 - 82767/98858, 13927/49429*a3^15 - 65146/49429*a3^14 - 451983/98858*a3^13 + 1307187/49429*a3^12 + 1299411/49429*a3^11 - 10432928/49429*a3^10 - 6129257/98858*a3^9 + 41960809/49429*a3^8 + 3228040/49429*a3^7 - 88189139/49429*a3^6 - 7409068/49429*a3^5 + 176059573/98858*a3^4 + 34422491/98858*a3^3 - 26963958/49429*a3^2 - 13190897/98858*a3 + 179455/98858, -68823/98858*a3^15 + 319749/98858*a3^14 + 555916/49429*a3^13 - 3177931/49429*a3^12 - 6425979/98858*a3^11 + 50230627/98858*a3^10 + 7934153/49429*a3^9 - 99992803/49429*a3^8 - 10277701/49429*a3^7 + 416113753/98858*a3^6 + 23198686/49429*a3^5 - 411857973/98858*a3^4 - 91203129/98858*a3^3 + 63067083/49429*a3^2 + 34013857/98858*a3 - 95214/49429, -182691/197716*a3^15 + 213527/49429*a3^14 + 2938339/197716*a3^13 - 8509457/98858*a3^12 - 16723251/197716*a3^11 + 67437849/98858*a3^10 + 39072321/197716*a3^9 - 134692546/49429*a3^8 - 21136039/98858*a3^7 + 1125412803/197716*a3^6 + 102144287/197716*a3^5 - 1117812989/197716*a3^4 - 57707857/49429*a3^3 + 340584749/197716*a3^2 + 87448217/197716*a3 - 555115/197716)" "x^16 - 7*x^15 - 5*x^14 + 129*x^13 - 125*x^12 - 929*x^11 + 1471*x^10 + 3333*x^9 - 6394*x^8 - 6443*x^7 + 13118*x^6 + 7162*x^5 - 12217*x^4 - 4691*x^3 + 3598*x^2 + 1114*x - 3"
"433a1" 433 433 2 404 "(1, a1 - 1, a1 - 1, -1/2*a1^2 + a1 + 9/2, -a1 + 3, -a1^2 + 8)" "x^3 - 3*x^2 - 5*x + 11"
"433a1" 433 433 2 6.78E+028 "(a3, 3364/49429*a3^15 - 28373/98858*a3^14 - 107815/98858*a3^13 + 258788/49429*a3^12 + 350948/49429*a3^11 - 3787471/98858*a3^10 - 2600707/98858*a3^9 + 7085854/49429*a3^8 + 3337167/49429*a3^7 - 14044214/49429*a3^6 - 12055899/98858*a3^5 + 13153828/49429*a3^4 + 12276925/98858*a3^3 - 7391141/98858*a3^2 - 1965284/49429*a3 - 162529/98858, 7937/49429*a3^15 - 80035/98858*a3^14 - 239229/98858*a3^13 + 793664/49429*a3^12 + 600510/49429*a3^11 - 12594013/98858*a3^10 - 2013751/98858*a3^9 + 25390228/49429*a3^8 + 503083/49429*a3^7 - 54050496/49429*a3^6 - 10121395/98858*a3^5 + 54992077/49429*a3^4 + 28175043/98858*a3^3 - 33332341/98858*a3^2 - 5344871/49429*a3 - 82767/98858, 13927/49429*a3^15 - 65146/49429*a3^14 - 451983/98858*a3^13 + 1307187/49429*a3^12 + 1299411/49429*a3^11 - 10432928/49429*a3^10 - 6129257/98858*a3^9 + 41960809/49429*a3^8 + 3228040/49429*a3^7 - 88189139/49429*a3^6 - 7409068/49429*a3^5 + 176059573/98858*a3^4 + 34422491/98858*a3^3 - 26963958/49429*a3^2 - 13190897/98858*a3 + 179455/98858, -68823/98858*a3^15 + 319749/98858*a3^14 + 555916/49429*a3^13 - 3177931/49429*a3^12 - 6425979/98858*a3^11 + 50230627/98858*a3^10 + 7934153/49429*a3^9 - 99992803/49429*a3^8 - 10277701/49429*a3^7 + 416113753/98858*a3^6 + 23198686/49429*a3^5 - 411857973/98858*a3^4 - 91203129/98858*a3^3 + 63067083/49429*a3^2 + 34013857/98858*a3 - 95214/49429, -182691/197716*a3^15 + 213527/49429*a3^14 + 2938339/197716*a3^13 - 8509457/98858*a3^12 - 16723251/197716*a3^11 + 67437849/98858*a3^10 + 39072321/197716*a3^9 - 134692546/49429*a3^8 - 21136039/98858*a3^7 + 1125412803/197716*a3^6 + 102144287/197716*a3^5 - 1117812989/197716*a3^4 - 57707857/49429*a3^3 + 340584749/197716*a3^2 + 87448217/197716*a3 - 555115/197716)" "x^16 - 7*x^15 - 5*x^14 + 129*x^13 - 125*x^12 - 929*x^11 + 1471*x^10 + 3333*x^9 - 6394*x^8 - 6443*x^7 + 13118*x^6 + 7162*x^5 - 12217*x^4 - 4691*x^3 + 3598*x^2 + 1114*x - 3"
"14a1" 14 434 2 568 "(1, a8 - 1, -a8 + 1, 1, -a8^2 + 3*a8 + 2, 4)" "x^3 - 4*x^2 - 3*x + 10"
"14a1" 14 434 2 568 "(-1, 1/2*a7 + 1/2, -1/4*a7^2 - 1/2*a7 + 15/4, -1, -1/2*a7^2 - a7 + 19/2, a7 + 3)" "x^3 + 7*x^2 - 9*x - 79"
"14a1" 14 434 2 17 "(1, 1/2*a6 - 1/2, -1/2*a6 + 5/2, -1, 4, -a6 - 1)" "x^2 - 4*x - 13"
"434b1" 434 434 2 568 "(1, a8 - 1, -a8 + 1, 1, -a8^2 + 3*a8 + 2, 4)" "x^3 - 4*x^2 - 3*x + 10"
"434b1" 434 434 2 568 "(-1, 1/2*a7 + 1/2, -1/4*a7^2 - 1/2*a7 + 15/4, -1, -1/2*a7^2 - a7 + 19/2, a7 + 3)" "x^3 + 7*x^2 - 9*x - 79"
"434b1" 434 434 2 8 "(-1, -1/2*a5 - 1/2, -a5 - 4, 1, 0, a5 + 7)" "x^2 + 6*x + 1"
"434b1" 434 434 2 17 "(1, 1/2*a6 - 1/2, -1/2*a6 + 5/2, -1, 4, -a6 - 1)" "x^2 - 4*x - 13"
"14a1" 14 435 2 17 "(a7, 1, 1, -2*a7 + 2, -a7 - 3, -2)" "x^2 - x - 4"
"435a1" 435 435 2 469 "(a8, -1, 1, -a8^2 + a8 + 2, 3, a8^2 + a8 - 2)" "x^3 - x^2 - 5*x + 4"
"435a1" 435 435 2 17 "(a7, 1, 1, -2*a7 + 2, -a7 - 3, -2)" "x^2 - x - 4"
"14a1" 14 436 2 30273 "(0, -1/2*a2, 1/2*a2 + 2, -1/8*a2^3 - 1/4*a2^2 + 2*a2 + 4, 1/8*a2^3 + 1/4*a2^2 - 5/2*a2 - 2, 1/8*a2^3 - 2*a2 + 2)" "x^4 - 28*x^2 + 8*x + 128"
"109a1" 109 436 2 8 "(0, -a0, -a0 + 1, -2, 1/2*a0 - 3, 0)" "x^2 - 8"
"14a1" 14 437 2 1.54E+021 "(a7, -47/244*a7^11 + 91/244*a7^10 + 391/122*a7^9 - 23/4*a7^8 - 1137/61*a7^7 + 117/4*a7^6 + 5647/122*a7^5 - 13993/244*a7^4 - 10833/244*a7^3 + 2207/61*a7^2 + 299/61*a7 - 140/61, -6/61*a7^11 + 22/61*a7^10 + 175/122*a7^9 - 6*a7^8 - 395/61*a7^7 + 69/2*a7^6 + 1099/122*a7^5 - 5044/61*a7^4 + 120/61*a7^3 + 9121/122*a7^2 - 408/61*a7 - 675/61, 5/244*a7^11 + 63/244*a7^10 - 50/61*a7^9 - 17/4*a7^8 + 1105/122*a7^7 + 97/4*a7^6 - 2327/61*a7^5 - 14239/244*a7^4 + 14601/244*a7^3 + 3311/61*a7^2 - 1379/61*a7 - 355/61, 7/122*a7^11 + 15/122*a7^10 - 79/61*a7^9 - 5/2*a7^8 + 1325/122*a7^7 + 37/2*a7^6 - 4967/122*a7^5 - 3605/61*a7^4 + 7607/122*a7^3 + 8623/122*a7^2 - 1348/61*a7 - 567/61, -13/122*a7^11 + 7/122*a7^10 + 215/122*a7^9 - 1/2*a7^8 - 616/61*a7^7 - a7^6 + 2985/122*a7^5 + 1861/122*a7^4 - 2973/122*a7^3 - 3605/122*a7^2 + 473/61*a7 + 626/61)" "x^12 - 2*x^11 - 19*x^10 + 35*x^9 + 137*x^8 - 219*x^7 - 483*x^6 + 605*x^5 + 866*x^4 - 707*x^3 - 682*x^2 + 236*x + 96"
"19a1" 19 437 2 8 "(a3, a3 - 2, -a3 - 1, a3 - 1, a3 + 1, -4*a3)" "x^2 - 2"
"19a1" 19 437 2 645835460800 "(a6, -3/10*a6^7 + 1/10*a6^6 + 37/10*a6^5 - 9/10*a6^4 - 64/5*a6^3 + 11/5*a6^2 + 51/5*a6 + 6/5, 1/10*a6^7 + 3/10*a6^6 - 7/5*a6^5 - 16/5*a6^4 + 51/10*a6^3 + 81/10*a6^2 - 17/5*a6 - 12/5, -1/2*a6^7 + 13/2*a6^5 - 1/2*a6^4 - 23*a6^3 + 9/2*a6^2 + 16*a6, -1/5*a6^7 - 1/10*a6^6 + 23/10*a6^5 + 19/10*a6^4 - 67/10*a6^3 - 41/5*a6^2 + 14/5*a6 + 29/5, 3/10*a6^7 - 1/10*a6^6 - 21/5*a6^5 + 7/5*a6^4 + 163/10*a6^3 - 47/10*a6^2 - 66/5*a6 - 1/5)" "x^8 - 13*x^6 + 47*x^4 - 2*x^3 - 37*x^2 - 2*x + 2"
"19a1" 19 437 2 1.54E+021 "(a7, -47/244*a7^11 + 91/244*a7^10 + 391/122*a7^9 - 23/4*a7^8 - 1137/61*a7^7 + 117/4*a7^6 + 5647/122*a7^5 - 13993/244*a7^4 - 10833/244*a7^3 + 2207/61*a7^2 + 299/61*a7 - 140/61, -6/61*a7^11 + 22/61*a7^10 + 175/122*a7^9 - 6*a7^8 - 395/61*a7^7 + 69/2*a7^6 + 1099/122*a7^5 - 5044/61*a7^4 + 120/61*a7^3 + 9121/122*a7^2 - 408/61*a7 - 675/61, 5/244*a7^11 + 63/244*a7^10 - 50/61*a7^9 - 17/4*a7^8 + 1105/122*a7^7 + 97/4*a7^6 - 2327/61*a7^5 - 14239/244*a7^4 + 14601/244*a7^3 + 3311/61*a7^2 - 1379/61*a7 - 355/61, 7/122*a7^11 + 15/122*a7^10 - 79/61*a7^9 - 5/2*a7^8 + 1325/122*a7^7 + 37/2*a7^6 - 4967/122*a7^5 - 3605/61*a7^4 + 7607/122*a7^3 + 8623/122*a7^2 - 1348/61*a7 - 567/61, -13/122*a7^11 + 7/122*a7^10 + 215/122*a7^9 - 1/2*a7^8 - 616/61*a7^7 - a7^6 + 2985/122*a7^5 + 1861/122*a7^4 - 2973/122*a7^3 - 3605/122*a7^2 + 473/61*a7 + 626/61)" "x^12 - 2*x^11 - 19*x^10 + 35*x^9 + 137*x^8 - 219*x^7 - 483*x^6 + 605*x^5 + 866*x^4 - 707*x^3 - 682*x^2 + 236*x + 96"
"19a1" 19 437 2 135076 "(a5, -a5^2 - a5 + 2, a5^2 + a5 - 3, -a5^2 - a5 + 1, -a5^4 - a5^3 + 6*a5^2 + a5 - 7, -a5^4 - 2*a5^3 + 5*a5^2 + 6*a5 - 8)" "x^5 + x^4 - 7*x^3 - 2*x^2 + 12*x - 4"
"14a1" 14 438 2 8 "(-1, -1, -1/2*a7 - 3/2, -1/2*a7 - 3/2, -2, 1/2*a7 + 11/2)" "x^2 + 6*x - 23"
"14a1" 14 440 2 17 "(0, -1/2*a4, 1, -1/2*a4, 1, 2)" "x^2 - 2*x - 16"
"14a1" 14 440 2 17 "(0, -a5, -1, a5 + 2, 1, -2*a5)" "x^2 + x - 4"
"14a1" 14 440 2 17 "(0, a6, -1, a6 + 2, -1, -2*a6 + 4)" "x^2 - x - 4"
"110a1" 110 440 2 17 "(0, -1/2*a4, 1, -1/2*a4, 1, 2)" "x^2 - 2*x - 16"
"110a1" 110 440 2 17 "(0, a6, -1, a6 + 2, -1, -2*a6 + 4)" "x^2 - x - 4"
"110a1" 110 440 2 17 "(0, -a5, -1, a5 + 2, 1, -2*a5)" "x^2 + x - 4"
"14a1" 14 441 2 8 "(a8, 0, a8 - 3, 0, 2, a8 + 3)" "x^2 - 2*x - 1"
"14a1" 14 441 2 28 "(a7, 0, 0, 0, -2*a7, 0)" "x^2 - 7"
"14a1" 14 441 2 12 "(a6, 0, 2*a6, 0, 2*a6, -2)" "x^2 - 3"
"14a1" 14 441 2 8 "(a9, 0, -a9 + 3, 0, 2, -a9 - 3)" "x^2 - 2*x - 1"
"14a1" 14 442 2 148 "(-1, a7 + 1, -a7^2 - 3*a7, a7^2 + 2*a7 - 3, -2*a7 - 4, -1)" "x^3 + 5*x^2 + 3*x - 5"
"14a1" 14 442 2 316 "(1, a8 - 1, -a8 + 3, 0, -a8^2 + 2*a8 + 3, 1)" "x^3 - 5*x^2 + x + 11"
"14a1" 14 442 2 316 "(1, a8 - 1, -a8 + 3, 0, -a8^2 + 2*a8 + 3, 1)" "x^3 - 5*x^2 + x + 11"
"14a1" 14 442 2 8 "(-1, a5 + 1, -a5 - 3, 2*a5 + 6, -2*a5 - 8, 1)" "x^2 + 6*x + 7"
"443a1" 443 443 2 7.76E+017 "(a3, -953/3391*a3^11 - 2407/3391*a3^10 + 12118/3391*a3^9 + 28943/3391*a3^8 - 54989/3391*a3^7 - 118907/3391*a3^6 + 107898/3391*a3^5 + 192792/3391*a3^4 - 89082/3391*a3^3 - 106533/3391*a3^2 + 22942/3391*a3 + 7855/3391, 1928/10173*a3^11 + 5446/10173*a3^10 - 7892/3391*a3^9 - 22794/3391*a3^8 + 101843/10173*a3^7 + 100645/3391*a3^6 - 64436/3391*a3^5 - 184296/3391*a3^4 + 197453/10173*a3^3 + 360922/10173*a3^2 - 126538/10173*a3 - 5494/3391, 2606/10173*a3^11 + 10126/10173*a3^10 - 8613/3391*a3^9 - 41834/3391*a3^8 + 70319/10173*a3^7 + 182256/3391*a3^6 - 4206/3391*a3^5 - 331390/3391*a3^4 - 88522/10173*a3^3 + 670810/10173*a3^2 - 16183/10173*a3 - 19590/3391, -2324/10173*a3^11 - 6649/10173*a3^10 + 7923/3391*a3^9 + 24732/3391*a3^8 - 67316/10173*a3^7 - 92015/3391*a3^6 + 4110/3391*a3^5 + 130128/3391*a3^4 + 116590/10173*a3^3 - 173890/10173*a3^2 - 59543/10173*a3 - 3438/3391, -1705/10173*a3^11 - 8288/10173*a3^10 + 4749/3391*a3^9 + 34907/3391*a3^8 - 15523/10173*a3^7 - 153681/3391*a3^6 - 34989/3391*a3^5 + 273166/3391*a3^4 + 202298/10173*a3^3 - 485564/10173*a3^2 - 26056/10173*a3 - 8315/3391)" "x^12 + 3*x^11 - 13*x^10 - 39*x^9 + 64*x^8 + 181*x^7 - 159*x^6 - 357*x^5 + 226*x^4 + 264*x^3 - 156*x^2 - 20*x + 6"
"443a1" 443 443 2 9.93E+045 "(a4, 24331639715/276511903884*a4^21 - 8125806695/122894179504*a4^20 - 3412458404095/1106047615536*a4^19 + 2389711908563/1106047615536*a4^18 + 51138378435019/1106047615536*a4^17 - 32431419686159/1106047615536*a4^16 - 214033136471141/553023807768*a4^15 + 4926713915392/23042658657*a4^14 + 548510219486683/276511903884*a4^13 - 166235001605939/184341269256*a4^12 - 7092131576110951/1106047615536*a4^11 + 2420044653883823/1106047615536*a4^10 + 14322072309976415/1106047615536*a4^9 - 771797422040513/276511903884*a4^8 - 2861400783481183/184341269256*a4^7 + 748307574118151/553023807768*a4^6 + 2701481312105405/276511903884*a4^5 + 88077002352901/553023807768*a4^4 - 221305411235065/92170634628*a4^3 + 2558974223989/553023807768*a4^2 + 15160229436083/92170634628*a4 - 2044922361293/138255951942, -4487692457/553023807768*a4^21 + 464915797/92170634628*a4^20 + 17265814817/69127975971*a4^19 - 58814741377/276511903884*a4^18 - 447258475993/138255951942*a4^17 + 1990589437673/553023807768*a4^16 + 6368715278051/276511903884*a4^15 - 497959835343/15361772438*a4^14 - 27419742322367/276511903884*a4^13 + 10498224082397/61447089752*a4^12 + 18621638832281/69127975971*a4^11 - 149378130661807/276511903884*a4^10 - 260756674651403/553023807768*a4^9 + 277082845647397/276511903884*a4^8 + 24477554211125/46085317314*a4^7 - 280269013911485/276511903884*a4^6 - 98494826092843/276511903884*a4^5 + 134782019264321/276511903884*a4^4 + 3280809564745/30723544876*a4^3 - 27800586430795/276511903884*a4^2 - 684082799419/46085317314*a4 + 369225624443/69127975971, -77378520413/1106047615536*a4^21 + 11248192515/122894179504*a4^20 + 2786326409257/1106047615536*a4^19 - 3235313679647/1106047615536*a4^18 - 42837539306137/1106047615536*a4^17 + 21602664606733/553023807768*a4^16 + 22968487627630/69127975971*a4^15 - 26030166998233/92170634628*a4^14 - 964027086846113/553023807768*a4^13 + 440416402259833/368682538512*a4^12 + 6368731241805277/1106047615536*a4^11 - 3284291651518895/1106047615536*a4^10 - 3277415486212031/276511903884*a4^9 + 2261376132136177/553023807768*a4^8 + 2659389515200819/184341269256*a4^7 - 729926036929771/276511903884*a4^6 - 5065503313809637/553023807768*a4^5 + 144727804023313/276511903884*a4^4 + 412422490650353/184341269256*a4^3 - 40909468337813/276511903884*a4^2 - 6718151258917/46085317314*a4 + 1360277665744/69127975971, 22030898407/276511903884*a4^21 - 22355967073/184341269256*a4^20 - 1602149670475/553023807768*a4^19 + 2133015121595/553023807768*a4^18 + 24838378447063/553023807768*a4^17 - 28390101913589/553023807768*a4^16 - 107299333802765/276511903884*a4^15 + 8542868734255/23042658657*a4^14 + 141583156365272/69127975971*a4^13 - 72468197810867/46085317314*a4^12 - 3761550886522039/553023807768*a4^11 + 2183765319954767/553023807768*a4^10 + 7787958126000041/553023807768*a4^9 - 772557788684753/138255951942*a4^8 - 1593947275306051/92170634628*a4^7 + 1077979190630885/276511903884*a4^6 + 774143588048455/69127975971*a4^5 - 286253750311157/276511903884*a4^4 - 67097718790501/23042658657*a4^3 + 68665841942827/276511903884*a4^2 + 3442866847655/15361772438*a4 - 1993849215107/69127975971, -28106337295/737365077024*a4^21 + 1790239187/245788359008*a4^20 + 952185112427/737365077024*a4^19 - 190843830589/737365077024*a4^18 - 13706797493867/737365077024*a4^17 + 1392565355075/368682538512*a4^16 + 13664759825365/92170634628*a4^15 - 1838677236247/61447089752*a4^14 - 263987050082995/368682538512*a4^13 + 35189455123363/245788359008*a4^12 + 1585535871843647/737365077024*a4^11 - 322273338485437/737365077024*a4^10 - 732378231481303/184341269256*a4^9 + 323065131836135/368682538512*a4^8 + 532566927912329/122894179504*a4^7 - 209230094037173/184341269256*a4^6 - 961664330793791/368682538512*a4^5 + 153056014419467/184341269256*a4^4 + 97746233271315/122894179504*a4^3 - 40755672026287/184341269256*a4^2 - 2256745894127/30723544876*a4 + 376488821731/23042658657)" "x^22 - x^21 - 35*x^20 + 33*x^19 + 523*x^18 - 456*x^17 - 4360*x^16 + 3428*x^15 + 22226*x^14 - 15227*x^13 - 71363*x^12 + 40569*x^11 + 143034*x^10 - 62774*x^9 - 170342*x^8 + 51992*x^7 + 107186*x^6 - 20952*x^5 - 26926*x^4 + 5536*x^3 + 1736*x^2 - 512*x + 32"
"14a1" 14 444 2 24 "(0, 1, -1/2*a3 + 1/2, 2, 0, a3 + 1)" "x^2 - 2*x - 23"
"14a1" 14 444 2 12 "(0, -1, -a2 + 2, 2*a2 - 6, -4, -2*a2 + 6)" "x^2 - 6*x + 6"
"14a1" 14 445 2 12 "(a1, a1 + 1, 1, -a1 - 1, 0, 2)" "x^2 - 3"
"14a1" 14 445 2 324323556 "(a5, 2/3*a5^6 + 5/3*a5^5 - 4*a5^4 - 9*a5^3 + 14/3*a5^2 + 19/3*a5 - 3, 1, -1/3*a5^6 - 4/3*a5^5 + a5^4 + 7*a5^3 + 5/3*a5^2 - 14/3*a5 - 2, -1/3*a5^6 - 1/3*a5^5 + 4*a5^4 + 3*a5^3 - 40/3*a5^2 - 20/3*a5 + 7, -5/3*a5^6 - 17/3*a5^5 + 5*a5^4 + 28*a5^3 + 40/3*a5^2 - 37/3*a5 - 10)" "x^7 + 4*x^6 - 3*x^5 - 24*x^4 - 8*x^3 + 29*x^2 + 6*x - 9"
"14a1" 14 445 2 8 "(a2, -a2 + 1, 1, a2 - 1, 4, -2*a2 + 4)" "x^2 - 2*x - 1"
"14a1" 14 445 2 44622944512 "(a6, a6^7 - 1/2*a6^6 - 23/2*a6^5 + 4*a6^4 + 38*a6^3 - 6*a6^2 - 65/2*a6 + 9/2, -1, 3*a6^7 - 5/2*a6^6 - 67/2*a6^5 + 21*a6^4 + 106*a6^3 - 37*a6^2 - 173/2*a6 + 33/2, -a6^3 + 5*a6 + 2, a6^7 - a6^6 - 12*a6^5 + 9*a6^4 + 42*a6^3 - 19*a6^2 - 39*a6 + 9)" "x^8 - x^7 - 11*x^6 + 9*x^5 + 34*x^4 - 19*x^3 - 27*x^2 + 11*x - 1"
"14a1" 14 446 2 4851886067712 "(-1, -a5 - 1, 1/33*a5^7 + 7/33*a5^6 + 2/33*a5^5 - 58/33*a5^4 - 31/33*a5^3 + 193/33*a5^2 + 17/11*a5 - 43/11, 4/33*a5^6 + 26/33*a5^5 - 5/33*a5^4 - 82/11*a5^3 - 166/33*a5^2 + 164/11*a5 + 85/11, -2/33*a5^7 - 20/33*a5^6 - 43/33*a5^5 + 107/33*a5^4 + 365/33*a5^3 - 71/33*a5^2 - 203/11*a5 - 47/11, 2/33*a5^7 + 6/11*a5^6 + 10/11*a5^5 - 8/3*a5^4 - 13/3*a5^3 + 17/3*a5^2 + 10/11)" "x^8 + 12*x^7 + 44*x^6 + 14*x^5 - 206*x^4 - 244*x^3 + 214*x^2 + 294*x + 57"
"14a1" 14 446 2 12638384896 "(1, 1/2*a4 - 1/2, -3/7648*a4^6 + 55/7648*a4^5 - 23/3824*a4^4 - 929/3824*a4^3 + 1137/7648*a4^2 + 14475/7648*a4 + 428/239, -41/15296*a4^6 + 97/7648*a4^5 + 1841/15296*a4^4 - 1369/3824*a4^3 - 24135/15296*a4^2 + 12753/7648*a4 + 86719/15296, 9/3824*a4^6 - 91/7648*a4^5 - 919/7648*a4^4 + 1511/3824*a4^3 + 459/239*a4^2 - 21603/7648*a4 - 37483/7648, 1/239*a4^6 - 67/1912*a4^5 - 49/478*a4^4 + 2007/1912*a4^3 + 553/1912*a4^2 - 2719/478*a4 + 363/1912)" "x^7 - 9*x^6 - 23*x^5 + 311*x^4 - 69*x^3 - 2467*x^2 + 1627*x + 2933"
"446a1" 446 446 2 12638384896 "(1, 1/2*a4 - 1/2, -3/7648*a4^6 + 55/7648*a4^5 - 23/3824*a4^4 - 929/3824*a4^3 + 1137/7648*a4^2 + 14475/7648*a4 + 428/239, -41/15296*a4^6 + 97/7648*a4^5 + 1841/15296*a4^4 - 1369/3824*a4^3 - 24135/15296*a4^2 + 12753/7648*a4 + 86719/15296, 9/3824*a4^6 - 91/7648*a4^5 - 919/7648*a4^4 + 1511/3824*a4^3 + 459/239*a4^2 - 21603/7648*a4 - 37483/7648, 1/239*a4^6 - 67/1912*a4^5 - 49/478*a4^4 + 2007/1912*a4^3 + 553/1912*a4^2 - 2719/478*a4 + 363/1912)" "x^7 - 9*x^6 - 23*x^5 + 311*x^4 - 69*x^3 - 2467*x^2 + 1627*x + 2933"
"14a1" 14 447 2 2.52E+016 "(a3, -1, -135/647*a3^9 + 358/647*a3^8 + 1898/647*a3^7 - 4732/647*a3^6 - 8776/647*a3^5 + 19642/647*a3^4 + 14058/647*a3^3 - 26097/647*a3^2 - 2602/647*a3 + 2962/647, 29/647*a3^9 - 144/647*a3^8 - 355/647*a3^7 + 1860/647*a3^6 + 1636/647*a3^5 - 7579/647*a3^4 - 4357/647*a3^3 + 10667/647*a3^2 + 5572/647*a3 - 1983/647, -51/647*a3^9 + 164/647*a3^8 + 602/647*a3^7 - 2334/647*a3^6 - 2007/647*a3^5 + 10986/647*a3^4 + 1170/647*a3^3 - 17666/647*a3^2 + 2784/647*a3 + 2528/647, 270/647*a3^9 - 716/647*a3^8 - 3149/647*a3^7 + 8170/647*a3^6 + 11082/647*a3^5 - 27638/647*a3^4 - 12588/647*a3^3 + 28902/647*a3^2 + 1322/647*a3 - 1395/647)" "x^10 - 3*x^9 - 12*x^8 + 37*x^7 + 44*x^6 - 142*x^5 - 50*x^4 + 181*x^3 - 5*x^2 - 30*x + 1"
"14a1" 14 449 2 6.86E+048 "(a1, 3587401463/505414861488*a1^22 - 7650779429/336943240992*a1^21 - 150864645115/505414861488*a1^20 + 825392841079/1010829722976*a1^19 + 5450047860893/1010829722976*a1^18 - 6344315242307/505414861488*a1^17 - 27696702887935/505414861488*a1^16 + 108892865144615/1010829722976*a1^15 + 6012670597195/17428098672*a1^14 - 71421083468347/126353715372*a1^13 - 470356381031857/336943240992*a1^12 + 943155604067327/505414861488*a1^11 + 1228712346186743/336943240992*a1^10 - 1940384255679473/505414861488*a1^9 - 3041227590875047/505414861488*a1^8 + 43884038119555/9359534472*a1^7 + 6017749368007493/1010829722976*a1^6 - 1532894924053417/505414861488*a1^5 - 809680458782215/252707430744*a1^4 + 194797323522557/252707430744*a1^3 + 86827452979241/112314413664*a1^2 - 1239867085561/336943240992*a1 - 4509261066899/112314413664, 36207620017/1516244584464*a1^22 - 392715416/31588428843*a1^21 - 347942083499/379061146116*a1^20 + 326631794837/758122292232*a1^19 + 11567268044365/758122292232*a1^18 - 9606455528161/1516244584464*a1^17 - 108957607448593/758122292232*a1^16 + 78030276152777/1516244584464*a1^15 + 2760254289026/3267768501*a1^14 - 381574682954333/1516244584464*a1^13 - 812551049946659/252707430744*a1^12 + 286698557455579/379061146116*a1^11 + 4027851952874915/505414861488*a1^10 - 1032782020658657/758122292232*a1^9 - 9557529760524427/758122292232*a1^8 + 75413531184863/56157206832*a1^7 + 9196221796045171/758122292232*a1^6 - 791176870326971/1516244584464*a1^5 - 9824972033892583/1516244584464*a1^4 - 24143673588209/189530573058*a1^3 + 133443099270145/84235810248*a1^2 + 55513767426557/505414861488*a1 - 15548291459519/168471620496, -3203239213/379061146116*a1^22 - 595819192/31588428843*a1^21 + 131419749017/379061146116*a1^20 + 135495968281/189530573058*a1^19 - 578128330394/94765286529*a1^18 - 2208746478799/189530573058*a1^17 + 11406429012787/189530573058*a1^16 + 10118781621100/94765286529*a1^15 - 4772077428473/13071074004*a1^14 - 57120718814416/94765286529*a1^13 + 177572889554965/126353715372*a1^12 + 204603006231941/94765286529*a1^11 - 108026982272480/31588428843*a1^10 - 1843832442646961/379061146116*a1^9 + 1928985934508705/379061146116*a1^8 + 46197173442761/7019650854*a1^7 - 1647721213925357/379061146116*a1^6 - 1835788779751429/379061146116*a1^5 + 369514164098459/189530573058*a1^4 + 151311038776075/94765286529*a1^3 - 17053794357965/42117905124*a1^2 - 4474501036763/31588428843*a1 + 1456347043919/42117905124, 1316367895/13071074004*a1^22 + 143938909/4357024668*a1^21 - 98901947617/26142148008*a1^20 - 31767174607/26142148008*a1^19 + 800451361073/13071074004*a1^18 + 504571904809/26142148008*a1^17 - 14614387602187/26142148008*a1^16 - 4536403667465/26142148008*a1^15 + 10335990602869/3267768501*a1^14 + 12686579651077/13071074004*a1^13 - 50010652113031/4357024668*a1^12 - 91081664277415/26142148008*a1^11 + 232891347633433/8714049336*a1^10 + 104039493898811/13071074004*a1^9 - 507807968945921/13071074004*a1^8 - 1338455500426/121028463*a1^7 + 217470996651883/6535537002*a1^6 + 223508416742801/26142148008*a1^5 - 398585214435515/26142148008*a1^4 - 83332756026185/26142148008*a1^3 + 9178192928377/2904683112*a1^2 + 450488942858/1089256167*a1 - 550385323477/2904683112, 195233617/42117905124*a1^22 - 414868283/14039301708*a1^21 - 15796492285/84235810248*a1^20 + 86437170467/84235810248*a1^19 + 135808599155/42117905124*a1^18 - 1277406335507/84235810248*a1^17 - 2585591022709/84235810248*a1^16 + 10490165145163/84235810248*a1^15 + 256148401301/1452341556*a1^14 - 6555531117833/10529476281*a1^13 - 2189147016799/3509825427*a1^12 + 164502933796967/84235810248*a1^11 + 36917895584197/28078603416*a1^10 - 40262902255258/10529476281*a1^9 - 30931084418797/21058952562*a1^8 + 21094288477639/4679767236*a1^7 + 22239202918745/42117905124*a1^6 - 248588646677557/84235810248*a1^5 + 28578818562373/84235810248*a1^4 + 74722840056937/84235810248*a1^3 - 2281389091951/9359534472*a1^2 - 1034343318067/14039301708*a1 + 227399339381/9359534472)" "x^23 - 38*x^21 + x^20 + 623*x^19 - 31*x^18 - 5771*x^17 + 398*x^16 + 33229*x^15 - 2753*x^14 - 123306*x^13 + 11230*x^12 + 296022*x^11 - 28009*x^10 - 450008*x^9 + 43215*x^8 + 412760*x^7 - 40559*x^6 - 210040*x^5 + 21311*x^4 + 50781*x^3 - 5664*x^2 - 3789*x + 621"
"11a1" 11 451 2 2.04E+021 "(a4, -11/232*a4^11 - 15/232*a4^10 + 27/29*a4^9 + 36/29*a4^8 - 1559/232*a4^7 - 883/116*a4^6 + 4841/232*a4^5 + 3869/232*a4^4 - 5605/232*a4^3 - 1119/116*a4^2 + 188/29*a4 - 31/29, 59/232*a4^11 - 83/232*a4^10 - 487/116*a4^9 + 147/29*a4^8 + 5599/232*a4^7 - 1369/58*a4^6 - 13121/232*a4^5 + 9213/232*a4^4 + 11403/232*a4^3 - 1179/58*a4^2 - 485/58*a4 + 103/29, -7/232*a4^11 + 1/232*a4^10 + 37/58*a4^9 + 1/58*a4^8 - 1203/232*a4^7 - 61/116*a4^6 + 4557/232*a4^5 + 353/232*a4^4 - 7553/232*a4^3 + 63/116*a4^2 + 959/58*a4 - 54/29, -1, -49/232*a4^11 + 123/232*a4^10 + 86/29*a4^9 - 214/29*a4^8 - 3085/232*a4^7 + 3923/116*a4^6 + 4291/232*a4^5 - 13073/232*a4^4 + 489/232*a4^3 + 3283/116*a4^2 - 312/29*a4 - 30/29)" "x^12 - 3*x^11 - 16*x^10 + 48*x^9 + 93*x^8 - 270*x^7 - 251*x^6 + 633*x^5 + 359*x^4 - 582*x^3 - 248*x^2 + 136*x + 32"
"14a1" 14 451 2 2.04E+021 "(a4, -11/232*a4^11 - 15/232*a4^10 + 27/29*a4^9 + 36/29*a4^8 - 1559/232*a4^7 - 883/116*a4^6 + 4841/232*a4^5 + 3869/232*a4^4 - 5605/232*a4^3 - 1119/116*a4^2 + 188/29*a4 - 31/29, 59/232*a4^11 - 83/232*a4^10 - 487/116*a4^9 + 147/29*a4^8 + 5599/232*a4^7 - 1369/58*a4^6 - 13121/232*a4^5 + 9213/232*a4^4 + 11403/232*a4^3 - 1179/58*a4^2 - 485/58*a4 + 103/29, -7/232*a4^11 + 1/232*a4^10 + 37/58*a4^9 + 1/58*a4^8 - 1203/232*a4^7 - 61/116*a4^6 + 4557/232*a4^5 + 353/232*a4^4 - 7553/232*a4^3 + 63/116*a4^2 + 959/58*a4 - 54/29, -1, -49/232*a4^11 + 123/232*a4^10 + 86/29*a4^9 - 214/29*a4^8 - 3085/232*a4^7 + 3923/116*a4^6 + 4291/232*a4^5 - 13073/232*a4^4 + 489/232*a4^3 + 3283/116*a4^2 - 312/29*a4 - 30/29)" "x^12 - 3*x^11 - 16*x^10 + 48*x^9 + 93*x^8 - 270*x^7 - 251*x^6 + 633*x^5 + 359*x^4 - 582*x^3 - 248*x^2 + 136*x + 32"
"902a1" 902 451 2 4.80E+015 "(a3, 7/2*a3^9 - 12*a3^8 - 28*a3^7 + 117*a3^6 + 89/2*a3^5 - 685/2*a3^4 + 54*a3^3 + 605/2*a3^2 - 74*a3 - 44, 1/4*a3^9 - a3^8 - 3/2*a3^7 + 19/2*a3^6 - 7/4*a3^5 - 105/4*a3^4 + 35/2*a3^3 + 81/4*a3^2 - 27/2*a3 - 2, 5/2*a3^9 - 17/2*a3^8 - 20*a3^7 + 83*a3^6 + 63/2*a3^5 - 244*a3^4 + 79/2*a3^3 + 437/2*a3^2 - 105/2*a3 - 33, 1, 5/2*a3^9 - 8*a3^8 - 21*a3^7 + 77*a3^6 + 81/2*a3^5 - 439/2*a3^4 + 18*a3^3 + 365/2*a3^2 - 40*a3 - 23)" "x^10 - 4*x^9 - 6*x^8 + 38*x^7 - 7*x^6 - 105*x^5 + 74*x^4 + 77*x^3 - 74*x^2 + 8"
"902a1" 902 451 2 2.04E+021 "(a4, -11/232*a4^11 - 15/232*a4^10 + 27/29*a4^9 + 36/29*a4^8 - 1559/232*a4^7 - 883/116*a4^6 + 4841/232*a4^5 + 3869/232*a4^4 - 5605/232*a4^3 - 1119/116*a4^2 + 188/29*a4 - 31/29, 59/232*a4^11 - 83/232*a4^10 - 487/116*a4^9 + 147/29*a4^8 + 5599/232*a4^7 - 1369/58*a4^6 - 13121/232*a4^5 + 9213/232*a4^4 + 11403/232*a4^3 - 1179/58*a4^2 - 485/58*a4 + 103/29, -7/232*a4^11 + 1/232*a4^10 + 37/58*a4^9 + 1/58*a4^8 - 1203/232*a4^7 - 61/116*a4^6 + 4557/232*a4^5 + 353/232*a4^4 - 7553/232*a4^3 + 63/116*a4^2 + 959/58*a4 - 54/29, -1, -49/232*a4^11 + 123/232*a4^10 + 86/29*a4^9 - 214/29*a4^8 - 3085/232*a4^7 + 3923/116*a4^6 + 4291/232*a4^5 - 13073/232*a4^4 + 489/232*a4^3 + 3283/116*a4^2 - 312/29*a4 - 30/29)" "x^12 - 3*x^11 - 16*x^10 + 48*x^9 + 93*x^8 - 270*x^7 - 251*x^6 + 633*x^5 + 359*x^4 - 582*x^3 - 248*x^2 + 136*x + 32"
"14a1" 14 452 2 68931919168 "(0, a1, a1^6 - 2*a1^5 - 13*a1^4 + 16*a1^3 + 52*a1^2 - 22*a1 - 44, -3*a1^6 + 5*a1^5 + 44*a1^4 - 46*a1^3 - 188*a1^2 + 82*a1 + 156, 4*a1^6 - 7*a1^5 - 58*a1^4 + 64*a1^3 + 246*a1^2 - 112*a1 - 200, -2*a1^6 + 4*a1^5 + 27*a1^4 - 34*a1^3 - 111*a1^2 + 52*a1 + 96)" "x^7 - 3*x^6 - 12*x^5 + 33*x^4 + 40*x^3 - 98*x^2 - 16*x + 58"
"14a1" 14 453 2 26505245101948 "(a6, 1, 2*a6^8 - 7*a6^7 - 12*a6^6 + 56*a6^5 + 5*a6^4 - 123*a6^3 + 38*a6^2 + 74*a6 - 27, -3/2*a6^8 + 11/2*a6^7 + 8*a6^6 - 43*a6^5 + 3*a6^4 + 90*a6^3 - 38*a6^2 - 99/2*a6 + 47/2, -15/2*a6^8 + 55/2*a6^7 + 42*a6^6 - 218*a6^5 - a6^4 + 470*a6^3 - 159*a6^2 - 543/2*a6 + 195/2, 2*a6^8 - 8*a6^7 - 10*a6^6 + 64*a6^5 - 8*a6^4 - 140*a6^3 + 54*a6^2 + 82*a6 - 26)" "x^9 - 6*x^8 + 3*x^7 + 42*x^6 - 68*x^5 - 62*x^4 + 168*x^3 - 15*x^2 - 98*x + 31"
"906a1" 906 453 2 12 "(a2, -1, 2, 1, a2 + 2, 2*a2)" "x^2 - 3"
"906a1" 906 453 2 26505245101948 "(a6, 1, 2*a6^8 - 7*a6^7 - 12*a6^6 + 56*a6^5 + 5*a6^4 - 123*a6^3 + 38*a6^2 + 74*a6 - 27, -3/2*a6^8 + 11/2*a6^7 + 8*a6^6 - 43*a6^5 + 3*a6^4 + 90*a6^3 - 38*a6^2 - 99/2*a6 + 47/2, -15/2*a6^8 + 55/2*a6^7 + 42*a6^6 - 218*a6^5 - a6^4 + 470*a6^3 - 159*a6^2 - 543/2*a6 + 195/2, 2*a6^8 - 8*a6^7 - 10*a6^6 + 64*a6^5 - 8*a6^4 - 140*a6^3 + 54*a6^2 + 82*a6 - 26)" "x^9 - 6*x^8 + 3*x^7 + 42*x^6 - 68*x^5 - 62*x^4 + 168*x^3 - 15*x^2 - 98*x + 31"
"14a1" 14 455 2 45853772 "(a4, -a4^3 + a4^2 + 4*a4 - 2, 1, 1, -a4^5 + 2*a4^4 + 6*a4^3 - 10*a4^2 - 8*a4 + 9, 1)" "x^6 - 3*x^5 - 6*x^4 + 20*x^3 + 6*x^2 - 31*x + 9"
"14a1" 14 455 2 8908883364 "(a5, -1/14*a5^6 - 5/14*a5^5 + 9/7*a5^4 + 23/7*a5^3 - 44/7*a5^2 - 73/14*a5 + 71/14, -1, 1, 3/14*a5^6 + 1/14*a5^5 - 13/7*a5^4 - 6/7*a5^3 + 13/7*a5^2 + 51/14*a5 + 53/14, -1)" "x^7 - 15*x^5 + 2*x^4 + 66*x^3 - 17*x^2 - 72*x + 19"
"14a1" 14 456 2 17 "(0, 1, 1/2*a5 + 1, 1/2*a5 + 1, -1/2*a5 + 3, -a5 - 2)" "x^2 + 2*x - 16"
"14a1" 14 456 2 41 "(0, -1, 1/2*a4 + 1/2, -1/2*a4 - 5/2, 1/2*a4 + 5/2, 6)" "x^2 + 4*x - 37"
"19a1" 19 456 2 17 "(0, 1, 1/2*a5 + 1, 1/2*a5 + 1, -1/2*a5 + 3, -a5 - 2)" "x^2 + 2*x - 16"
"19a1" 19 456 2 41 "(0, -1, 1/2*a4 + 1/2, -1/2*a4 - 5/2, 1/2*a4 + 5/2, 6)" "x^2 + 4*x - 37"
"14a1" 14 457 2 5.62E+038 "(a2, 22455115672/70667500537*a2^19 - 131066476891/70667500537*a2^18 - 281638710286/70667500537*a2^17 + 2827050388809/70667500537*a2^16 - 236800773935/70667500537*a2^15 - 24572680812432/70667500537*a2^14 + 20468336976792/70667500537*a2^13 + 111038976832369/70667500537*a2^12 - 135310187190199/70667500537*a2^11 - 280109875894214/70667500537*a2^10 + 409957891106774/70667500537*a2^9 + 392088569536235/70667500537*a2^8 - 639579819395338/70667500537*a2^7 - 284213051432448/70667500537*a2^6 + 480311978754747/70667500537*a2^5 + 97573129724064/70667500537*a2^4 - 128240080396085/70667500537*a2^3 - 22109590817361/70667500537*a2^2 + 3261271772144/70667500537*a2 + 135908631555/70667500537, 14134866136/70667500537*a2^19 - 90858404524/70667500537*a2^18 - 150416122682/70667500537*a2^17 + 1981953508303/70667500537*a2^16 - 822666722358/70667500537*a2^15 - 17445377937615/70667500537*a2^14 + 19775891456742/70667500537*a2^13 + 79838713829810/70667500537*a2^12 - 122124432439636/70667500537*a2^11 - 203410432641693/70667500537*a2^10 + 368705087906845/70667500537*a2^9 + 285096046890831/70667500537*a2^8 - 583842989983930/70667500537*a2^7 - 203149242580921/70667500537*a2^6 + 447016306006133/70667500537*a2^5 + 68504344846741/70667500537*a2^4 - 120316903629571/70667500537*a2^3 - 19243852222869/70667500537*a2^2 + 2809965795401/70667500537*a2 + 195036968443/70667500537, 14206104584/70667500537*a2^19 - 73929917660/70667500537*a2^18 - 217625963104/70667500537*a2^17 + 1623811314781/70667500537*a2^16 + 718324474035/70667500537*a2^15 - 14463092476282/70667500537*a2^14 + 5200344860599/70667500537*a2^13 + 67549212478312/70667500537*a2^12 - 49344882750744/70667500537*a2^11 - 178206976331195/70667500537*a2^10 + 163692302662231/70667500537*a2^9 + 265143660512813/70667500537*a2^8 - 263282060201810/70667500537*a2^7 - 208409915897199/70667500537*a2^6 + 196702343066120/70667500537*a2^5 + 76518886551657/70667500537*a2^4 - 48490939532631/70667500537*a2^3 - 14104399906234/70667500537*a2^2 + 22202981870/70667500537*a2 + 63340582601/70667500537, -24595468169/141335001074*a2^19 + 113970680785/141335001074*a2^18 + 445417497035/141335001074*a2^17 - 2581228633099/141335001074*a2^16 - 1366732334800/70667500537*a2^15 + 23910472380145/141335001074*a2^14 + 4112562606153/141335001074*a2^13 - 58707296882270/70667500537*a2^12 + 12376364403450/70667500537*a2^11 + 330424742426235/141335001074*a2^10 - 62086969654957/70667500537*a2^9 - 267720899783620/70667500537*a2^8 + 219725078787495/141335001074*a2^7 + 473758827059255/141335001074*a2^6 - 79935299288631/70667500537*a2^5 - 102024360168682/70667500537*a2^4 + 29709262547955/141335001074*a2^3 + 19285855584398/70667500537*a2^2 + 3216976978289/141335001074*a2 - 459481756199/141335001074, -24627075324/70667500537*a2^19 + 145423334846/70667500537*a2^18 + 311309962668/70667500537*a2^17 - 3174880687623/70667500537*a2^16 + 257358757544/70667500537*a2^15 + 28063877220520/70667500537*a2^14 - 22994538360358/70667500537*a2^13 - 129904014264785/70667500537*a2^12 + 154174844812776/70667500537*a2^11 + 339781738781552/70667500537*a2^10 - 474770906826917/70667500537*a2^9 - 504641225072251/70667500537*a2^8 + 754617046141408/70667500537*a2^7 + 408012228770064/70667500537*a2^6 - 578079191407251/70667500537*a2^5 - 172143607935413/70667500537*a2^4 + 155940302389678/70667500537*a2^3 + 42942236272783/70667500537*a2^2 - 2174847959294/70667500537*a2 - 428737397425/70667500537)" "x^20 - 6*x^19 - 12*x^18 + 130*x^17 - 25*x^16 - 1135*x^15 + 1068*x^14 + 5145*x^13 - 6910*x^12 - 12965*x^11 + 21043*x^10 + 17930*x^9 - 33307*x^8 - 12486*x^7 + 25549*x^6 + 3888*x^5 - 7077*x^4 - 927*x^3 + 255*x^2 + 6*x - 1"
"229a1" 229 458 2 373579942325233 "(1, 1/2*a4 - 1/2, -737/37213184*a4^8 - 2839/9303296*a4^7 + 2235/581456*a4^6 + 182471/9303296*a4^5 - 3058201/18606592*a4^4 - 2930137/9303296*a4^3 + 9564613/4651648*a4^2 + 6141289/9303296*a4 - 100562645/37213184, 9607/37213184*a4^8 - 17529/9303296*a4^7 - 69413/4651648*a4^6 + 978717/9303296*a4^5 + 4591147/18606592*a4^4 - 15220991/9303296*a4^3 - 3417829/2325824*a4^2 + 60757659/9303296*a4 + 231759003/37213184, 3537/18606592*a4^8 - 5803/4651648*a4^7 - 25011/2325824*a4^6 + 269547/4651648*a4^5 + 1677941/9303296*a4^4 - 2465733/4651648*a4^3 - 1437725/1162912*a4^2 - 5250555/4651648*a4 + 69758637/18606592, -951/1162912*a4^8 + 4261/581456*a4^7 + 87345/2325824*a4^6 - 463647/1162912*a4^5 - 697761/2325824*a4^4 + 416083/72682*a4^3 - 3640185/2325824*a4^2 - 20503355/1162912*a4 + 659735/2325824)" "x^9 - 13*x^8 - 12*x^7 + 692*x^6 - 1506*x^5 - 9358*x^4 + 29476*x^3 + 22260*x^2 - 84791*x - 14093"
"229a1" 229 458 2 4954452093 "(-1, a3 + 1, a3^6 + a3^5 - 9*a3^4 - 2*a3^3 + 21*a3^2 - 14*a3 + 3, a3^6 + a3^5 - 10*a3^4 - 4*a3^3 + 27*a3^2 - 6*a3 - 4, -a3^5 - a3^4 + 9*a3^3 + 3*a3^2 - 21*a3 + 9, -a3^6 + 11*a3^4 - 6*a3^3 - 32*a3^2 + 30*a3 + 2)" "x^7 + 3*x^6 - 9*x^5 - 24*x^4 + 31*x^3 + 46*x^2 - 51*x + 6"
"459a1" 459 459 2 404 "(a12, 0, a12^2 - 6, a12^2 - 2*a12 - 7, 2*a12^2 - 2*a12 - 12, -2*a12^2 + 2*a12 + 11)" "x^3 + x^2 - 7*x - 9"
"459a1" 459 459 2 404 "(a13, 0, -a13^2 + 6, a13^2 + 2*a13 - 7, -2*a13^2 - 2*a13 + 12, -2*a13^2 - 2*a13 + 11)" "x^3 - x^2 - 7*x + 9"
"92a1" 92 460 2 17 "(0, 1/2*a4, 1, -1/2*a4 + 1, 2, 1/2*a4 - 2)" "x^2 - 2*x - 16"
"115a1" 115 460 2 17 "(0, 1/2*a4, 1, -1/2*a4 + 1, 2, 1/2*a4 - 2)" "x^2 - 2*x - 16"
"1383a1" 1383 461 2 1.75E+055 "(a3, -18411620439/79452970167808*a3^25 + 126031151319/19863242541952*a3^24 - 470141107935/79452970167808*a3^23 - 20612532444589/79452970167808*a3^22 + 36754184162415/79452970167808*a3^21 + 22764870934587/4965810635488*a3^20 - 376755454739613/39726485083904*a3^19 - 227622383281801/4965810635488*a3^18 + 2018423496755725/19863242541952*a3^17 + 11326187917526589/39726485083904*a3^16 - 26228962700185675/39726485083904*a3^15 - 45346845828395343/39726485083904*a3^14 + 217656635876641153/79452970167808*a3^13 + 233496124711315187/79452970167808*a3^12 - 291123266455105609/39726485083904*a3^11 - 186910251706688363/39726485083904*a3^10 + 491677426961778207/39726485083904*a3^9 + 343467078638191121/79452970167808*a3^8 - 992645198412472247/79452970167808*a3^7 - 150194664903861945/79452970167808*a3^6 + 33623281419871289/4965810635488*a3^5 + 13620998787985797/79452970167808*a3^4 - 15604395470821721/9931621270976*a3^3 + 2882108350923733/39726485083904*a3^2 + 4325996849510437/79452970167808*a3 - 48453363884879/79452970167808, -66708447915/9931621270976*a3^25 + 1070948233227/79452970167808*a3^24 + 22722271687947/79452970167808*a3^23 - 5520329320915/9931621270976*a3^22 - 422227565561867/79452970167808*a3^21 + 394820114143867/39726485083904*a3^20 + 1124752237877955/19863242541952*a3^19 - 2006819824054707/19863242541952*a3^18 - 15190685955581691/39726485083904*a3^17 + 3195486240749447/4965810635488*a3^16 + 33922841696430085/19863242541952*a3^15 - 53002421103439993/19863242541952*a3^14 - 101545454520251913/19863242541952*a3^13 + 576100090591804269/79452970167808*a3^12 + 101105735051602811/9931621270976*a3^11 - 503425332035968073/39726485083904*a3^10 - 130315349099232313/9931621270976*a3^9 + 539895927632019101/39726485083904*a3^8 + 823928140449728253/79452970167808*a3^7 - 81202495763665461/9931621270976*a3^6 - 358732742406467765/79452970167808*a3^5 + 183920627873384021/79452970167808*a3^4 + 127308678222668/155181582359*a3^3 - 7698956149363327/39726485083904*a3^2 - 88440564889987/39726485083904*a3 + 94898764459539/79452970167808, 134986310209/39726485083904*a3^25 - 225519826069/39726485083904*a3^24 - 369877425839/2482905317744*a3^23 + 9407163275881/39726485083904*a3^22 + 57043913829535/19863242541952*a3^21 - 21390306431563/4965810635488*a3^20 - 636385462338977/19863242541952*a3^19 + 891413207208671/19863242541952*a3^18 + 4549950049989865/19863242541952*a3^17 - 367128514188453/1241452658872*a3^16 - 21811234967951493/19863242541952*a3^15 + 3188720575098113/2482905317744*a3^14 + 142502138509697805/39726485083904*a3^13 - 73744083555671587/19863242541952*a3^12 - 157944985051604145/19863242541952*a3^11 + 69929455528581719/9931621270976*a3^10 + 231857784944446415/19863242541952*a3^9 - 333506203840142317/39726485083904*a3^8 - 213927999988339131/19863242541952*a3^7 + 229261867508367987/39726485083904*a3^6 + 223507617872364169/39726485083904*a3^5 - 38233185025212671/19863242541952*a3^4 - 12957876382463147/9931621270976*a3^3 + 4327660884127357/19863242541952*a3^2 + 1957652666438971/39726485083904*a3 - 67557870131361/19863242541952, -654486464095/79452970167808*a3^25 + 2148325256257/79452970167808*a3^24 + 6496572109073/19863242541952*a3^23 - 88816208595081/79452970167808*a3^22 - 220320799354331/39726485083904*a3^21 + 99425645318785/4965810635488*a3^20 + 518644303261825/9931621270976*a3^19 - 8090481763598131/39726485083904*a3^18 - 5883528544434441/19863242541952*a3^17 + 12867741258759761/9931621270976*a3^16 + 10094087718921487/9931621270976*a3^15 - 26578370375021325/4965810635488*a3^14 - 153557123852975485/79452970167808*a3^13 + 286616405147251015/19863242541952*a3^12 + 48565206237547849/39726485083904*a3^11 - 246876899706545611/9931621270976*a3^10 + 90448954185759211/39726485083904*a3^9 + 2066518903949019575/79452970167808*a3^8 - 3069536255204099/620726329436*a3^7 - 1194265712543343851/79452970167808*a3^6 + 264312392250545123/79452970167808*a3^5 + 39697453469731843/9931621270976*a3^4 - 31432328321029291/39726485083904*a3^3 - 11618431809321535/39726485083904*a3^2 + 1892099576957565/79452970167808*a3 + 104525183946031/19863242541952, 255589912167/19863242541952*a3^25 - 1475482310713/39726485083904*a3^24 - 20761175829129/39726485083904*a3^23 + 30491050325005/19863242541952*a3^22 + 363366019136511/39726485083904*a3^21 - 272988162097069/9931621270976*a3^20 - 1792107785174111/19863242541952*a3^19 + 5551313599531537/19863242541952*a3^18 + 1366728673015023/2482905317744*a3^17 - 35293777849825571/19863242541952*a3^16 - 42589410541860253/19863242541952*a3^15 + 145601539668576133/19863242541952*a3^14 + 52711935399555833/9931621270976*a3^13 - 782702040196782319/39726485083904*a3^12 - 39933939419955829/4965810635488*a3^11 + 669385327624253147/19863242541952*a3^10 + 68705267787917029/9931621270976*a3^9 - 85971741876398599/2482905317744*a3^8 - 122684280458123357/39726485083904*a3^7 + 188567793908914639/9931621270976*a3^6 + 35108008136135037/39726485083904*a3^5 - 165241435990433233/39726485083904*a3^4 - 5182356150084189/19863242541952*a3^3 - 46910812983423/4965810635488*a3^2 + 733271797518791/19863242541952*a3 + 170585471510307/39726485083904)" "x^26 - 3*x^25 - 41*x^24 + 126*x^23 + 726*x^22 - 2303*x^21 - 7266*x^20 + 24054*x^19 + 45144*x^18 - 158550*x^17 - 179824*x^16 + 687620*x^15 + 456511*x^14 - 1985932*x^13 - 703693*x^12 + 3785104*x^11 + 571532*x^10 - 4624305*x^9 - 111938*x^8 + 3430214*x^7 - 156745*x^6 - 1399829*x^5 + 108715*x^4 + 249906*x^3 - 21297*x^2 - 6102*x + 223"
"14a1" 14 462 2 12 "(-1, 1, a7 + 2, 1, 1, 2)" "x^2 + 4*x - 8"
"14a1" 14 464 2 568 "(0, a9, -a9^2 + 6, 0, -2*a9^2 - a9 + 8, a9^2 + 2*a9 - 2)" "x^3 + 2*x^2 - 5*x - 8"
"58a1" 58 464 2 568 "(0, a9, -a9^2 + 6, 0, -2*a9^2 - a9 + 8, a9^2 + 2*a9 - 2)" "x^3 + 2*x^2 - 5*x - 8"
"58a1" 58 464 2 8 "(0, -1/2*a8, -a8 - 3, 4, 1/2*a8 + 2, 2*a8 + 3)" "x^2 + 4*x - 4"
"58a1" 58 464 2 8 "(0, a7, -1, -2*a7 - 2, -a7 - 2, 2*a7 + 1)" "x^2 + 2*x - 1"
"14a1" 14 465 2 148 "(a6, 1, -1, -2*a6^2 + 3*a6 + 5, -2*a6^2 + 2*a6 + 6, -a6 - 1)" "x^3 - 3*x^2 - x + 5"
"14a1" 14 465 2 8 "(a2, 1, -1, -a2 - 3, 2*a2 + 2, -a2 - 5)" "x^2 + 2*x - 1"
"14a1" 14 465 2 564 "(a4, -1, -1, -a4 + 3, 2*a4, a4 + 1)" "x^3 - x^2 - 5*x + 3"
"14a1" 14 465 2 12 "(a3, -1, -1, -a3 - 3, -2*a3 + 2, a3 - 3)" "x^2 - 3"
"14a1" 14 465 2 148 "(a5, 1, 1, -a5 + 1, 2, -2*a5^2 + 3*a5 + 3)" "x^3 - x^2 - 3*x + 1"
"14a1" 14 465 2 8468 "(a7, -1, 1, -a7^3 + a7^2 + 6*a7 - 4, a7^3 - a7^2 - 7*a7 + 7, -2*a7^3 + 11*a7 - 1)" "x^4 - 2*x^3 - 6*x^2 + 12*x - 1"
"14a1" 14 465 2 8468 "(a7, -1, 1, -a7^3 + a7^2 + 6*a7 - 4, a7^3 - a7^2 - 7*a7 + 7, -2*a7^3 + 11*a7 - 1)" "x^4 - 2*x^3 - 6*x^2 + 12*x - 1"
"14a1" 14 466 2 124868808 "(1, -a5 + 1, -1/4*a5^5 + 1/2*a5^4 + 13/4*a5^3 - 13/4*a5^2 - 35/4*a5 + 2, 1/6*a5^5 - 2/3*a5^4 - 7/6*a5^3 + 25/6*a5^2 + 19/6*a5 - 14/3, a5^4 - 4*a5^3 - 4*a5^2 + 15*a5 + 8, -1/6*a5^5 + 2/3*a5^4 + 7/6*a5^3 - 25/6*a5^2 - 13/6*a5 + 11/3)" "x^6 - 5*x^5 - 3*x^4 + 32*x^3 - 53*x - 8"
"466b1" 466 466 2 124868808 "(1, -a5 + 1, -1/4*a5^5 + 1/2*a5^4 + 13/4*a5^3 - 13/4*a5^2 - 35/4*a5 + 2, 1/6*a5^5 - 2/3*a5^4 - 7/6*a5^3 + 25/6*a5^2 + 19/6*a5 - 14/3, a5^4 - 4*a5^3 - 4*a5^2 + 15*a5 + 8, -1/6*a5^5 + 2/3*a5^4 + 7/6*a5^3 - 25/6*a5^2 - 13/6*a5 + 11/3)" "x^6 - 5*x^5 - 3*x^4 + 32*x^3 - 53*x - 8"
"466b1" 466 466 2 117688 "(-1, -1/2*a4 - 1/2, 1/16*a4^4 + 1/4*a4^3 - 13/8*a4^2 - 15/4*a4 + 17/16, -7/80*a4^4 - 13/40*a4^3 + 11/5*a4^2 + 213/40*a4 - 153/80, -1/20*a4^4 - 11/40*a4^3 + 41/40*a4^2 + 191/40*a4 - 43/40, 1/20*a4^4 + 3/20*a4^3 - 23/20*a4^2 - 23/20*a4 + 7/10)" "x^5 + 5*x^4 - 22*x^3 - 94*x^2 - 27*x + 73"
"467a1" 467 467 2 3.91E+057 "(a2, -10363332061373394879/190951794041939941664*a2^25 + 51389231163521491841/190951794041939941664*a2^24 + 80019126352002634403/47737948510484985416*a2^23 - 1882904756544570716139/190951794041939941664*a2^22 - 959680986289643624655/47737948510484985416*a2^21 + 29730865760402852498863/190951794041939941664*a2^20 + 10015383816473721072581/95475897020969970832*a2^19 - 265271003727621598421621/190951794041939941664*a2^18 - 2881811573462802471715/95475897020969970832*a2^17 + 736837612793348039826313/95475897020969970832*a2^16 - 496365418214858053022663/190951794041939941664*a2^15 - 2647270102974250620737669/95475897020969970832*a2^14 + 1423878514093438197846391/95475897020969970832*a2^13 + 1546441062721262435079611/23868974255242492708*a2^12 - 3923850587050531791151451/95475897020969970832*a2^11 - 9211780225271573005475419/95475897020969970832*a2^10 + 11902990260931105127268297/190951794041939941664*a2^9 + 8314765549120022629884007/95475897020969970832*a2^8 - 9631358723228384283624077/190951794041939941664*a2^7 - 2058648482385531448474417/47737948510484985416*a2^6 + 1836658457006210980201059/95475897020969970832*a2^5 + 451129485124831156674183/47737948510484985416*a2^4 - 67520378971189597291845/23868974255242492708*a2^3 - 18805552891279119484097/23868974255242492708*a2^2 + 648925921645097637440/5967243563810623177*a2 + 109989621903187974549/5967243563810623177, -4029184431302972343/190951794041939941664*a2^25 + 15763452463375189915/190951794041939941664*a2^24 + 68601516212658445503/95475897020969970832*a2^23 - 578651503020959378503/190951794041939941664*a2^22 - 979105098377673291591/95475897020969970832*a2^21 + 9152059304801185273007/190951794041939941664*a2^20 + 3773930036834474796649/47737948510484985416*a2^19 - 81757147036446757376673/190951794041939941664*a2^18 - 16695201479502400540563/47737948510484985416*a2^17 + 227176371461999730195255/95475897020969970832*a2^16 + 159660039055582213638969/190951794041939941664*a2^15 - 203827603637749118458689/23868974255242492708*a2^14 - 62983940073826103474403/95475897020969970832*a2^13 + 474711165586489754761095/23868974255242492708*a2^12 - 147857694587039073009851/95475897020969970832*a2^11 - 2810056512575026906278885/95475897020969970832*a2^10 + 823023238886017952063445/190951794041939941664*a2^9 + 628620678135233452422751/23868974255242492708*a2^8 - 728731115144094434535201/190951794041939941664*a2^7 - 1241362696239549483505069/95475897020969970832*a2^6 + 114544613380854490108475/95475897020969970832*a2^5 + 141932788991934379222389/47737948510484985416*a2^4 - 2177601531082898401825/23868974255242492708*a2^3 - 3244467657779586060113/11934487127621246354*a2^2 + 6840037831302791688/5967243563810623177*a2 + 38004299798490972900/5967243563810623177, -24058256997224544661/381903588083879883328*a2^25 + 104771983448012659849/381903588083879883328*a2^24 + 392166681247250988043/190951794041939941664*a2^23 - 3836511191260278131057/381903588083879883328*a2^22 - 5207672470421337122625/190951794041939941664*a2^21 + 60511751116108371014929/381903588083879883328*a2^20 + 17504036413243302622977/95475897020969970832*a2^19 - 538910129304975291308647/381903588083879883328*a2^18 - 54968371946281115618649/95475897020969970832*a2^17 + 1492379569288074670110699/190951794041939941664*a2^16 - 34470232451786793377853/381903588083879883328*a2^15 - 1333923458153226212647391/47737948510484985416*a2^14 + 1380417207011523733264985/190951794041939941664*a2^13 + 386641590828689103611019/5967243563810623177*a2^12 - 4914093636737770210468421/190951794041939941664*a2^11 - 18211319986093291653856943/190951794041939941664*a2^10 + 16532879257118188567265383/381903588083879883328*a2^9 + 4043439679190274925829591/47737948510484985416*a2^8 - 14211645013372546337052079/381903588083879883328*a2^7 - 7886327995460899147685679/190951794041939941664*a2^6 + 2858349078854733632467191/190951794041939941664*a2^5 + 880337007242497500805807/95475897020969970832*a2^4 - 27372181925020789340219/11934487127621246354*a2^3 - 19915642953182849296567/23868974255242492708*a2^2 + 547854074294746894132/5967243563810623177*a2 + 135151403670025766004/5967243563810623177, 5539631980151634831/47737948510484985416*a2^25 - 24943768875661465677/47737948510484985416*a2^24 - 178279866466378877963/47737948510484985416*a2^23 + 228311239337119265811/11934487127621246354*a2^22 + 289322471040218933412/5967243563810623177*a2^21 - 7201833424821692437247/23868974255242492708*a2^20 - 7414314072166685840055/23868974255242492708*a2^19 + 32074284427417296266701/11934487127621246354*a2^18 + 9852461150934733127487/11934487127621246354*a2^17 - 710913431898261385033623/47737948510484985416*a2^16 + 67899423761855046172989/47737948510484985416*a2^15 + 636053532700214641836159/11934487127621246354*a2^14 - 839738506785233058105021/47737948510484985416*a2^13 - 2954850900032745687392281/23868974255242492708*a2^12 + 675845470349281103458917/11934487127621246354*a2^11 + 4360704123038690772277361/23868974255242492708*a2^10 - 4388094444460064779928967/47737948510484985416*a2^9 - 971194395853022086907797/5967243563810623177*a2^8 + 1853701281537468968421953/23868974255242492708*a2^7 + 1894403822222040463303045/23868974255242492708*a2^6 - 1481868911759459805558399/47737948510484985416*a2^5 - 207653872116574842664415/11934487127621246354*a2^4 + 117249175946869486425735/23868974255242492708*a2^3 + 9038615292801684305042/5967243563810623177*a2^2 - 1338136797015159583850/5967243563810623177*a2 - 248976659248758607976/5967243563810623177, 2884905614890067771/47737948510484985416*a2^25 - 13388554416385002171/47737948510484985416*a2^24 - 183271188330616455283/95475897020969970832*a2^23 + 979947265729563456017/95475897020969970832*a2^22 + 1161738686185651020577/47737948510484985416*a2^21 - 15449556769444113601773/95475897020969970832*a2^20 - 7046512426073746354545/47737948510484985416*a2^19 + 137572986225388063560165/95475897020969970832*a2^18 + 1831267776408749060821/5967243563810623177*a2^17 - 762278237841008687888997/95475897020969970832*a2^16 + 66812345291974326690939/47737948510484985416*a2^15 + 1364673276004412033719177/47737948510484985416*a2^14 - 1089072426646941362359655/95475897020969970832*a2^13 - 793701137514040539017875/11934487127621246354*a2^12 + 1639829041167414356797937/47737948510484985416*a2^11 + 2351517361315408361689283/23868974255242492708*a2^10 - 648216829614290509055117/11934487127621246354*a2^9 - 4224979981174956612530721/47737948510484985416*a2^8 + 4327335719501245560763455/95475897020969970832*a2^7 + 1048545605418484246408999/23868974255242492708*a2^6 - 1723659842187868453588445/95475897020969970832*a2^5 - 475707039069005431372385/47737948510484985416*a2^4 + 137753985690635897536977/47737948510484985416*a2^3 + 20976715804563158366791/23868974255242492708*a2^2 - 771854896766172956264/5967243563810623177*a2 - 115517196270271981612/5967243563810623177)" "x^26 - 5*x^25 - 30*x^24 + 181*x^23 + 338*x^22 - 2813*x^21 - 1420*x^20 + 24571*x^19 - 4052*x^18 - 132574*x^17 + 73889*x^16 + 457016*x^15 - 370842*x^14 - 1004824*x^13 + 992642*x^12 + 1361654*x^11 - 1526411*x^10 - 1049992*x^9 + 1309411*x^8 + 383566*x^7 - 569750*x^6 - 29300*x^5 + 105328*x^4 - 5888*x^3 - 6944*x^2 + 448*x + 128"
"14a1" 14 469 2 17 "(1, -1/2*a3 + 1/2, -1/2*a3 + 1/2, 1, 4, 1/2*a3 + 7/2)" "x^2 - 4*x - 13"
"14a1" 14 469 2 20355065832336 "(a8, 1/2*a8^6 - 5*a8^4 + 3/2*a8^3 + 12*a8^2 - 11/2*a8 - 3/2, -1/4*a8^8 - 1/2*a8^7 + 13/4*a8^6 + 21/4*a8^5 - 14*a8^4 - 31/2*a8^3 + 81/4*a8^2 + 39/4*a8 - 9/4, -1, -1/2*a8^7 - 1/2*a8^6 + 5*a8^5 + 7/2*a8^4 - 27/2*a8^3 - 13/2*a8^2 + 8*a8 + 9/2, 1/4*a8^8 - 1/2*a8^7 - 13/4*a8^6 + 19/4*a8^5 + 10*a8^4 - 17/2*a8^3 - 13/4*a8^2 - 19/4*a8 + 5/4)" "x^9 + x^8 - 13*x^7 - 10*x^6 + 53*x^5 + 28*x^4 - 69*x^3 - 12*x^2 + 12*x + 1"
"14a1" 14 469 2 4162075412 "(a7, 1/4*a7^6 - 3*a7^4 + 1/4*a7^3 + 9*a7^2 - 5/4*a7 - 9/4, -1/4*a7^6 - 1/2*a7^5 + 5/2*a7^4 + 21/4*a7^3 - 5*a7^2 - 51/4*a7 - 9/4, 1, 1/2*a7^6 - 5*a7^4 - 3/2*a7^3 + 12*a7^2 + 13/2*a7 - 1/2, -1/4*a7^6 + 1/2*a7^5 + 5/2*a7^4 - 15/4*a7^3 - 7*a7^2 + 21/4*a7 + 15/4)" "x^7 - x^6 - 12*x^5 + 9*x^4 + 43*x^3 - 17*x^2 - 44*x - 11"
"67a1" 67 469 2 813209 "(a6, -a6, -a6^2 + 2, -1, -a6^4 + 6*a6^2 + a6 - 8, 2*a6^4 - 2*a6^3 - 10*a6^2 + 7*a6 + 4)" "x^5 - 2*x^4 - 5*x^3 + 9*x^2 + 3*x - 4"
"67a1" 67 469 2 17 "(a2, -a2, a2 - 2, 1, 4, a2 - 4)" "x^2 - x - 4"
"469a1" 469 469 2 148 "(a5, -a5^2 + 2, -3, 1, -4, -2*a5 + 1)" "x^3 + x^2 - 3*x - 1"
"469a1" 469 469 2 17 "(1, -1/2*a3 + 1/2, -1/2*a3 + 1/2, 1, 4, 1/2*a3 + 7/2)" "x^2 - 4*x - 13"
"469a1" 469 469 2 4162075412 "(a7, 1/4*a7^6 - 3*a7^4 + 1/4*a7^3 + 9*a7^2 - 5/4*a7 - 9/4, -1/4*a7^6 - 1/2*a7^5 + 5/2*a7^4 + 21/4*a7^3 - 5*a7^2 - 51/4*a7 - 9/4, 1, 1/2*a7^6 - 5*a7^4 - 3/2*a7^3 + 12*a7^2 + 13/2*a7 - 1/2, -1/4*a7^6 + 1/2*a7^5 + 5/2*a7^4 - 15/4*a7^3 - 7*a7^2 + 21/4*a7 + 15/4)" "x^7 - x^6 - 12*x^5 + 9*x^4 + 43*x^3 - 17*x^2 - 44*x - 11"
"469a1" 469 469 2 813209 "(a6, -a6, -a6^2 + 2, -1, -a6^4 + 6*a6^2 + a6 - 8, 2*a6^4 - 2*a6^3 - 10*a6^2 + 7*a6 + 4)" "x^5 - 2*x^4 - 5*x^3 + 9*x^2 + 3*x - 4"
"469a1" 469 469 2 17 "(a2, -a2, a2 - 2, 1, 4, a2 - 4)" "x^2 - x - 4"
"469a1" 469 469 2 20355065832336 "(a8, 1/2*a8^6 - 5*a8^4 + 3/2*a8^3 + 12*a8^2 - 11/2*a8 - 3/2, -1/4*a8^8 - 1/2*a8^7 + 13/4*a8^6 + 21/4*a8^5 - 14*a8^4 - 31/2*a8^3 + 81/4*a8^2 + 39/4*a8 - 9/4, -1, -1/2*a8^7 - 1/2*a8^6 + 5*a8^5 + 7/2*a8^4 - 27/2*a8^3 - 13/2*a8^2 + 8*a8 + 9/2, 1/4*a8^8 - 1/2*a8^7 - 13/4*a8^6 + 19/4*a8^5 + 10*a8^4 - 17/2*a8^3 - 13/4*a8^2 - 19/4*a8 + 5/4)" "x^9 + x^8 - 13*x^7 - 10*x^6 + 53*x^5 + 28*x^4 - 69*x^3 - 12*x^2 + 12*x + 1"
"14a1" 14 470 2 1373 "(1, 1/2*a9 - 1/2, -1, 0, -1/4*a9^2 + 1/2*a9 + 31/4, -a9 + 3)" "x^3 - 9*x^2 - 5*x + 109"
"235a1" 235 470 2 837 "(-1, -1/2*a7 - 1/2, -1, -1/4*a7^2 - a7 + 17/4, -1/4*a7^2 - 1/2*a7 + 15/4, 1/4*a7^2 - 13/4)" "x^3 + 3*x^2 - 21*x - 15"
"235a1" 235 470 2 229 "(1, 1/2*a8 - 1/2, 1, -1/4*a8^2 + 21/4, 1/4*a8^2 - 1/2*a8 - 15/4, -1/4*a8^2 + a8 + 9/4)" "x^3 - 7*x^2 - 5*x + 67"
"14a1" 14 471 2 5.66E+020 "(a4, 1, a4^11 - 21*a4^9 + a4^8 + 162*a4^7 - 14*a4^6 - 553*a4^5 + 64*a4^4 + 776*a4^3 - 100*a4^2 - 285*a4 - 25, 1/2*a4^11 + 1/2*a4^10 - 19/2*a4^9 - 7*a4^8 + 68*a4^7 + 32*a4^6 - 222*a4^5 - 49*a4^4 + 615/2*a4^3 + 19/2*a4^2 - 219/2*a4 - 16, a4^10 + 3*a4^9 - 14*a4^8 - 42*a4^7 + 66*a4^6 + 194*a4^5 - 120*a4^4 - 322*a4^3 + 75*a4^2 + 137*a4 + 18, -a4^11 - 3/2*a4^10 + 35/2*a4^9 + 41/2*a4^8 - 115*a4^7 - 90*a4^6 + 348*a4^5 + 128*a4^4 - 462*a4^3 - 33/2*a4^2 + 317/2*a4 + 37/2)" "x^12 + x^11 - 20*x^10 - 17*x^9 + 149*x^8 + 106*x^7 - 500*x^6 - 294*x^5 + 711*x^4 + 349*x^3 - 290*x^2 - 173*x - 15"
"14a1" 14 471 2 24147949586752 "(a3, -1, -8/59*a3^8 + 41/59*a3^7 + 41/59*a3^6 - 376/59*a3^5 + 37/59*a3^4 + 950/59*a3^3 - 143/59*a3^2 - 599/59*a3 - 47/59, -31/59*a3^8 + 63/59*a3^7 + 299/59*a3^6 - 513/59*a3^5 - 867/59*a3^4 + 1041/59*a3^3 + 825/59*a3^2 - 411/59*a3 - 160/59, 15/59*a3^8 - 40/59*a3^7 - 158/59*a3^6 + 410/59*a3^5 + 528/59*a3^4 - 1324/59*a3^3 - 580/59*a3^2 + 1396/59*a3 + 125/59, 17/59*a3^8 - 6/59*a3^7 - 242/59*a3^6 + 32/59*a3^5 + 1094/59*a3^4 + 2/59*a3^3 - 1562/59*a3^2 + 56/59*a3 + 299/59)" "x^9 - 2*x^8 - 11*x^7 + 19*x^6 + 39*x^5 - 53*x^4 - 49*x^3 + 45*x^2 + 14*x - 1"
"314a1" 314 471 2 5.66E+020 "(a4, 1, a4^11 - 21*a4^9 + a4^8 + 162*a4^7 - 14*a4^6 - 553*a4^5 + 64*a4^4 + 776*a4^3 - 100*a4^2 - 285*a4 - 25, 1/2*a4^11 + 1/2*a4^10 - 19/2*a4^9 - 7*a4^8 + 68*a4^7 + 32*a4^6 - 222*a4^5 - 49*a4^4 + 615/2*a4^3 + 19/2*a4^2 - 219/2*a4 - 16, a4^10 + 3*a4^9 - 14*a4^8 - 42*a4^7 + 66*a4^6 + 194*a4^5 - 120*a4^4 - 322*a4^3 + 75*a4^2 + 137*a4 + 18, -a4^11 - 3/2*a4^10 + 35/2*a4^9 + 41/2*a4^8 - 115*a4^7 - 90*a4^6 + 348*a4^5 + 128*a4^4 - 462*a4^3 - 33/2*a4^2 + 317/2*a4 + 37/2)" "x^12 + x^11 - 20*x^10 - 17*x^9 + 149*x^8 + 106*x^7 - 500*x^6 - 294*x^5 + 711*x^4 + 349*x^3 - 290*x^2 - 173*x - 15"
"314a1" 314 471 2 229 "(a2, -1, -a2^2 - a2 + 2, -1, -a2^2 + 1, 2*a2^2 - a2 - 6)" "x^3 - 4*x + 1"
"314a1" 314 471 2 5.66E+020 "(a4, 1, a4^11 - 21*a4^9 + a4^8 + 162*a4^7 - 14*a4^6 - 553*a4^5 + 64*a4^4 + 776*a4^3 - 100*a4^2 - 285*a4 - 25, 1/2*a4^11 + 1/2*a4^10 - 19/2*a4^9 - 7*a4^8 + 68*a4^7 + 32*a4^6 - 222*a4^5 - 49*a4^4 + 615/2*a4^3 + 19/2*a4^2 - 219/2*a4 - 16, a4^10 + 3*a4^9 - 14*a4^8 - 42*a4^7 + 66*a4^6 + 194*a4^5 - 120*a4^4 - 322*a4^3 + 75*a4^2 + 137*a4 + 18, -a4^11 - 3/2*a4^10 + 35/2*a4^9 + 41/2*a4^8 - 115*a4^7 - 90*a4^6 + 348*a4^5 + 128*a4^4 - 462*a4^3 - 33/2*a4^2 + 317/2*a4 + 37/2)" "x^12 + x^11 - 20*x^10 - 17*x^9 + 149*x^8 + 106*x^7 - 500*x^6 - 294*x^5 + 711*x^4 + 349*x^3 - 290*x^2 - 173*x - 15"
"14a1" 14 472 2 921465377 "(0, 1/2*a6, 1/16*a6^4 - 3*a6^2 - 2*a6 + 22, 1/64*a6^5 + 3/32*a6^4 - 13/16*a6^3 - 5*a6^2 + 15/4*a6 + 30, -1/64*a6^5 - 3/32*a6^4 + 13/16*a6^3 + 19/4*a6^2 - 15/4*a6 - 26, -1/64*a6^5 - 3/32*a6^4 + 13/16*a6^3 + 19/4*a6^2 - 15/4*a6 - 24)" "x^6 + 2*x^5 - 60*x^4 - 128*x^3 + 816*x^2 + 960*x - 3584"
"118c1" 118 472 2 921465377 "(0, 1/2*a6, 1/16*a6^4 - 3*a6^2 - 2*a6 + 22, 1/64*a6^5 + 3/32*a6^4 - 13/16*a6^3 - 5*a6^2 + 15/4*a6 + 30, -1/64*a6^5 - 3/32*a6^4 + 13/16*a6^3 + 19/4*a6^2 - 15/4*a6 - 26, -1/64*a6^5 - 3/32*a6^4 + 13/16*a6^3 + 19/4*a6^2 - 15/4*a6 - 24)" "x^6 + 2*x^5 - 60*x^4 - 128*x^3 + 816*x^2 + 960*x - 3584"
"118a1" 118 472 2 921465377 "(0, 1/2*a6, 1/16*a6^4 - 3*a6^2 - 2*a6 + 22, 1/64*a6^5 + 3/32*a6^4 - 13/16*a6^3 - 5*a6^2 + 15/4*a6 + 30, -1/64*a6^5 - 3/32*a6^4 + 13/16*a6^3 + 19/4*a6^2 - 15/4*a6 - 26, -1/64*a6^5 - 3/32*a6^4 + 13/16*a6^3 + 19/4*a6^2 - 15/4*a6 - 24)" "x^6 + 2*x^5 - 60*x^4 - 128*x^3 + 816*x^2 + 960*x - 3584"
"118a1" 118 472 2 6809 "(0, -1/2*a5, -1/8*a5^3 + 1/4*a5^2 + 3*a5 - 1, 1/4*a5^3 - 3/4*a5^2 - 4*a5, 1/2*a5^2 - a5 - 6, -1/4*a5^3 + 1/2*a5^2 + 4*a5 - 2)" "x^4 - 2*x^3 - 20*x^2 + 16"
"11a1" 11 473 2 2.04E+019 "(a6, -19/18*a6^10 - 11/9*a6^9 + 311/18*a6^8 + 56/3*a6^7 - 293/3*a6^6 - 1769/18*a6^5 + 655/3*a6^4 + 601/3*a6^3 - 1465/9*a6^2 - 1829/18*a6 + 136/3, -7/9*a6^10 - 10/9*a6^9 + 116/9*a6^8 + 52/3*a6^7 - 223/3*a6^6 - 836/9*a6^5 + 515/3*a6^4 + 572/3*a6^3 - 1214/9*a6^2 - 878/9*a6 + 125/3, -1/3*a6^10 - 1/3*a6^9 + 17/3*a6^8 + 5*a6^7 - 33*a6^6 - 77/3*a6^5 + 74*a6^4 + 50*a6^3 - 149/3*a6^2 - 59/3*a6 + 10, -1, 1/3*a6^10 + 1/3*a6^9 - 17/3*a6^8 - 5*a6^7 + 34*a6^6 + 77/3*a6^5 - 84*a6^4 - 51*a6^3 + 224/3*a6^2 + 80/3*a6 - 18)" "x^11 + x^10 - 17*x^9 - 15*x^8 + 102*x^7 + 77*x^6 - 255*x^5 - 150*x^4 + 248*x^3 + 59*x^2 - 93*x + 18"
"14a1" 14 473 2 2.04E+019 "(a6, -19/18*a6^10 - 11/9*a6^9 + 311/18*a6^8 + 56/3*a6^7 - 293/3*a6^6 - 1769/18*a6^5 + 655/3*a6^4 + 601/3*a6^3 - 1465/9*a6^2 - 1829/18*a6 + 136/3, -7/9*a6^10 - 10/9*a6^9 + 116/9*a6^8 + 52/3*a6^7 - 223/3*a6^6 - 836/9*a6^5 + 515/3*a6^4 + 572/3*a6^3 - 1214/9*a6^2 - 878/9*a6 + 125/3, -1/3*a6^10 - 1/3*a6^9 + 17/3*a6^8 + 5*a6^7 - 33*a6^6 - 77/3*a6^5 + 74*a6^4 + 50*a6^3 - 149/3*a6^2 - 59/3*a6 + 10, -1, 1/3*a6^10 + 1/3*a6^9 - 17/3*a6^8 - 5*a6^7 + 34*a6^6 + 77/3*a6^5 - 84*a6^4 - 51*a6^3 + 224/3*a6^2 + 80/3*a6 - 18)" "x^11 + x^10 - 17*x^9 - 15*x^8 + 102*x^7 + 77*x^6 - 255*x^5 - 150*x^4 + 248*x^3 + 59*x^2 - 93*x + 18"
"946b1" 946 473 2 2.04E+019 "(a6, -19/18*a6^10 - 11/9*a6^9 + 311/18*a6^8 + 56/3*a6^7 - 293/3*a6^6 - 1769/18*a6^5 + 655/3*a6^4 + 601/3*a6^3 - 1465/9*a6^2 - 1829/18*a6 + 136/3, -7/9*a6^10 - 10/9*a6^9 + 116/9*a6^8 + 52/3*a6^7 - 223/3*a6^6 - 836/9*a6^5 + 515/3*a6^4 + 572/3*a6^3 - 1214/9*a6^2 - 878/9*a6 + 125/3, -1/3*a6^10 - 1/3*a6^9 + 17/3*a6^8 + 5*a6^7 - 33*a6^6 - 77/3*a6^5 + 74*a6^4 + 50*a6^3 - 149/3*a6^2 - 59/3*a6 + 10, -1, 1/3*a6^10 + 1/3*a6^9 - 17/3*a6^8 - 5*a6^7 + 34*a6^6 + 77/3*a6^5 - 84*a6^4 - 51*a6^3 + 224/3*a6^2 + 80/3*a6 - 18)" "x^11 + x^10 - 17*x^9 - 15*x^8 + 102*x^7 + 77*x^6 - 255*x^5 - 150*x^4 + 248*x^3 + 59*x^2 - 93*x + 18"
"946b1" 946 473 2 19156584941212 "(a5, a5^8 - 3*a5^7 - 7*a5^6 + 27*a5^5 - 2*a5^4 - 49*a5^3 + 33*a5^2 + 4*a5 - 3, -5*a5^8 + 18*a5^7 + 31*a5^6 - 165*a5^5 + 45*a5^4 + 320*a5^3 - 224*a5^2 - 69*a5 + 21, 2*a5^8 - 8*a5^7 - 11*a5^6 + 74*a5^5 - 31*a5^4 - 148*a5^3 + 115*a5^2 + 40*a5 - 9, 1, 4*a5^8 - 14*a5^7 - 26*a5^6 + 128*a5^5 - 25*a5^4 - 245*a5^3 + 158*a5^2 + 43*a5 - 13)" "x^9 - 4*x^8 - 5*x^7 + 36*x^6 - 20*x^5 - 65*x^4 + 66*x^3 + 4*x^2 - 8*x + 1"
"14a1" 14 474 2 151717 "(1, -1, a5 - 3, 3/4*a5^3 - 7*a5^2 + 7*a5 + 117/4, -5/4*a5^3 + 12*a5^2 - 15*a5 - 167/4, -1/4*a5^3 + 2*a5^2 - a5 - 19/4)" "x^4 - 13*x^3 + 44*x^2 - x - 127"
"474a1" 474 474 2 229 "(1, 1, 1/2*a4 + 1/2, -1/2*a4 + 1/2, -1/4*a4^2 + 13/4, 1/4*a4^2 - 13/4)" "x^3 - 3*x^2 - 13*x + 7"
"474a1" 474 474 2 151717 "(1, -1, a5 - 3, 3/4*a5^3 - 7*a5^2 + 7*a5 + 117/4, -5/4*a5^3 + 12*a5^2 - 15*a5 - 167/4, -1/4*a5^3 + 2*a5^2 - a5 - 19/4)" "x^4 - 13*x^3 + 44*x^2 - x - 127"
"14a1" 14 475 2 11344 "(a8, -a8^3 + 5*a8 + 2, 0, 2*a8^2 - 2*a8 - 8, 2*a8^2 - 2*a8 - 6, a8^3 - 2*a8^2 - 3*a8 + 4)" "x^4 - 2*x^3 - 6*x^2 + 8*x + 9"
"14a1" 14 475 2 66064384 "(a9, -1/2*a9^5 + 4*a9^3 - 13/2*a9, 0, -1/4*a9^5 + 5/2*a9^3 - 19/4*a9, a9^4 - 6*a9^2 + 5, -a9^3 + 5*a9)" "x^6 - 10*x^4 + 27*x^2 - 16"
"14a1" 14 475 2 148 "(a5, a5^2 - 3, 0, -2*a5^2 - 2*a5 + 4, 2*a5 - 2, -a5^2 - 2*a5 - 1)" "x^3 + x^2 - 3*x - 1"
"19a1" 19 475 2 66064384 "(a9, -1/2*a9^5 + 4*a9^3 - 13/2*a9, 0, -1/4*a9^5 + 5/2*a9^3 - 19/4*a9, a9^4 - 6*a9^2 + 5, -a9^3 + 5*a9)" "x^6 - 10*x^4 + 27*x^2 - 16"
"14a1" 14 477 2 1054013 "(a5, 0, -a5^3 + a5^2 + 6*a5 - 4, 1/3*a5^4 - 4/3*a5^3 - 2*a5^2 + 7*a5 + 4/3, 2/3*a5^4 - 2/3*a5^3 - 4*a5^2 + 2*a5 + 2/3, 2/3*a5^4 + 1/3*a5^3 - 5*a5^2 - 2*a5 + 20/3)" "x^5 - 10*x^3 + 22*x - 5"
"53a1" 53 477 2 148 "(a1, 0, -a1^2 + 3, a1^2 - 1, -a1^2 + 2*a1 + 3, 1)" "x^3 - x^2 - 3*x + 1"
"14a1" 14 478 2 9129208 "(-1, -a3 - 1, -4/31*a3^5 - 37/31*a3^4 - 75/31*a3^3 + 115/31*a3^2 + 10*a3 - 21/31, -19/62*a3^5 - 137/62*a3^4 - 89/31*a3^3 + 461/62*a3^2 + 13*a3 - 123/62, -11/62*a3^5 - 63/62*a3^4 - 14/31*a3^3 + 169/62*a3^2 + 167/62, 41/124*a3^5 + 263/124*a3^4 + 117/62*a3^3 - 985/124*a3^2 - 21/2*a3 + 471/124)" "x^6 + 8*x^5 + 13*x^4 - 27*x^3 - 59*x^2 + 13*x + 7"
"14a1" 14 478 2 398885 "(1, a2 - 1, -a2^4 + 5*a2^3 - 3*a2^2 - 8*a2 + 1, -a2^2 + 2*a2 + 3, a2^4 - 5*a2^3 + 3*a2^2 + 7*a2 + 2, 2*a2^4 - 9*a2^3 + 2*a2^2 + 17*a2 + 4)" "x^5 - 7*x^4 + 12*x^3 + 7*x^2 - 20*x - 5"
"14a1" 14 481 2 2.46E+018 "(a3, -13/86*a3^10 + 17/43*a3^9 + 81/43*a3^8 - 397/86*a3^7 - 687/86*a3^6 + 684/43*a3^5 + 1403/86*a3^4 - 721/43*a3^3 - 1575/86*a3^2 + 287/86*a3 + 268/43, -2/43*a3^10 + 27/86*a3^9 - 13/86*a3^8 - 271/86*a3^7 + 278/43*a3^6 + 583/86*a3^5 - 2489/86*a3^4 + 228/43*a3^3 + 1739/43*a3^2 - 1119/86*a3 - 675/43, 23/172*a3^10 + 3/86*a3^9 - 269/86*a3^8 + 107/172*a3^7 + 4113/172*a3^6 - 843/86*a3^5 - 12273/172*a3^4 + 1387/43*a3^3 + 13047/172*a3^2 - 4477/172*a3 - 1741/86, -7/172*a3^10 - 7/43*a3^9 + 40/43*a3^8 + 375/172*a3^7 - 1177/172*a3^6 - 398/43*a3^5 + 3395/172*a3^4 + 565/43*a3^3 - 3739/172*a3^2 - 421/172*a3 + 743/86, -1)" "x^11 - 3*x^10 - 14*x^9 + 45*x^8 + 64*x^7 - 237*x^6 - 99*x^5 + 529*x^4 - 7*x^3 - 460*x^2 + 67*x + 110"
"14a1" 14 481 2 1.72E+018 "(a4, -5/4*a4^10 + 5/2*a4^9 + 16*a4^8 - 129/4*a4^7 - 241/4*a4^6 + 120*a4^5 + 293/4*a4^4 - 130*a4^3 - 139/4*a4^2 + 101/4*a4 + 5/2, -1/4*a4^10 + 5/4*a4^9 + 11/4*a4^8 - 16*a4^7 - 27/4*a4^6 + 237/4*a4^5 - 125/2*a4^3 - 13/4*a4^2 + 9*a4 + 1, 3/8*a4^10 - 1/4*a4^9 - 11/2*a4^8 + 27/8*a4^7 + 215/8*a4^6 - 13*a4^5 - 423/8*a4^4 + 27/2*a4^3 + 321/8*a4^2 + 17/8*a4 - 21/4, 3/8*a4^10 - 1/2*a4^9 - 19/4*a4^8 + 53/8*a4^7 + 139/8*a4^6 - 103/4*a4^5 - 145/8*a4^4 + 32*a4^3 + 29/8*a4^2 - 97/8*a4 + 1/4, 1)" "x^11 - 3*x^10 - 12*x^9 + 39*x^8 + 38*x^7 - 149*x^6 - 23*x^5 + 175*x^4 - 5*x^3 - 48*x^2 + 5*x + 2"
"37a1" 37 481 2 200018349 "(a2, -2*a2^6 - a2^5 + 16*a2^4 + 5*a2^3 - 33*a2^2 - 2*a2 + 13, a2^6 + a2^5 - 8*a2^4 - 6*a2^3 + 16*a2^2 + 5*a2 - 6, a2^4 - 6*a2^2 + 5, 3*a2^6 - 26*a2^4 + 2*a2^3 + 61*a2^2 - 9*a2 - 33, 1)" "x^7 + x^6 - 8*x^5 - 7*x^4 + 17*x^3 + 12*x^2 - 9*x - 6"
"37a1" 37 481 2 1.72E+018 "(a4, -5/4*a4^10 + 5/2*a4^9 + 16*a4^8 - 129/4*a4^7 - 241/4*a4^6 + 120*a4^5 + 293/4*a4^4 - 130*a4^3 - 139/4*a4^2 + 101/4*a4 + 5/2, -1/4*a4^10 + 5/4*a4^9 + 11/4*a4^8 - 16*a4^7 - 27/4*a4^6 + 237/4*a4^5 - 125/2*a4^3 - 13/4*a4^2 + 9*a4 + 1, 3/8*a4^10 - 1/4*a4^9 - 11/2*a4^8 + 27/8*a4^7 + 215/8*a4^6 - 13*a4^5 - 423/8*a4^4 + 27/2*a4^3 + 321/8*a4^2 + 17/8*a4 - 21/4, 3/8*a4^10 - 1/2*a4^9 - 19/4*a4^8 + 53/8*a4^7 + 139/8*a4^6 - 103/4*a4^5 - 145/8*a4^4 + 32*a4^3 + 29/8*a4^2 - 97/8*a4 + 1/4, 1)" "x^11 - 3*x^10 - 12*x^9 + 39*x^8 + 38*x^7 - 149*x^6 - 23*x^5 + 175*x^4 - 5*x^3 - 48*x^2 + 5*x + 2"
"37a1" 37 481 2 2.46E+018 "(a3, -13/86*a3^10 + 17/43*a3^9 + 81/43*a3^8 - 397/86*a3^7 - 687/86*a3^6 + 684/43*a3^5 + 1403/86*a3^4 - 721/43*a3^3 - 1575/86*a3^2 + 287/86*a3 + 268/43, -2/43*a3^10 + 27/86*a3^9 - 13/86*a3^8 - 271/86*a3^7 + 278/43*a3^6 + 583/86*a3^5 - 2489/86*a3^4 + 228/43*a3^3 + 1739/43*a3^2 - 1119/86*a3 - 675/43, 23/172*a3^10 + 3/86*a3^9 - 269/86*a3^8 + 107/172*a3^7 + 4113/172*a3^6 - 843/86*a3^5 - 12273/172*a3^4 + 1387/43*a3^3 + 13047/172*a3^2 - 4477/172*a3 - 1741/86, -7/172*a3^10 - 7/43*a3^9 + 40/43*a3^8 + 375/172*a3^7 - 1177/172*a3^6 - 398/43*a3^5 + 3395/172*a3^4 + 565/43*a3^3 - 3739/172*a3^2 - 421/172*a3 + 743/86, -1)" "x^11 - 3*x^10 - 14*x^9 + 45*x^8 + 64*x^7 - 237*x^6 - 99*x^5 + 529*x^4 - 7*x^3 - 460*x^2 + 67*x + 110"
"37a1" 37 481 2 77004029 "(a1, -4*a1^6 - 15*a1^5 + 10*a1^4 + 69*a1^3 + 15*a1^2 - 42*a1 + 5, -3*a1^6 - 11*a1^5 + 10*a1^4 + 54*a1^3 - 41*a1 + 8, 8*a1^6 + 30*a1^5 - 21*a1^4 - 140*a1^3 - 26*a1^2 + 88*a1 - 13, 9*a1^6 + 34*a1^5 - 24*a1^4 - 160*a1^3 - 27*a1^2 + 105*a1 - 15, -1)" "x^7 + 5*x^6 + 2*x^5 - 21*x^4 - 25*x^3 + 8*x^2 + 13*x - 2"
"14a1" 14 482 2 372845137445376 "(1, 1/2*a4 - 1/2, 15/4096*a4^8 - 99/2048*a4^7 + 9/2048*a4^6 + 3793/2048*a4^5 - 871/256*a4^4 - 43561/2048*a4^3 + 80487/2048*a4^2 + 162747/2048*a4 - 331391/4096, 1/1024*a4^8 - 7/512*a4^7 + 5/512*a4^6 + 261/512*a4^5 - 317/256*a4^4 - 2885/512*a4^3 + 7027/512*a4^2 + 10567/512*a4 - 26621/1024, 13/2048*a4^8 - 85/1024*a4^7 + 7/1024*a4^6 + 3191/1024*a4^5 - 1459/256*a4^4 - 35263/1024*a4^3 + 65465/1024*a4^2 + 124829/1024*a4 - 263669/2048, -91/4096*a4^8 + 603/2048*a4^7 - 105/2048*a4^6 - 22809/2048*a4^5 + 10911/512*a4^4 + 256209/2048*a4^3 - 495415/2048*a4^2 - 932371/2048*a4 + 2050723/4096)" "x^9 - 17*x^8 + 52*x^7 + 492*x^6 - 2834*x^5 - 2030*x^4 + 31876*x^3 - 20132*x^2 - 98727*x + 83127"
"482a1" 482 482 2 229 "(-1, 1/2*a2 + 1/2, -1/8*a2^2 - a2 + 9/8, -3, 1/4*a2^2 + 3/2*a2 - 11/4, -1/8*a2^2 - 3/2*a2 - 19/8)" "x^3 + 7*x^2 - 9*x - 31"
"482a1" 482 482 2 372845137445376 "(1, 1/2*a4 - 1/2, 15/4096*a4^8 - 99/2048*a4^7 + 9/2048*a4^6 + 3793/2048*a4^5 - 871/256*a4^4 - 43561/2048*a4^3 + 80487/2048*a4^2 + 162747/2048*a4 - 331391/4096, 1/1024*a4^8 - 7/512*a4^7 + 5/512*a4^6 + 261/512*a4^5 - 317/256*a4^4 - 2885/512*a4^3 + 7027/512*a4^2 + 10567/512*a4 - 26621/1024, 13/2048*a4^8 - 85/1024*a4^7 + 7/1024*a4^6 + 3191/1024*a4^5 - 1459/256*a4^4 - 35263/1024*a4^3 + 65465/1024*a4^2 + 124829/1024*a4 - 263669/2048, -91/4096*a4^8 + 603/2048*a4^7 - 105/2048*a4^6 - 22809/2048*a4^5 + 10911/512*a4^4 + 256209/2048*a4^3 - 495415/2048*a4^2 - 932371/2048*a4 + 2050723/4096)" "x^9 - 17*x^8 + 52*x^7 + 492*x^6 - 2834*x^5 - 2030*x^4 + 31876*x^3 - 20132*x^2 - 98727*x + 83127"
"14a1" 14 483 2 15317 "(a9, -1, -a9^3 + 2*a9^2 + 3*a9 - 2, -1, -a9^3 + a9^2 + 5*a9 - 1, -a9^3 + a9^2 + 2*a9 + 2)" "x^4 - 2*x^3 - 4*x^2 + 5*x + 2"
"14a1" 14 483 2 24197 "(a8, -1, a8^3 - 5*a8 + 2, 1, -a8^3 - a8^2 + 5*a8 + 1, -a8^3 + a8^2 + 6*a8 - 2)" "x^4 - 6*x^2 + x + 2"
"14a1" 14 483 2 837 "(a7, 1, -a7 + 1, -1, a7^2 - a7 - 2, -a7^2 + 7)" "x^3 - 6*x - 1"
"483a1" 483 483 2 24197 "(a8, -1, a8^3 - 5*a8 + 2, 1, -a8^3 - a8^2 + 5*a8 + 1, -a8^3 + a8^2 + 6*a8 - 2)" "x^4 - 6*x^2 + x + 2"
"483a1" 483 483 2 15317 "(a9, -1, -a9^3 + 2*a9^2 + 3*a9 - 2, -1, -a9^3 + a9^2 + 5*a9 - 1, -a9^3 + a9^2 + 2*a9 + 2)" "x^4 - 2*x^3 - 4*x^2 + 5*x + 2"
"11a1" 11 484 2 33 "(0, -1/2*a3, 1/2*a3 + 2, 0, 0, 0)" "x^2 + 2*x - 32"
"14a1" 14 484 2 33 "(0, -1/2*a3, 1/2*a3 + 2, 0, 0, 0)" "x^2 + 2*x - 32"
"121a1" 121 484 2 12 "(0, 2, 3, -a4 - 7, 0, 3/2*a4 + 21/2)" "x^2 + 14*x + 37"
"14a1" 14 485 2 853959836 "(a7, a7^6 - 9*a7^4 + a7^3 + 22*a7^2 - 5*a7 - 12, -1, -a7^6 + 10*a7^4 - 2*a7^3 - 29*a7^2 + 9*a7 + 17, a7^5 + 2*a7^4 - 7*a7^3 - 11*a7^2 + 10*a7 + 9, -a7^5 - 3*a7^4 + 8*a7^3 + 18*a7^2 - 15*a7 - 17)" "x^7 + x^6 - 9*x^5 - 7*x^4 + 23*x^3 + 12*x^2 - 15*x - 8"
"14a1" 14 485 2 18378541769 "(a8, 1/4*a8^6 + 1/4*a8^5 - 11/4*a8^4 - 11/4*a8^3 + 29/4*a8^2 + 6*a8 - 1/4, -1, -1/2*a8^6 + 1/2*a8^5 + 9/2*a8^4 - 7/2*a8^3 - 17/2*a8^2 + 3*a8 + 5/2, -a8^2 + a8 + 4, -1/2*a8^6 + 11/2*a8^4 - 29/2*a8^2 + 1/2*a8 + 5)" "x^7 - 2*x^6 - 10*x^5 + 18*x^4 + 26*x^3 - 35*x^2 - 21*x + 7"
"14a1" 14 485 2 568 "(a4, 2, 1, -a4 + 1, a4^2 - 3, -a4^2 - 2*a4 + 3)" "x^3 + 2*x^2 - 5*x - 8"
"485a1" 485 485 2 853959836 "(a7, a7^6 - 9*a7^4 + a7^3 + 22*a7^2 - 5*a7 - 12, -1, -a7^6 + 10*a7^4 - 2*a7^3 - 29*a7^2 + 9*a7 + 17, a7^5 + 2*a7^4 - 7*a7^3 - 11*a7^2 + 10*a7 + 9, -a7^5 - 3*a7^4 + 8*a7^3 + 18*a7^2 - 15*a7 - 17)" "x^7 + x^6 - 9*x^5 - 7*x^4 + 23*x^3 + 12*x^2 - 15*x - 8"
"485a1" 485 485 2 568 "(a4, 2, 1, -a4 + 1, a4^2 - 3, -a4^2 - 2*a4 + 3)" "x^3 + 2*x^2 - 5*x - 8"
"14a1" 14 488 2 643168996 "(0, -a3, -1/4*a3^5 - 3/4*a3^4 + 9/4*a3^3 + 11/2*a3^2 - 5*a3 - 6, -1/4*a3^5 - 1/4*a3^4 + 11/4*a3^3 + a3^2 - 7*a3, 1/4*a3^5 + 1/4*a3^4 - 15/4*a3^3 - 3*a3^2 + 12*a3 + 8, 1/4*a3^5 + 3/4*a3^4 - 5/4*a3^3 - 9/2*a3^2 + 6)" "x^6 + 3*x^5 - 9*x^4 - 26*x^3 + 16*x^2 + 52*x + 16"
"61a1" 61 488 2 8 "(0, 0, -1, a0 + 2, -3*a0 - 10, -2*a0 - 9)" "x^2 + 6*x + 7"
"61a1" 61 488 2 643168996 "(0, -a3, -1/4*a3^5 - 3/4*a3^4 + 9/4*a3^3 + 11/2*a3^2 - 5*a3 - 6, -1/4*a3^5 - 1/4*a3^4 + 11/4*a3^3 + a3^2 - 7*a3, 1/4*a3^5 + 1/4*a3^4 - 15/4*a3^3 - 3*a3^2 + 12*a3 + 8, 1/4*a3^5 + 3/4*a3^4 - 5/4*a3^3 - 9/2*a3^2 + 6)" "x^6 + 3*x^5 - 9*x^4 - 26*x^3 + 16*x^2 + 52*x + 16"
"61a1" 61 488 2 13676 "(0, 1/2*a2, -1/4*a2^2 + 1/2*a2 + 3, 1/16*a2^3 - 1/8*a2^2 - 5/4*a2 + 3, -1/16*a2^3 - 1/8*a2^2 + 5/4*a2 + 3, 1/4*a2^2 + 1/2*a2 - 3)" "x^4 - 2*x^3 - 28*x^2 + 32*x + 128"
"61a1" 61 488 2 148 "(0, -a1, a1 - 1, -1/2*a1^2 + a1 - 1, 1/2*a1^2 - 3, -a1^2 + 2*a1 + 1)" "x^3 - 2*x^2 - 4*x + 4"
"14a1" 14 489 2 1.17E+017 "(a3, 1, -21/68*a3^9 + 4/17*a3^8 + 161/34*a3^7 - 227/68*a3^6 - 414/17*a3^5 + 243/17*a3^4 + 836/17*a3^3 - 1369/68*a3^2 - 2201/68*a3 + 95/17, 3/34*a3^9 + 5/34*a3^8 - 23/17*a3^7 - 36/17*a3^6 + 239/34*a3^5 + 325/34*a3^4 - 485/34*a3^3 - 224/17*a3^2 + 295/34*a3 + 36/17, 1/17*a3^9 - 4/17*a3^8 - 21/17*a3^7 + 61/17*a3^6 + 159/17*a3^5 - 294/17*a3^4 - 513/17*a3^3 + 457/17*a3^2 + 580/17*a3 - 78/17, 9/34*a3^9 - 1/17*a3^8 - 69/17*a3^7 + 39/34*a3^6 + 350/17*a3^5 - 116/17*a3^4 - 668/17*a3^3 + 475/34*a3^2 + 749/34*a3 - 62/17)" "x^10 - x^9 - 16*x^8 + 15*x^7 + 87*x^6 - 72*x^5 - 188*x^4 + 125*x^3 + 132*x^2 - 55*x + 4"
"163a1" 163 489 2 1.17E+017 "(a3, 1, -21/68*a3^9 + 4/17*a3^8 + 161/34*a3^7 - 227/68*a3^6 - 414/17*a3^5 + 243/17*a3^4 + 836/17*a3^3 - 1369/68*a3^2 - 2201/68*a3 + 95/17, 3/34*a3^9 + 5/34*a3^8 - 23/17*a3^7 - 36/17*a3^6 + 239/34*a3^5 + 325/34*a3^4 - 485/34*a3^3 - 224/17*a3^2 + 295/34*a3 + 36/17, 1/17*a3^9 - 4/17*a3^8 - 21/17*a3^7 + 61/17*a3^6 + 159/17*a3^5 - 294/17*a3^4 - 513/17*a3^3 + 457/17*a3^2 + 580/17*a3 - 78/17, 9/34*a3^9 - 1/17*a3^8 - 69/17*a3^7 + 39/34*a3^6 + 350/17*a3^5 - 116/17*a3^4 - 668/17*a3^3 + 475/34*a3^2 + 749/34*a3 - 62/17)" "x^10 - x^9 - 16*x^8 + 15*x^7 + 87*x^6 - 72*x^5 - 188*x^4 + 125*x^3 + 132*x^2 - 55*x + 4"
"163a1" 163 489 2 106069 "(a1, -1, a1^4 + a1^3 - 5*a1^2 - 2*a1 + 4, -a1^4 - 2*a1^3 + 3*a1^2 + 4*a1 - 2, -a1^4 + 5*a1^2 - 2*a1 - 6, -a1^4 + 6*a1^2 - a1 - 4)" "x^5 + 2*x^4 - 4*x^3 - 7*x^2 + 3*x + 4"
"14a1" 14 490 2 8 "(-1, -a12 - 1, 1, 0, 2*a12 + 8, 2*a12 + 4)" "x^2 + 6*x + 7"
"14a1" 14 490 2 8 "(-1, a11 + 1, -1, 0, 2*a11 + 8, -2*a11 - 4)" "x^2 + 6*x + 7"
"982a1" 982 491 2 4.49E+066 "(a2, 23108313731491005958945/218089520041081175482624*a2^28 - 4990921243167303783455/109044760020540587741312*a2^27 - 1128237043944943824602305/218089520041081175482624*a2^26 + 510789038220329400741103/218089520041081175482624*a2^25 + 12235940192251196566205495/109044760020540587741312*a2^24 - 11486392256760376002059439/218089520041081175482624*a2^23 - 310884227120062146619354149/218089520041081175482624*a2^22 + 37441678869415215565124865/54522380010270293870656*a2^21 + 2567387872825066096992801631/218089520041081175482624*a2^20 - 314422047663874124131196579/54522380010270293870656*a2^19 - 14462925102759462326803330109/218089520041081175482624*a2^18 + 7144730506518246130810302047/218089520041081175482624*a2^17 + 56723385490790397675247041219/218089520041081175482624*a2^16 - 28062356711339419523041158657/218089520041081175482624*a2^15 - 155202108078989193851145985279/218089520041081175482624*a2^14 + 19128539572470952946010911329/54522380010270293870656*a2^13 + 73033019213460611902799783449/54522380010270293870656*a2^12 - 71579667312412771283916815127/109044760020540587741312*a2^11 - 183180316062116736693216330747/109044760020540587741312*a2^10 + 89138874931513893180363639905/109044760020540587741312*a2^9 + 289372922052299143129515027651/218089520041081175482624*a2^8 - 8685639012562813198804414721/13630595002567573467664*a2^7 - 8212619346483800913099528667/13630595002567573467664*a2^6 + 3749859888199500177434582251/13630595002567573467664*a2^5 + 1894985749176688097788896587/13630595002567573467664*a2^4 - 174625295706668521753160397/3407648750641893366916*a2^3 - 14453544936544907868787544/851912187660473341729*a2^2 + 5691745989950541422276935/1703824375320946683458*a2 + 788008533738074726670509/851912187660473341729, 46390173195350031769459/218089520041081175482624*a2^28 - 287700363345141299539/3407648750641893366916*a2^27 - 2265767449072243036297399/218089520041081175482624*a2^26 + 945847363434923118382099/218089520041081175482624*a2^25 + 6145977858546805278593191/27261190005135146935328*a2^24 - 21330737248031017375519769/218089520041081175482624*a2^23 - 624974105843270153900174245/218089520041081175482624*a2^22 + 139349391489420176348280481/109044760020540587741312*a2^21 + 5164987186501287486885159437/218089520041081175482624*a2^20 - 1171885420233881582783868231/109044760020540587741312*a2^19 - 29122846557622810688666145047/218089520041081175482624*a2^18 + 13327490858026602210543250555/218089520041081175482624*a2^17 + 114356044958796382283112755879/218089520041081175482624*a2^16 - 52383951831533553402571383693/218089520041081175482624*a2^15 - 313395683406478584247391816415/218089520041081175482624*a2^14 + 71469683156800433541820547015/109044760020540587741312*a2^13 + 147810722720736126192852171027/54522380010270293870656*a2^12 - 133890950984541638690786833049/109044760020540587741312*a2^11 - 372034250554197688812806961967/109044760020540587741312*a2^10 + 167126736004092685116375453133/109044760020540587741312*a2^9 + 591174263418013248190082402749/218089520041081175482624*a2^8 - 130803458946685504966057124841/109044760020540587741312*a2^7 - 33922494148411792015317901443/27261190005135146935328*a2^6 + 7102753082548731859023170365/13630595002567573467664*a2^5 + 997800743541289215828456651/3407648750641893366916*a2^4 - 667587883910328388526351711/6815297501283786733832*a2^3 - 30679456747676303654145250/851912187660473341729*a2^2 + 10976915534645600786004999/1703824375320946683458*a2 + 1644794886766733723348133/851912187660473341729, 61123797985732835716123/109044760020540587741312*a2^28 - 12190108946092542051659/54522380010270293870656*a2^27 - 2985463439888759090665163/109044760020540587741312*a2^26 + 1251536292297903683822073/109044760020540587741312*a2^25 + 32393001103029889016833303/54522380010270293870656*a2^24 - 28208065115954643852521069/109044760020540587741312*a2^23 - 823480979166375963047315115/109044760020540587741312*a2^22 + 11511379858528989528328083/3407648750641893366916*a2^21 + 6805081549849536775125990325/109044760020540587741312*a2^20 - 48381043553957760047842117/1703824375320946683458*a2^19 - 38365569004662461861863688743/109044760020540587741312*a2^18 + 17599679067322927531931025721/109044760020540587741312*a2^17 + 150614195244010388149920731637/109044760020540587741312*a2^16 - 69149223775111563634175417039/109044760020540587741312*a2^15 - 412598582814892509531459836073/109044760020540587741312*a2^14 + 11788797519853207410988007769/6815297501283786733832*a2^13 + 194470131894016552926084570015/27261190005135146935328*a2^12 - 176624757996204068967619525425/54522380010270293870656*a2^11 - 488929803445812233033915779877/54522380010270293870656*a2^10 + 220398892873424408277504202663/54522380010270293870656*a2^9 + 775440175452382255961731672441/109044760020540587741312*a2^8 - 86209725616540986132753892421/27261190005135146935328*a2^7 - 44344934001635122357382391757/13630595002567573467664*a2^6 + 18704834937907753289929900769/13630595002567573467664*a2^5 + 5187087264287998316374350849/6815297501283786733832*a2^4 - 219027106568433982006669321/851912187660473341729*a2^3 - 79463662998394308469978272/851912187660473341729*a2^2 + 14349089490187851413898124/851912187660473341729*a2 + 4265173104774073687949840/851912187660473341729, -4024315406687105321637/54522380010270293870656*a2^28 + 2927901798278404361441/109044760020540587741312*a2^27 + 196696304405427346693207/54522380010270293870656*a2^26 - 151156043936377633708303/109044760020540587741312*a2^25 - 8544669523508507947746643/109044760020540587741312*a2^24 + 1711035021507586695012101/54522380010270293870656*a2^23 + 108740997028145789635504291/109044760020540587741312*a2^22 - 44845330292988785575063039/109044760020540587741312*a2^21 - 225012548162525101847868523/27261190005135146935328*a2^20 + 378015171297692285732095579/109044760020540587741312*a2^19 + 1271275906697182967870011125/27261190005135146935328*a2^18 - 2153575621295811283212959799/109044760020540587741312*a2^17 - 20020710251516341961499802941/109044760020540587741312*a2^16 + 8479060568151502253092777079/109044760020540587741312*a2^15 + 55067290546633924923199397119/109044760020540587741312*a2^14 - 23180398345681783826694044061/109044760020540587741312*a2^13 - 52215040212521650634008721549/54522380010270293870656*a2^12 + 5442549423050810179594236985/13630595002567573467664*a2^11 + 66232826683298861270531540411/54522380010270293870656*a2^10 - 27288409243425212563552456263/54522380010270293870656*a2^9 - 6663918674373270782710962125/6815297501283786733832*a2^8 + 43014895113449314945109504931/109044760020540587741312*a2^7 + 25052085788904929317307262119/54522380010270293870656*a2^6 - 2364286315075455852363888015/13630595002567573467664*a2^5 - 1538720843856984570736165065/13630595002567573467664*a2^4 + 56936703638242928517996863/1703824375320946683458*a2^3 + 49219716104480577221231971/3407648750641893366916*a2^2 - 3870824592869818274304823/1703824375320946683458*a2 - 668333035848226034529820/851912187660473341729, -136514578125992580164467/218089520041081175482624*a2^28 + 13534961113744893724129/54522380010270293870656*a2^27 + 6667633629029924516861847/218089520041081175482624*a2^26 - 2780859707090495317624031/218089520041081175482624*a2^25 - 36172433358200228073320305/54522380010270293870656*a2^24 + 62707652342394643793032241/218089520041081175482624*a2^23 + 1839136998369782425658048593/218089520041081175482624*a2^22 - 409609857284213840659959735/109044760020540587741312*a2^21 - 15198769203286378828615267053/218089520041081175482624*a2^20 + 3444244534619409648904073553/109044760020540587741312*a2^19 + 85693296516396691284855907983/218089520041081175482624*a2^18 - 39164516305054810907522365591/218089520041081175482624*a2^17 - 336453201082426920907716984611/218089520041081175482624*a2^16 + 153911131907951599633548062137/218089520041081175482624*a2^15 + 921884666860285647665663517019/218089520041081175482624*a2^14 - 209948828681731507938937655333/109044760020540587741312*a2^13 - 434661658817553429404924099347/54522380010270293870656*a2^12 + 393237810739577611452274170517/109044760020540587741312*a2^11 + 1093443867244021063586489551299/109044760020540587741312*a2^10 - 490736897770061011284370737905/109044760020540587741312*a2^9 - 1735945695215242621960061794837/218089520041081175482624*a2^8 + 383947563167493036602898079295/109044760020540587741312*a2^7 + 49727698223156074617317769197/13630595002567573467664*a2^6 - 41665128374416230776623001451/27261190005135146935328*a2^5 - 5835458436630303640960465031/6815297501283786733832*a2^4 + 976766433801533951348584949/3407648750641893366916*a2^3 + 358176988028726436258969575/3407648750641893366916*a2^2 - 32013722419203811484670621/1703824375320946683458*a2 - 4794044879575333710187837/851912187660473341729)" "x^29 - 49*x^27 + x^26 + 1068*x^25 - 39*x^24 - 13655*x^23 + 658*x^22 + 113723*x^21 - 6306*x^20 - 647801*x^19 + 37953*x^18 + 2578721*x^17 - 150115*x^16 - 7201417*x^15 + 398246*x^14 + 13959112*x^13 - 711934*x^12 - 18310154*x^11 + 839798*x^10 + 15574775*x^9 - 585854*x^8 - 8065060*x^7 + 132680*x^6 + 2339280*x^5 + 83968*x^4 - 350400*x^3 - 36608*x^2 + 20992*x + 3584"
"123a1" 123 492 2 24 "(0, -1, -a2 + 2, -a2 + 6, a2 - 5, a2 - 2)" "x^2 - 8*x + 10"
"123a1" 123 492 2 12 "(0, 1, 1/2*a3 + 1/2, 1/2*a3 + 1/2, -1/2*a3 + 5/2, -1/2*a3 - 1/2)" "x^2 - 2*x - 11"
"14a1" 14 493 2 2.88E+015 "(a7, 5/22*a7^9 + 23/22*a7^8 - a7^7 - 17/2*a7^6 - 15/22*a7^5 + 218/11*a7^4 + 1/22*a7^3 - 167/11*a7^2 + 119/22*a7 + 1, 7/22*a7^9 + 19/22*a7^8 - 4*a7^7 - 21/2*a7^6 + 353/22*a7^5 + 435/11*a7^4 - 465/22*a7^3 - 500/11*a7^2 + 127/22*a7 + 6, -9/22*a7^9 - 13/11*a7^8 + 9/2*a7^7 + 25/2*a7^6 - 190/11*a7^5 - 919/22*a7^4 + 601/22*a7^3 + 973/22*a7^2 - 333/22*a7 - 11/2, 15/22*a7^9 + 47/22*a7^8 - 7*a7^7 - 43/2*a7^6 + 571/22*a7^5 + 742/11*a7^4 - 965/22*a7^3 - 732/11*a7^2 + 577/22*a7 + 5, -7/22*a7^9 - 19/22*a7^8 + 4*a7^7 + 19/2*a7^6 - 397/22*a7^5 - 347/11*a7^4 + 751/22*a7^3 + 324/11*a7^2 - 501/22*a7 - 1)" "x^10 + 5*x^9 - 3*x^8 - 44*x^7 - 25*x^6 + 119*x^5 + 98*x^4 - 116*x^3 - 94*x^2 + 28*x + 11"
"14a1" 14 493 2 948361400152 "(a6, -a6^2 + a6 + 4, a6^6 - 2*a6^5 - 8*a6^4 + 12*a6^3 + 21*a6^2 - 16*a6 - 18, -1/2*a6^7 + a6^6 + 4*a6^5 - 11/2*a6^4 - 11*a6^3 + 5*a6^2 + 21/2*a6 + 7/2, -a6^5 + 2*a6^4 + 6*a6^3 - 9*a6^2 - 8*a6 + 6, -1/2*a6^7 + a6^6 + 4*a6^5 - 13/2*a6^4 - 10*a6^3 + 10*a6^2 + 17/2*a6 + 1/2)" "x^8 - 3*x^7 - 10*x^6 + 29*x^5 + 37*x^4 - 88*x^3 - 65*x^2 + 80*x + 51"
"14a1" 14 493 2 7313969 "(a5, a5^2 - a5 - 2, a5^5 - 5*a5^4 + 2*a5^3 + 17*a5^2 - 16*a5 - 1, -a5^4 + 2*a5^3 + 4*a5^2 - 7*a5, a5^5 - 2*a5^4 - 6*a5^3 + 7*a5^2 + 10*a5, -a5^3 + a5^2 + 5*a5 - 3)" "x^6 - 5*x^5 + 3*x^4 + 16*x^3 - 20*x^2 + 1"
"58a1" 58 493 2 17 "(1, a2 - 1, a2 + 1, a2 + 2, -a2 + 1, -2*a2 + 1)" "x^2 - x - 4"
"58a1" 58 493 2 2.88E+015 "(a7, 5/22*a7^9 + 23/22*a7^8 - a7^7 - 17/2*a7^6 - 15/22*a7^5 + 218/11*a7^4 + 1/22*a7^3 - 167/11*a7^2 + 119/22*a7 + 1, 7/22*a7^9 + 19/22*a7^8 - 4*a7^7 - 21/2*a7^6 + 353/22*a7^5 + 435/11*a7^4 - 465/22*a7^3 - 500/11*a7^2 + 127/22*a7 + 6, -9/22*a7^9 - 13/11*a7^8 + 9/2*a7^7 + 25/2*a7^6 - 190/11*a7^5 - 919/22*a7^4 + 601/22*a7^3 + 973/22*a7^2 - 333/22*a7 - 11/2, 15/22*a7^9 + 47/22*a7^8 - 7*a7^7 - 43/2*a7^6 + 571/22*a7^5 + 742/11*a7^4 - 965/22*a7^3 - 732/11*a7^2 + 577/22*a7 + 5, -7/22*a7^9 - 19/22*a7^8 + 4*a7^7 + 19/2*a7^6 - 397/22*a7^5 - 347/11*a7^4 + 751/22*a7^3 + 324/11*a7^2 - 501/22*a7 - 1)" "x^10 + 5*x^9 - 3*x^8 - 44*x^7 - 25*x^6 + 119*x^5 + 98*x^4 - 116*x^3 - 94*x^2 + 28*x + 11"
"58a1" 58 493 2 8468 "(a3, -1/2*a3^3 - 1/2*a3^2 + 5/2*a3 + 5/2, 1/2*a3^3 - 1/2*a3^2 - 7/2*a3 + 7/2, -1/2*a3^3 + 1/2*a3^2 + 7/2*a3 - 5/2, -1/2*a3^3 + 1/2*a3^2 + 5/2*a3 + 3/2, a3^3 - 7*a3 + 1)" "x^4 - 2*x^3 - 6*x^2 + 12*x - 1"
"493a1" 493 493 2 17 "(1, a2 - 1, a2 + 1, a2 + 2, -a2 + 1, -2*a2 + 1)" "x^2 - x - 4"
"493a1" 493 493 2 948361400152 "(a6, -a6^2 + a6 + 4, a6^6 - 2*a6^5 - 8*a6^4 + 12*a6^3 + 21*a6^2 - 16*a6 - 18, -1/2*a6^7 + a6^6 + 4*a6^5 - 11/2*a6^4 - 11*a6^3 + 5*a6^2 + 21/2*a6 + 7/2, -a6^5 + 2*a6^4 + 6*a6^3 - 9*a6^2 - 8*a6 + 6, -1/2*a6^7 + a6^6 + 4*a6^5 - 13/2*a6^4 - 10*a6^3 + 10*a6^2 + 17/2*a6 + 1/2)" "x^8 - 3*x^7 - 10*x^6 + 29*x^5 + 37*x^4 - 88*x^3 - 65*x^2 + 80*x + 51"
"493a1" 493 493 2 8468 "(a3, -1/2*a3^3 - 1/2*a3^2 + 5/2*a3 + 5/2, 1/2*a3^3 - 1/2*a3^2 - 7/2*a3 + 7/2, -1/2*a3^3 + 1/2*a3^2 + 7/2*a3 - 5/2, -1/2*a3^3 + 1/2*a3^2 + 5/2*a3 + 3/2, a3^3 - 7*a3 + 1)" "x^4 - 2*x^3 - 6*x^2 + 12*x - 1"
"26a1" 26 494 2 16609 "(1, -1/2*a7 + 1/2, -1/4*a7^2 + 1/2*a7 + 15/4, -1/8*a7^3 + 1/8*a7^2 + 17/8*a7 + 7/8, 1/8*a7^3 + 1/8*a7^2 - 17/8*a7 - 17/8, 1)" "x^4 - 26*x^2 - 8*x + 113"
"14a1" 14 495 2 8 "(a3, 0, 1, 2*a3 - 4, 1, -4*a3 + 4)" "x^2 - 2*x - 1"
"14a1" 14 495 2 148 "(a4, 0, -1, -a4^2 + 2*a4 + 3, -1, -a4^2 + 3)" "x^3 - x^2 - 5*x + 1"
"14a1" 14 495 2 12 "(a2, 0, 1, 2, 1, 2*a2 + 2)" "x^2 - 3"
"14a1" 14 495 2 48704 "(a6, 0, 1, -a6^3 + 5*a6 + 2, -1, a6^3 - 7*a6 + 2)" "x^4 - 2*x^3 - 6*x^2 + 10*x + 3"
"14a1" 14 495 2 48704 "(a5, 0, -1, a5^3 - 5*a5 + 2, 1, -a5^3 + 7*a5 + 2)" "x^4 + 2*x^3 - 6*x^2 - 10*x + 3"
"14a1" 14 495 2 8 "(a1, 0, 1, -2, -1, -2*a1 - 6)" "x^2 + 2*x - 1"
"14a1" 14 496 2 33 "(0, -2, -1/2*a6 + 1, -1/2*a6 - 1, 2, a6 + 2)" "x^2 + 2*x - 32"
"14a1" 14 496 2 316 "(0, a9, -1/2*a9^2 - a9 + 1, 1/2*a9^2 - a9 - 5, -a9^2 - a9 + 2, a9^2 + a9 - 4)" "x^3 + 2*x^2 - 6*x - 8"
"14a1" 14 496 2 12 "(0, 1/2*a7, a7 + 2, -2, 1/2*a7 + 4, 3/2*a7 + 2)" "x^2 + 4*x - 8"
"124a1" 124 496 2 316 "(0, a9, -1/2*a9^2 - a9 + 1, 1/2*a9^2 - a9 - 5, -a9^2 - a9 + 2, a9^2 + a9 - 4)" "x^3 + 2*x^2 - 6*x - 8"
"124a1" 124 496 2 33 "(0, -2, -1/2*a6 + 1, -1/2*a6 - 1, 2, a6 + 2)" "x^2 + 2*x - 32"
"14a1" 14 497 2 4.08E+027 "(a4, -433/36186*a4^14 - 383/72372*a4^13 + 2199/6031*a4^12 + 7771/72372*a4^11 - 2116/489*a4^10 - 56773/72372*a4^9 + 304817/12062*a4^8 + 61935/24124*a4^7 - 1808897/24124*a4^6 - 161119/36186*a4^5 + 7457797/72372*a4^4 + 130151/18093*a4^3 - 3456883/72372*a4^2 - 85085/12062*a4 + 87343/24124, -4051/36186*a4^14 + 4121/36186*a4^13 + 16311/6031*a4^12 - 44429/18093*a4^11 - 24983/978*a4^10 + 705535/36186*a4^9 + 721195/6031*a4^8 - 836063/12062*a4^7 - 3479137/12062*a4^6 + 1872493/18093*a4^5 + 5996392/18093*a4^4 - 1517627/36186*a4^3 - 4765871/36186*a4^2 - 22552/6031*a4 + 30228/6031, 1, -2049/24124*a4^14 + 1765/12062*a4^13 + 49663/24124*a4^12 - 18575/6031*a4^11 - 12625/652*a4^10 + 286447/12062*a4^9 + 2148733/24124*a4^8 - 1963813/24124*a4^7 - 1245778/6031*a4^6 + 2815609/24124*a4^5 + 1341876/6031*a4^4 - 1094923/24124*a4^3 - 983403/12062*a4^2 - 148693/24124*a4 + 20022/6031, -11269/72372*a4^14 + 7735/36186*a4^13 + 97481/24124*a4^12 - 85675/18093*a4^11 - 80699/1956*a4^10 + 714844/18093*a4^9 + 5042117/24124*a4^8 - 3721257/24124*a4^7 - 3255180/6031*a4^6 + 20381369/72372*a4^5 + 11573540/18093*a4^4 - 14590109/72372*a4^3 - 4218059/18093*a4^2 + 733715/24124*a4 + 63571/12062)" "x^15 - 2*x^14 - 24*x^13 + 46*x^12 + 224*x^11 - 406*x^10 - 1026*x^9 + 1731*x^8 + 2373*x^7 - 3662*x^6 - 2504*x^5 + 3488*x^4 + 818*x^3 - 1062*x^2 - 54*x + 27"
"14a1" 14 497 2 139046711872 "(a2, 1/4*a2^7 - 1/4*a2^6 - 11/4*a2^5 + 9/4*a2^4 + 31/4*a2^3 - 11/4*a2^2 - 21/4*a2 - 5/4, 1/2*a2^7 - 11/2*a2^5 + 33/2*a2^3 + 2*a2^2 - 27/2*a2 - 2, -1, 3/4*a2^7 - 1/4*a2^6 - 33/4*a2^5 + 11/4*a2^4 + 97/4*a2^3 - 19/4*a2^2 - 75/4*a2 + 1/4, -1/4*a2^7 - 1/4*a2^6 + 13/4*a2^5 + 11/4*a2^4 - 51/4*a2^3 - 31/4*a2^2 + 59/4*a2 + 17/4)" "x^8 - 12*x^6 + 42*x^4 + 4*x^3 - 44*x^2 - 8*x + 1"
"14a1" 14 497 2 4.08E+027 "(a4, -433/36186*a4^14 - 383/72372*a4^13 + 2199/6031*a4^12 + 7771/72372*a4^11 - 2116/489*a4^10 - 56773/72372*a4^9 + 304817/12062*a4^8 + 61935/24124*a4^7 - 1808897/24124*a4^6 - 161119/36186*a4^5 + 7457797/72372*a4^4 + 130151/18093*a4^3 - 3456883/72372*a4^2 - 85085/12062*a4 + 87343/24124, -4051/36186*a4^14 + 4121/36186*a4^13 + 16311/6031*a4^12 - 44429/18093*a4^11 - 24983/978*a4^10 + 705535/36186*a4^9 + 721195/6031*a4^8 - 836063/12062*a4^7 - 3479137/12062*a4^6 + 1872493/18093*a4^5 + 5996392/18093*a4^4 - 1517627/36186*a4^3 - 4765871/36186*a4^2 - 22552/6031*a4 + 30228/6031, 1, -2049/24124*a4^14 + 1765/12062*a4^13 + 49663/24124*a4^12 - 18575/6031*a4^11 - 12625/652*a4^10 + 286447/12062*a4^9 + 2148733/24124*a4^8 - 1963813/24124*a4^7 - 1245778/6031*a4^6 + 2815609/24124*a4^5 + 1341876/6031*a4^4 - 1094923/24124*a4^3 - 983403/12062*a4^2 - 148693/24124*a4 + 20022/6031, -11269/72372*a4^14 + 7735/36186*a4^13 + 97481/24124*a4^12 - 85675/18093*a4^11 - 80699/1956*a4^10 + 714844/18093*a4^9 + 5042117/24124*a4^8 - 3721257/24124*a4^7 - 3255180/6031*a4^6 + 20381369/72372*a4^5 + 11573540/18093*a4^4 - 14590109/72372*a4^3 - 4218059/18093*a4^2 + 733715/24124*a4 + 63571/12062)" "x^15 - 2*x^14 - 24*x^13 + 46*x^12 + 224*x^11 - 406*x^10 - 1026*x^9 + 1731*x^8 + 2373*x^7 - 3662*x^6 - 2504*x^5 + 3488*x^4 + 818*x^3 - 1062*x^2 - 54*x + 27"
"497a1" 497 497 2 4.08E+027 "(a4, -433/36186*a4^14 - 383/72372*a4^13 + 2199/6031*a4^12 + 7771/72372*a4^11 - 2116/489*a4^10 - 56773/72372*a4^9 + 304817/12062*a4^8 + 61935/24124*a4^7 - 1808897/24124*a4^6 - 161119/36186*a4^5 + 7457797/72372*a4^4 + 130151/18093*a4^3 - 3456883/72372*a4^2 - 85085/12062*a4 + 87343/24124, -4051/36186*a4^14 + 4121/36186*a4^13 + 16311/6031*a4^12 - 44429/18093*a4^11 - 24983/978*a4^10 + 705535/36186*a4^9 + 721195/6031*a4^8 - 836063/12062*a4^7 - 3479137/12062*a4^6 + 1872493/18093*a4^5 + 5996392/18093*a4^4 - 1517627/36186*a4^3 - 4765871/36186*a4^2 - 22552/6031*a4 + 30228/6031, 1, -2049/24124*a4^14 + 1765/12062*a4^13 + 49663/24124*a4^12 - 18575/6031*a4^11 - 12625/652*a4^10 + 286447/12062*a4^9 + 2148733/24124*a4^8 - 1963813/24124*a4^7 - 1245778/6031*a4^6 + 2815609/24124*a4^5 + 1341876/6031*a4^4 - 1094923/24124*a4^3 - 983403/12062*a4^2 - 148693/24124*a4 + 20022/6031, -11269/72372*a4^14 + 7735/36186*a4^13 + 97481/24124*a4^12 - 85675/18093*a4^11 - 80699/1956*a4^10 + 714844/18093*a4^9 + 5042117/24124*a4^8 - 3721257/24124*a4^7 - 3255180/6031*a4^6 + 20381369/72372*a4^5 + 11573540/18093*a4^4 - 14590109/72372*a4^3 - 4218059/18093*a4^2 + 733715/24124*a4 + 63571/12062)" "x^15 - 2*x^14 - 24*x^13 + 46*x^12 + 224*x^11 - 406*x^10 - 1026*x^9 + 1731*x^8 + 2373*x^7 - 3662*x^6 - 2504*x^5 + 3488*x^4 + 818*x^3 - 1062*x^2 - 54*x + 27"
"497a1" 497 497 2 8 "(-1, 1/2*a1 + 1/2, 0, 1, -1, -3/2*a1 - 11/2)" "x^2 + 6*x + 1"
"497a1" 497 497 2 5346794942164 "(a3, -1/2*a3^8 - 3/2*a3^7 + 4*a3^6 + 12*a3^5 - 10*a3^4 - 26*a3^3 + 9*a3^2 + 21/2*a3 - 5/2, a3^8 + 2*a3^7 - 8*a3^6 - 15*a3^5 + 18*a3^4 + 30*a3^3 - 11*a3^2 - 11*a3 + 2, -1, -a3^6 - a3^5 + 7*a3^4 + 5*a3^3 - 11*a3^2 - 5*a3 + 1, 3/2*a3^8 + 5/2*a3^7 - 12*a3^6 - 18*a3^5 + 25*a3^4 + 35*a3^3 - 7*a3^2 - 31/2*a3 - 5/2)" "x^9 + 2*x^8 - 9*x^7 - 16*x^6 + 26*x^5 + 36*x^4 - 28*x^3 - 19*x^2 + 10*x + 1"
"497a1" 497 497 2 139046711872 "(a2, 1/4*a2^7 - 1/4*a2^6 - 11/4*a2^5 + 9/4*a2^4 + 31/4*a2^3 - 11/4*a2^2 - 21/4*a2 - 5/4, 1/2*a2^7 - 11/2*a2^5 + 33/2*a2^3 + 2*a2^2 - 27/2*a2 - 2, -1, 3/4*a2^7 - 1/4*a2^6 - 33/4*a2^5 + 11/4*a2^4 + 97/4*a2^3 - 19/4*a2^2 - 75/4*a2 + 1/4, -1/4*a2^7 - 1/4*a2^6 + 13/4*a2^5 + 11/4*a2^4 - 51/4*a2^3 - 31/4*a2^2 + 59/4*a2 + 17/4)" "x^8 - 12*x^6 + 42*x^4 + 4*x^3 - 44*x^2 - 8*x + 1"
"14a1" 14 498 2 40709 "(1, 1, 1/2*a6 - 1, 1/8*a6^3 - 3/4*a6^2 - 2*a6 + 4, -1/8*a6^3 + a6^2 - 5, -1/8*a6^3 + 1/4*a6^2 + 4*a6 + 6)" "x^4 - 12*x^3 + 16*x^2 + 136*x - 32"
"14a1" 14 498 2 17 "(1, -1, -a4 - 1, 0, a4 + 3, 2)" "x^2 + 5*x + 2"
"249a1" 249 498 2 621 "(-1, -1, a5 + 3, -a5 - 4, 1/3*a5^2 + 1/3*a5 - 17/3, -2/3*a5^2 - 11/3*a5 - 2/3)" "x^3 + 9*x^2 + 15*x - 16"
"249a1" 249 498 2 40709 "(1, 1, 1/2*a6 - 1, 1/8*a6^3 - 3/4*a6^2 - 2*a6 + 4, -1/8*a6^3 + a6^2 - 5, -1/8*a6^3 + 1/4*a6^2 + 4*a6 + 6)" "x^4 - 12*x^3 + 16*x^2 + 136*x - 32"
"249a1" 249 498 2 17 "(1, -1, -a4 - 1, 0, a4 + 3, 2)" "x^2 + 5*x + 2"
"1497a1" 1497 499 2 5.59E+046 "(a2, -1457220813884701/1119607386952032*a2^22 + 5678233870539797/1119607386952032*a2^21 + 12812639971943875/373202462317344*a2^20 - 2521524232667719/16963748287152*a2^19 - 203340747288778115/559803693476016*a2^18 + 2063684757695578313/1119607386952032*a2^17 + 59203350560299631/31100205193112*a2^16 - 14111945429885894323/1119607386952032*a2^15 - 278427646172501711/62200410386224*a2^14 + 29055114289972584661/559803693476016*a2^13 - 63009797614745081/50891244861456*a2^12 - 73775262078446439089/559803693476016*a2^11 + 1512968414477349809/46650307789668*a2^10 + 226941728109628150159/1119607386952032*a2^9 - 4623180623304583463/62200410386224*a2^8 - 66403952066170100845/373202462317344*a2^7 + 3638809823414437039/50891244861456*a2^6 + 5600810411424635725/69975461684502*a2^5 - 2558476348252351199/93300615579336*a2^4 - 18557784237638262739/1119607386952032*a2^3 + 176744858830480247/46650307789668*a2^2 + 36775045061594979/31100205193112*a2 - 16516913580078455/139950923369004, -242663548546313/101782489722912*a2^22 + 950681453049337/101782489722912*a2^21 + 2129923853100575/33927496574304*a2^20 - 4645170296009629/16963748287152*a2^19 - 33696924056548279/50891244861456*a2^18 + 345737378888832517/101782489722912*a2^17 + 9744365181128857/2827291381192*a2^16 - 2365332990617505479/101782489722912*a2^15 - 44783444211472943/5654582762384*a2^14 + 4872980377742124737/50891244861456*a2^13 - 174539643146152295/50891244861456*a2^12 - 12383579565344688445/50891244861456*a2^11 + 264514357627864705/4240937071788*a2^10 + 38139133934727385955/101782489722912*a2^9 - 795562187639542087/5654582762384*a2^8 - 11180282968025346281/33927496574304*a2^7 + 6864272795414184421/50891244861456*a2^6 + 945848406467241149/6361405607682*a2^5 - 439966499551976071/8481874143576*a2^4 - 3146397897209671703/101782489722912*a2^3 + 7642060837744102/1060234267947*a2^2 + 6266389905103503/2827291381192*a2 - 2834280764085187/12722811215364, -111443814688433/101782489722912*a2^22 + 434210662829977/101782489722912*a2^21 + 980985889054799/33927496574304*a2^20 - 2122478308056217/16963748287152*a2^19 - 15599468386756567/50891244861456*a2^18 + 158063078961249661/101782489722912*a2^17 + 4560797549719091/2827291381192*a2^16 - 1082225321957754335/101782489722912*a2^15 - 21738976939382403/5654582762384*a2^14 + 2232097782373224449/50891244861456*a2^13 - 36886095630525431/50891244861456*a2^12 - 5681988754181963437/50891244861456*a2^11 + 112432832110798963/4240937071788*a2^10 + 17545451686899744443/101782489722912*a2^9 - 347346916319970371/5654582762384*a2^8 - 5165034573815599361/33927496574304*a2^7 + 3019366993620490513/50891244861456*a2^6 + 219896477460578890/3180702803841*a2^5 - 193557982098698047/8481874143576*a2^4 - 1469598669399711599/101782489722912*a2^3 + 13414056096062587/4240937071788*a2^2 + 2919842363982943/2827291381192*a2 - 1268037448737115/12722811215364, 93341323749263/38607151274208*a2^22 - 366648281217655/38607151274208*a2^21 - 818811642480641/12869050424736*a2^20 + 162895789019741/584956837488*a2^19 + 12941582714998633/19303575637104*a2^18 - 133398987385157731/38607151274208*a2^17 - 3734950085205777/1072420868728*a2^16 + 912908261018231777/38607151274208*a2^15 + 17054650739349781/2144841737456*a2^14 - 1881423741234911615/19303575637104*a2^13 + 6638828427402283/1754870512464*a2^12 + 4783318646282299939/19303575637104*a2^11 - 102865769602728049/1608631303092*a2^10 - 14739480640682958533/38607151274208*a2^9 + 307964449937683109/2144841737456*a2^8 + 4323244310361099359/12869050424736*a2^7 - 241076922418852757/1754870512464*a2^6 - 182910800990062324/1206473477319*a2^5 + 169644344911163209/3217262606184*a2^4 + 1213874623881109745/38607151274208*a2^3 - 11750096933005987/1608631303092*a2^2 - 2389497645455593/1072420868728*a2 + 1094244516597829/4825893909276, 252815014564693/186601231158672*a2^22 - 979044305170397/186601231158672*a2^21 - 2227323823976667/62200410386224*a2^20 + 434717231032079/2827291381192*a2^19 + 35467961506621739/93300615579336*a2^18 - 355743375269664737/186601231158672*a2^17 - 31192846357587989/15550102596556*a2^16 + 2432357038857843835/186601231158672*a2^15 + 149853893619326293/31100205193112*a2^14 - 5007396106755423829/93300615579336*a2^13 + 5738659770548369/8481874143576*a2^12 + 12713343248059249841/93300615579336*a2^11 - 251471908325129203/7775051298278*a2^10 - 39106297724503029751/186601231158672*a2^9 + 2347209386753979213/31100205193112*a2^8 + 11442958481571458421/62200410386224*a2^7 - 620009996245187551/8481874143576*a2^6 - 965013072009068008/11662576947417*a2^5 + 437610739739366275/15550102596556*a2^4 + 3190841856710180923/186601231158672*a2^3 - 30147583527448555/7775051298278*a2^2 - 18814267364636461/15550102596556*a2 + 2744311873308683/23325153894834)" "x^23 - 4*x^22 - 26*x^21 + 117*x^20 + 268*x^19 - 1447*x^18 - 1325*x^17 + 9859*x^16 + 2497*x^15 - 40388*x^14 + 4836*x^13 + 101760*x^12 - 34790*x^11 - 154579*x^10 + 72287*x^9 + 132753*x^8 - 68227*x^7 - 57242*x^6 + 26996*x^5 + 11011*x^4 - 4109*x^3 - 660*x^2 + 172*x - 8"
"141b1" 141 47 3 1957 "(a0, a0^3 - a0^2 - 6*a0 + 4, -4*a0^3 + 2*a0^2 + 20*a0 - 10, 3*a0^3 - a0^2 - 16*a0 + 7, 2*a0^3 - 2*a0^2 - 10*a0 + 6, -4*a0^3 + 2*a0^2 + 22*a0 - 8)" "x^4 - x^3 - 5*x^2 + 5*x - 1"
"14a1" 14 62 3 12 "(-1, -1/2*a1 - 1/2, a1 + 3, 2, -1/2*a1 - 9/2, 3/2*a1 + 7/2)" "x^2 + 6*x - 3"
"14a1" 14 63 3 12 "(a1, 0, -2*a1, 1, 2*a1, 2)" "x^2 - 3"
"14a1" 14 65 3 12 "(a2, -a2 + 1, -1, 2, a2 - 3, 1)" "x^2 - 3"
"14a1" 14 68 3 12 "(0, 1/2*a0, -a0 + 2, -1/2*a0, 1/2*a0 - 4, a0)" "x^2 - 4*x - 8"
"142a1" 142 71 3 257 "(a1, -a1^2 + 3, -a1 - 1, 2*a1^2 + 2*a1 - 6, -2*a1^2 - 2*a1 + 6, 4)" "x^3 - 5*x + 3"
"142a1" 142 71 3 257 "(a0, -a0, -a0^2 + a0 + 5, -2*a0, 2*a0^2 - 6, -2*a0^2 + 4)" "x^3 + x^2 - 4*x - 3"
"14a1" 14 73 3 13 "(a2, -a2 + 1, -a2, -1, a2 + 3, a2 - 1)" "x^2 - x - 3"
"73a1" 73 73 3 13 "(a2, -a2 + 1, -a2, -1, a2 + 3, a2 - 1)" "x^2 - x - 3"
"14a1" 14 74 3 13 "(-1, 1/2*a0 + 1/2, -1/2*a0 + 1/2, -a0 + 3, -1/2*a0 + 1/2, 1/2*a0 - 3/2)" "x^2 - 4*x - 9"
"148a1" 148 74 3 13 "(-1, 1/2*a0 + 1/2, -1/2*a0 + 1/2, -a0 + 3, -1/2*a0 + 1/2, 1/2*a0 - 3/2)" "x^2 - 4*x - 9"
"14a1" 14 81 3 12 "(a0, 0, -a0, 2, -2*a0, -1)" "x^2 - 3"
"14a1" 14 85 3 12 "(a2, -a2 + 1, 1, a2 - 1, -a2 + 3, -4)" "x^2 - 3"
"14a1" 14 86 3 21 "(-1, 1/2*a0 + 1/2, -1/2*a0 + 1/2, 2, 0, 2)" "x^2 + 4*x - 17"
"14a1" 14 95 3 11344 "(a1, -a1^3 + 5*a1 - 2, -1, -2*a1^2 - 2*a1 + 8, 2*a1^2 + 2*a1 - 6, a1^3 + 2*a1^2 - 3*a1 - 4)" "x^4 + 2*x^3 - 6*x^2 - 8*x + 9"
"14a1" 14 109 3 7537 "(a2, -a2^3 + 4*a2 + 1, -a2, a2^3 - a2^2 - 4*a2 + 2, a2^3 + a2^2 - 5*a2, 2*a2^2 + a2 - 7)" "x^4 + x^3 - 5*x^2 - 4*x + 3"
"14a1" 14 110 3 33 "(-1, -1/2*a3 - 1/2, 1, 1/2*a3 + 1/2, -1, 2)" "x^2 - 33"
"113a1" 113 113 3 321 "(a3, a3^2 - 5, -1, -a3^2 - a3 + 6, a3^2 - 4, a3^2 - 2)" "x^3 + 2*x^2 - 5*x - 9"
"226a1" 226 113 3 321 "(a3, a3^2 - 5, -1, -a3^2 - a3 + 6, a3^2 - 4, a3^2 - 2)" "x^3 + 2*x^2 - 5*x - 9"
"339c1" 339 113 3 12 "(1, a1 - 1, -2*a1 + 4, 4, -2*a1 + 2, 2*a1 - 6)" "x^2 - 4*x + 1"
"14a1" 14 117 3 12 "(a1, 0, 0, 2, -2*a1, 1)" "x^2 - 3"
"14a1" 14 119 3 9301 "(a0, -a0^3 - a0^2 + 4*a0 + 1, a0^3 + a0^2 - 4*a0, 1, -2*a0, 2*a0^3 + 4*a0^2 - 6*a0 - 4)" "x^4 + x^3 - 5*x^2 - x + 3"
"17a1" 17 119 3 453749 "(a1, -a1^4 + 6*a1^2 + a1 - 4, 2*a1^4 + a1^3 - 15*a1^2 - 6*a1 + 18, -1, -2*a1^4 - 2*a1^3 + 14*a1^2 + 12*a1 - 14, -2*a1^4 + 14*a1^2 - 14)" "x^5 - 2*x^4 - 8*x^3 + 14*x^2 + 14*x - 17"
"14a1" 14 122 3 13 "(-1, a1 + 1, 0, -a1 + 2, -2*a1, -2*a1 + 2)" "x^2 + x - 3"
"244a1" 244 122 3 13 "(-1, a1 + 1, 0, -a1 + 2, -2*a1, -2*a1 + 2)" "x^2 + x - 3"
"14a1" 14 127 3 603651293 "(a1, a1^6 - 2*a1^5 - 6*a1^4 + 12*a1^3 + 4*a1^2 - 11*a1 + 4, -a1^6 + a1^5 + 8*a1^4 - 6*a1^3 - 16*a1^2 + 5*a1 + 9, -a1^5 + a1^4 + 7*a1^3 - 7*a1^2 - 9*a1 + 8, a1^6 - 2*a1^5 - 6*a1^4 + 13*a1^3 + 3*a1^2 - 15*a1 + 6, -2*a1^6 + 6*a1^5 + 11*a1^4 - 38*a1^3 - 2*a1^2 + 39*a1 - 13)" "x^7 - 2*x^6 - 8*x^5 + 15*x^4 + 17*x^3 - 28*x^2 - 11*x + 15"
"254c1" 254 127 3 81 "(a0, -a0^2 - 2*a0, a0^2 + a0 - 4, a0^2 + a0 - 3, a0^2 + 4*a0 + 1, -3*a0^2 - 4*a0 + 4)" "x^3 + 3*x^2 - 3"
"14a1" 14 133 3 13 "(a1, -a1 - 2, -3, 1, -a1 - 3, 2*a1 - 1)" "x^2 + x - 3"
"399b1" 399 133 3 13 "(a1, -a1 - 2, -3, 1, -a1 - 3, 2*a1 - 1)" "x^2 + x - 3"
"14a1" 14 134 3 473 "(-1, a0 + 1, a0^2 + 3*a0 - 3, -2*a0^2 - 6*a0 + 8, -a0^2 - 4*a0 + 3, a0^2 + 2*a0 - 1)" "x^3 + 2*x^2 - 7*x + 3"
"268a1" 268 134 3 81 "(1, 1/2*a1 - 1/2, -1/4*a1^2 + a1 + 1/4, 1/2*a1^2 - 4*a1 + 7/2, -3/4*a1^2 + 9/2*a1 - 7/4, 3/4*a1^2 - 11/2*a1 + 11/4)" "x^3 - 9*x^2 + 15*x + 1"
"14a1" 14 135 3 13 "(a2, 0, 1, 2*a2 + 2, -2*a2, -2*a2 + 2)" "x^2 + x - 3"
"14a1" 14 135 3 13 "(a3, 0, -1, -2*a3 + 2, -2*a3, 2*a3 + 2)" "x^2 - x - 3"
"15a1" 15 135 3 13 "(a2, 0, 1, 2*a2 + 2, -2*a2, -2*a2 + 2)" "x^2 + x - 3"
"45a1" 45 135 3 13 "(a3, 0, -1, -2*a3 + 2, -2*a3, 2*a3 + 2)" "x^2 - x - 3"
"139a1" 139 139 3 2145245897 "(a2, 1/2*a2^6 - 1/2*a2^5 - 9/2*a2^4 + 4*a2^3 + 19/2*a2^2 - 6*a2 - 4, -1/4*a2^6 - 1/4*a2^5 + 9/4*a2^4 + 3/2*a2^3 - 19/4*a2^2 - a2 + 3, -1/4*a2^6 + 1/4*a2^5 + 11/4*a2^4 - 2*a2^3 - 35/4*a2^2 + 7/2*a2 + 6, -1/2*a2^6 + a2^5 + 5*a2^4 - 17/2*a2^3 - 25/2*a2^2 + 27/2*a2 + 7, 1/2*a2^5 + 1/2*a2^4 - 9/2*a2^3 - 4*a2^2 + 17/2*a2 + 7)" "x^7 - x^6 - 11*x^5 + 8*x^4 + 35*x^3 - 10*x^2 - 32*x - 8"
"11a1" 11 143 3 1957 "(a1, -a1^3 + 3*a1^2 - 3, -2*a1^2 + 2*a1 + 4, a1^3 - a1^2 - 4*a1 + 2, 1, -1)" "x^4 - 3*x^3 - x^2 + 5*x + 1"
"14a1" 14 143 3 194616205 "(a2, -a2^5 - a2^4 + 8*a2^3 + 6*a2^2 - 11*a2 - 5, a2^5 + 2*a2^4 - 8*a2^3 - 14*a2^2 + 12*a2 + 15, 2*a2^5 + 2*a2^4 - 17*a2^3 - 13*a2^2 + 26*a2 + 14, -1, 1)" "x^6 - 10*x^4 + 2*x^3 + 24*x^2 - 7*x - 12"
"14a1" 14 146 3 404 "(-1, -1/2*a0 - 1/2, -1/8*a0^2 - 1/4*a0 + 15/8, 1/8*a0^2 + 1/4*a0 + 1/8, -1/4*a0^2 + 1/2*a0 + 27/4, -1/8*a0^2 - 1/4*a0 + 31/8)" "x^3 + 3*x^2 - 29*x - 63"
"298a1" 298 149 3 18822062530624 "(a1, -3/4*a1^8 - 1/4*a1^7 + 23/2*a1^6 + 5/4*a1^5 - 233/4*a1^4 + 13/4*a1^3 + 209/2*a1^2 - 49/4*a1 - 44, -1/4*a1^8 - 1/4*a1^7 + 7/2*a1^6 + 9/4*a1^5 - 63/4*a1^4 - 19/4*a1^3 + 23*a1^2 + 3/4*a1 - 13/2, a1^8 + 1/2*a1^7 - 29/2*a1^6 - 3*a1^5 + 139/2*a1^4 - 3/2*a1^3 - 237/2*a1^2 + 14*a1 + 101/2, 3/4*a1^8 - 49/4*a1^6 + 3/4*a1^5 + 129/2*a1^4 - 15/2*a1^3 - 471/4*a1^2 + 63/4*a1 + 207/4, a1^8 + 1/2*a1^7 - 29/2*a1^6 - 3*a1^5 + 139/2*a1^4 - 3/2*a1^3 - 235/2*a1^2 + 14*a1 + 95/2)" "x^9 + x^8 - 15*x^7 - 12*x^6 + 75*x^5 + 48*x^4 - 137*x^3 - 76*x^2 + 68*x + 39"
"302a1" 302 151 3 257 "(a1, 2, -a1^2 - 2*a1 + 5, -2, 2*a1^2 + a1 - 7, -2*a1^2 + 6)" "x^3 - 5*x + 3"
"14a1" 14 155 3 20308 "(a3, -1/2*a3^3 - 1/2*a3^2 + 3*a3 + 1, -1, a3^2 + a3 - 4, a3^2 - a3 - 6, -a3^2 - a3 + 8)" "x^4 + x^3 - 8*x^2 - 4*x + 12"
"316b1" 316 158 3 24 "(-1, -1/2*a5 - 1/2, -2, 4, 0, a5 + 3)" "x^2 + 2*x - 23"
"14a1" 14 159 3 1957 "(a0, 1, -a0^3 + a0^2 + 2*a0, a0^3 - 3*a0^2 - 2*a0 + 5, 4*a0^3 - 6*a0^2 - 12*a0 + 12, -3*a0^3 + 5*a0^2 + 8*a0 - 10)" "x^4 - 3*x^3 - x^2 + 7*x - 3"
"14a1" 14 161 3 2147108 "(a3, 1/2*a3^4 - 1/2*a3^3 - 4*a3^2 + 5/2*a3 + 11/2, -1/2*a3^4 - 1/2*a3^3 + 5*a3^2 + 5/2*a3 - 21/2, 1, -a3^4 + 8*a3^2 + a3 - 12, a3^4 - 9*a3^2 + 14)" "x^5 - 2*x^4 - 9*x^3 + 17*x^2 + 16*x - 27"
"14a1" 14 163 3 660293912 "(a2, a2^5 - a2^4 - 6*a2^3 + 5*a2^2 + 5*a2 - 2, -a2^6 + a2^5 + 7*a2^4 - 6*a2^3 - 11*a2^2 + 6*a2 + 6, a2^6 - 2*a2^5 - 7*a2^4 + 12*a2^3 + 11*a2^2 - 11*a2 - 4, a2^6 - 2*a2^5 - 7*a2^4 + 12*a2^3 + 12*a2^2 - 12*a2 - 6, -a2^6 + a2^5 + 8*a2^4 - 6*a2^3 - 16*a2^2 + 5*a2 + 8)" "x^7 - 3*x^6 - 5*x^5 + 19*x^4 - 23*x^2 + 4*x + 6"
"163a1" 163 163 3 65657 "(a1, -2*a1^4 - 5*a1^3 + 6*a1^2 + 13*a1 - 3, 2*a1^4 + 5*a1^3 - 7*a1^2 - 15*a1 + 2, 3*a1^4 + 8*a1^3 - 8*a1^2 - 22*a1 - 1, -a1^4 - 4*a1^3 + a1^2 + 13*a1 + 3, -a1^4 - 3*a1^3 + 2*a1^2 + 8*a1 - 2)" "x^5 + 5*x^4 + 3*x^3 - 15*x^2 - 16*x + 3"
"14a1" 14 164 3 25808 "(0, a0, -2/3*a0^3 - 1/3*a0^2 + 16/3*a0 + 2/3, a0^3 - 9*a0 + 4, 1/3*a0^3 + 2/3*a0^2 - 11/3*a0 - 4/3, 2/3*a0^3 - 2/3*a0^2 - 22/3*a0 + 22/3)" "x^4 - 2*x^3 - 10*x^2 + 22*x - 2"
"82a1" 82 164 3 25808 "(0, a0, -2/3*a0^3 - 1/3*a0^2 + 16/3*a0 + 2/3, a0^3 - 9*a0 + 4, 1/3*a0^3 + 2/3*a0^2 - 11/3*a0 - 4/3, 2/3*a0^3 - 2/3*a0^2 - 22/3*a0 + 22/3)" "x^4 - 2*x^3 - 10*x^2 + 22*x - 2"
"14a1" 14 165 3 12 "(a1, 1, -1, 2, -1, -2*a1 + 2)" "x^2 - 3"
"338d1" 338 169 3 12 "(a0, 2, -a0, 0, 0, 0)" "x^2 - 3"
"14a1" 14 171 3 13068 "(a4, 0, -1/2*a4^3 + 5/2*a4, -a4^2 + 5, 1/2*a4^3 - 9/2*a4, 2)" "x^4 - 9*x^2 + 12"
"179a1" 179 179 3 1.48E+018 "(a2, -21/68*a2^10 - 1/2*a2^9 + 345/68*a2^8 + 471/68*a2^7 - 57/2*a2^6 - 514/17*a2^5 + 4241/68*a2^4 + 2993/68*a2^3 - 2895/68*a2^2 - 311/34*a2 + 45/17, -3/136*a2^10 - 1/8*a2^9 + 21/68*a2^8 + 247/136*a2^7 - 13/8*a2^6 - 1151/136*a2^5 + 309/68*a2^4 + 1841/136*a2^3 - 223/34*a2^2 - 157/34*a2 + 53/17, 7/68*a2^10 + 1/4*a2^9 - 49/34*a2^8 - 259/68*a2^7 + 25/4*a2^6 + 1303/68*a2^5 - 279/34*a2^4 - 2369/68*a2^3 - 18/17*a2^2 + 270/17*a2 + 36/17, 5/17*a2^10 + 1/2*a2^9 - 157/34*a2^8 - 117/17*a2^7 + 49/2*a2^6 + 1009/34*a2^5 - 1703/34*a2^4 - 711/17*a2^3 + 1041/34*a2^2 + 123/17*a2 - 4/17, -1/8*a2^10 - 1/8*a2^9 + 2*a2^8 + 13/8*a2^7 - 89/8*a2^6 - 51/8*a2^5 + 51/2*a2^4 + 59/8*a2^3 - 81/4*a2^2 - a2 + 3)" "x^11 + 3*x^10 - 14*x^9 - 45*x^8 + 59*x^7 + 225*x^6 - 58*x^5 - 427*x^4 - 76*x^3 + 240*x^2 + 56*x - 16"
"14a1" 14 181 3 6664578334400 "(a1, 1/2*a1^8 - 2*a1^7 - 5/2*a1^6 + 16*a1^5 - 7/2*a1^4 - 59/2*a1^3 + 12*a1^2 + 25/2*a1 - 7/2, 1/4*a1^7 - 1/4*a1^6 - 5/2*a1^5 + 2*a1^4 + 25/4*a1^3 - 9/2*a1^2 - 5/2*a1 + 15/4, 1/4*a1^8 - 3/4*a1^7 - a1^6 + 5*a1^5 - 19/4*a1^4 - 5*a1^3 + 29/2*a1^2 - 1/4*a1 - 11/2, -1/2*a1^8 + 1/2*a1^7 + 6*a1^6 - 4*a1^5 - 47/2*a1^4 + 8*a1^3 + 35*a1^2 - 9/2*a1 - 12, -1/2*a1^8 + 7/4*a1^7 + 11/4*a1^6 - 29/2*a1^5 + 7/2*a1^4 + 121/4*a1^3 - 41/2*a1^2 - 18*a1 + 47/4)" "x^9 - 3*x^8 - 9*x^7 + 29*x^6 + 23*x^5 - 84*x^4 - 23*x^3 + 89*x^2 + 8*x - 27"
"61a1" 61 183 3 91407488 "(a2, 1, 1/2*a2^5 + a2^4 - 5*a2^3 - 8*a2^2 + 21/2*a2 + 10, -a2^5 - 3/2*a2^4 + 9*a2^3 + 11*a2^2 - 17*a2 - 23/2, -1/2*a2^4 + 3*a2^2 - a2 - 5/2, -1/2*a2^5 + 5*a2^3 - 21/2*a2 + 1)" "x^6 - 11*x^4 + 2*x^3 + 31*x^2 - 10*x - 17"
"14a1" 14 185 3 973904 "(a4, -1/2*a4^3 + 5/2*a4 + 1, -1, 1/2*a4^4 - 7/2*a4^2 - a4 + 5, -a4^2 + 3, -1/2*a4^4 + 1/2*a4^3 + 5/2*a4^2 - 5/2*a4 + 2)" "x^5 - 2*x^4 - 8*x^3 + 14*x^2 + 11*x - 12"
"17a1" 17 187 3 12 "(a2, -a2 - 1, a2 - 1, -2, 1, -a2 - 6)" "x^2 + 2*x - 2"
"14a1" 14 188 3 13 "(0, 1/2*a1, 0, -1/2*a1 + 3, -a1 + 2, 2)" "x^2 - 2*x - 12"
"94a1" 94 188 3 13 "(0, 1/2*a1, 0, -1/2*a1 + 3, -a1 + 2, 2)" "x^2 - 2*x - 12"
"14a1" 14 189 3 12 "(a5, 0, a5, 1, -a5, 2)" "x^2 - 3"
"21a1" 21 189 3 28 "(a4, 0, -a4, -1, -a4, -2)" "x^2 - 7"
"63a1" 63 189 3 28 "(a4, 0, -a4, -1, -a4, -2)" "x^2 - 7"
"573c1" 573 191 3 3.30E+024 "(a1, -145153/114035*a1^13 + 32777/114035*a1^12 + 3364061/114035*a1^11 - 874037/114035*a1^10 - 30238352/114035*a1^9 + 8179107/114035*a1^8 + 133274007/114035*a1^7 - 31876833/114035*a1^6 - 300314067/114035*a1^5 + 43961084/114035*a1^4 + 328052329/114035*a1^3 + 4557079/114035*a1^2 - 27781803/22807*a1 - 29013772/114035, -44318/114035*a1^13 - 468/114035*a1^12 + 996676/114035*a1^11 - 67192/114035*a1^10 - 8645332/114035*a1^9 + 1110732/114035*a1^8 + 36541877/114035*a1^7 - 5434583/114035*a1^6 - 78444822/114035*a1^5 + 7801444/114035*a1^4 + 81404284/114035*a1^3 + 2785164/114035*a1^2 - 6622972/22807*a1 - 6986182/114035, 148787/114035*a1^13 - 73368/114035*a1^12 - 3418414/114035*a1^11 + 1764598/114035*a1^10 + 30273378/114035*a1^9 - 15485288/114035*a1^8 - 130230738/114035*a1^7 + 59339692/114035*a1^6 + 282975218/114035*a1^5 - 90112966/114035*a1^4 - 296004726/114035*a1^3 + 24031844/114035*a1^2 + 24591132/22807*a1 + 24473743/114035, -317749/114035*a1^13 + 87501/114035*a1^12 + 7255723/114035*a1^11 - 2329051/114035*a1^10 - 63902811/114035*a1^9 + 21925031/114035*a1^8 + 273703901/114035*a1^7 - 87350029/114035*a1^6 - 592597121/114035*a1^5 + 131174117/114035*a1^4 + 615896407/114035*a1^3 - 20228013/114035*a1^2 - 50237157/22807*a1 - 50606546/114035, 169418/114035*a1^13 - 44707/114035*a1^12 - 3873501/114035*a1^11 + 1208972/114035*a1^10 + 34207957/114035*a1^9 - 11502337/114035*a1^8 - 147297467/114035*a1^7 + 46178043/114035*a1^6 + 321976277/114035*a1^5 - 69816889/114035*a1^4 - 339639974/114035*a1^3 + 10698151/114035*a1^2 + 28096743/22807*a1 + 28321417/114035)" "x^14 - 23*x^12 + x^11 + 205*x^10 - 13*x^9 - 895*x^8 + 35*x^7 + 1993*x^6 + 103*x^5 - 2135*x^4 - 465*x^3 + 853*x^2 + 374*x + 41"
"14a1" 14 194 3 14272 "(-1, a1 + 1, -1/2*a1^3 - 2*a1^2 + 2*a1 + 9/2, 1/2*a1^3 + 3/2*a1^2 - 5/2*a1 - 1, -a1, a1^3 + 3*a1^2 - 5*a1 - 4)" "x^4 + 2*x^3 - 9*x^2 - 2*x + 9"
"14a1" 14 199 3 1.14E+015 "(a2, -2/9*a2^9 + 7/9*a2^8 + 23/9*a2^7 - 9*a2^6 - 89/9*a2^5 + 287/9*a2^4 + 151/9*a2^3 - 107/3*a2^2 - 35/3*a2 + 3, 4/9*a2^9 - 14/9*a2^8 - 37/9*a2^7 + 16*a2^6 + 97/9*a2^5 - 430/9*a2^4 - 122/9*a2^3 + 136/3*a2^2 + 37/3*a2 - 4, 7/9*a2^9 - 29/9*a2^8 - 58/9*a2^7 + 34*a2^6 + 109/9*a2^5 - 964/9*a2^4 - 74/9*a2^3 + 337/3*a2^2 + 40/3*a2 - 14, 11/9*a2^9 - 34/9*a2^8 - 104/9*a2^7 + 39*a2^6 + 278/9*a2^5 - 1070/9*a2^4 - 313/9*a2^3 + 362/3*a2^2 + 68/3*a2 - 14, -1/3*a2^9 + 4/3*a2^8 + 3*a2^7 - 44/3*a2^6 - 22/3*a2^5 + 50*a2^4 + 8*a2^3 - 181/3*a2^2 - 6*a2 + 13)" "x^10 - 5*x^9 - 4*x^8 + 51*x^7 - 32*x^6 - 154*x^5 + 151*x^4 + 168*x^3 - 168*x^2 - 54*x + 27"
"101a1" 101 202 3 10273 "(1, a2 - 1, a2^3 - a2^2 - 6*a2 + 4, -a2^3 + a2^2 + 5*a2 - 2, -3*a2^3 + a2^2 + 18*a2, -a2^2 + 5)" "x^4 - 3*x^3 - 5*x^2 + 16*x - 1"
"101a1" 101 202 3 81 "(-1, -a1 - 1, a1^2 + a1 - 3, -3*a1^2 + 2*a1 + 5, a1^2 - a1 - 5, 3*a1^2 - 4*a1 - 7)" "x^3 - 3*x - 1"
"14a1" 14 203 3 2626356 "(a6, -1/2*a6^4 + 1/2*a6^3 + 7/2*a6^2 - 7/2*a6 - 2, 1/2*a6^4 - 1/2*a6^3 - 7/2*a6^2 + 5/2*a6 + 3, 1, -1/2*a6^4 - 1/2*a6^3 + 5/2*a6^2 + 7/2*a6 + 3, 1/2*a6^4 + 1/2*a6^3 - 7/2*a6^2 - 9/2*a6 + 5)" "x^5 - 2*x^4 - 8*x^3 + 14*x^2 + 9*x - 6"
"205a1" 205 205 3 13 "(a3, -3, 1, -a3 - 2, -3, -3*a3 - 2)" "x^2 + x - 3"
"410a1" 410 205 3 13 "(a3, -3, 1, -a3 - 2, -3, -3*a3 - 2)" "x^2 + x - 3"
"14a1" 14 206 3 13 "(-1, a1 + 1, a1, a1 + 5, 0, 2*a1 + 8)" "x^2 + 5*x + 3"
"206a1" 206 206 3 13 "(-1, a1 + 1, a1, a1 + 5, 0, 2*a1 + 8)" "x^2 + 5*x + 3"
"14a1" 14 209 3 20757368448 "(a3, -1/2*a3^4 + 7/2*a3^2 - a3 - 2, 1/2*a3^5 - 9/2*a3^3 + 7*a3 + 3, -1/4*a3^6 + 3*a3^4 - 37/4*a3^2 + 13/2, -1, -1/4*a3^6 - 1/2*a3^5 + 5/2*a3^4 + 9/2*a3^3 - 27/4*a3^2 - 9*a3 + 7/2)" "x^7 + x^6 - 14*x^5 - 10*x^4 + 59*x^3 + 27*x^2 - 66*x - 30"
"1055a1" 1055 211 3 26927210518644 "(a3, 9/58*a3^8 + 15/58*a3^7 - 2*a3^6 - 157/58*a3^5 + 235/29*a3^4 + 222/29*a3^3 - 637/58*a3^2 - 161/29*a3 + 62/29, 7/116*a3^8 + 31/116*a3^7 - 1/2*a3^6 - 309/116*a3^5 + 41/58*a3^4 + 183/29*a3^3 + 91/116*a3^2 - 93/58*a3 + 8/29, -13/58*a3^8 - 41/58*a3^7 + 2*a3^6 + 433/58*a3^5 - 101/29*a3^4 - 630/29*a3^3 - 111/58*a3^2 + 500/29*a3 + 78/29, 3/29*a3^8 - 19/58*a3^7 - 3/2*a3^6 + 112/29*a3^5 + 381/58*a3^4 - 374/29*a3^3 - 280/29*a3^2 + 665/58*a3 + 167/29, 3/116*a3^8 + 5/116*a3^7 - 33/116*a3^5 - 43/29*a3^4 + 8/29*a3^3 + 271/116*a3^2 + 7/29*a3 + 49/29)" "x^9 + x^8 - 14*x^7 - 11*x^6 + 66*x^5 + 36*x^4 - 123*x^3 - 38*x^2 + 72*x + 8"
"14a1" 14 212 3 756 "(0, a2, -a2^2 - 2*a2 + 3, a2^2 + 2*a2 - 1, -a2^2 + 7, 5)" "x^3 + 3*x^2 - 3*x - 7"
"14a1" 14 213 3 13 "(a3, 1, -a3, -1, 3, -a3 - 1)" "x^2 - x - 3"
"213a1" 213 213 3 13 "(a3, 1, -a3, -1, 3, -a3 - 1)" "x^2 - x - 3"
"14a1" 14 214 3 12 "(1, -a5 + 1, a5, a5 - 1, a5 + 3, a5 - 1)" "x^2 - 3"
"428b1" 428 214 3 12 "(-1, 1/2*a4 + 1/2, 1/2*a4 + 7/2, 1/2*a4 + 1/2, -1/2*a4 - 1/2, -1/2*a4 - 1/2)" "x^2 + 6*x - 3"
"14a1" 14 215 3 32503921 "(a3, a3^5 - 2*a3^4 - 6*a3^3 + 9*a3^2 + 6*a3 - 2, -1, -2*a3^5 + 3*a3^4 + 13*a3^3 - 12*a3^2 - 16*a3 + 2, -3*a3^5 + 3*a3^4 + 23*a3^3 - 9*a3^2 - 38*a3 - 9, -2*a3 + 2)" "x^6 - 3*x^5 - 5*x^4 + 17*x^3 + 3*x^2 - 17*x - 3"
"430d1" 430 215 3 321 "(a1, a1 + 1, 1, -a1^2 - 2*a1 + 1, -a1^2 + a1 + 7, -2*a1 - 2)" "x^3 + 2*x^2 - 3*x - 3"
"645b1" 645 215 3 321 "(a1, a1 + 1, 1, -a1^2 - 2*a1 + 1, -a1^2 + a1 + 7, -2*a1 - 2)" "x^3 + 2*x^2 - 3*x - 3"
"645f1" 645 215 3 1933097 "(a2, -a2^3 + 5*a2, 1, a2^4 - a2^3 - 6*a2^2 + 6*a2 + 2, a2^3 - 6*a2 - 1, -a2^4 + 5*a2^2 + a2 + 3)" "x^5 - 2*x^4 - 7*x^3 + 13*x^2 + 5*x - 4"
"14a1" 14 217 3 81 "(a0, -a0^2 - a0 + 1, -a0 - 3, 1, 3*a0^2 + 6*a0 - 3, -3*a0 - 4)" "x^3 + 3*x^2 - 3"
"434a1" 434 217 3 81 "(a1, a1^2 + a1 - 3, -2*a1^2 - 3*a1 + 3, -1, a1^2 - 5, 2*a1^2 + 5*a1 - 2)" "x^3 + 3*x^2 - 3"
"14a1" 14 218 3 621 "(-1, -a4 - 1, -a4^2 - 3*a4 + 1, 2, a4^2 + 3*a4 - 1, a4^2 + 4*a4 + 3)" "x^3 + 6*x^2 + 6*x - 7"
"1090d1" 1090 218 3 12 "(1, a2 - 1, -a2, a2 + 3, 1, -2*a2 + 2)" "x^2 - 3"
"14a1" 14 221 3 28134208 "(a6, -1/2*a6^5 + 1/2*a6^4 + 4*a6^3 - 5/2*a6^2 - 13/2*a6 + 1, 1/2*a6^4 - 1/2*a6^3 - 3*a6^2 + 3/2*a6 + 3/2, -a6^3 + 5*a6 + 2, -a6^2 + 3, 1)" "x^6 - x^5 - 9*x^4 + 6*x^3 + 19*x^2 - 5*x - 3"
"221b1" 221 221 3 21 "(a3, a3 + 1, -1, -a3 - 3, a3 + 2, -1)" "x^2 + x - 5"
"446a1" 446 223 3 1957 "(a1, -a1 - 1, -a1^3 - 3*a1^2 + a1 + 3, 2*a1^3 + 5*a1^2 - 2*a1 - 6, -2*a1^3 - 6*a1^2 + a1 + 4, a1^3 + 4*a1^2 - 8)" "x^4 + 4*x^3 + 2*x^2 - 5*x - 3"
"226a1" 226 226 3 12 "(-1, -1/2*a2 - 1/2, 2, 0, a2 + 5, a2 + 1)" "x^2 + 6*x - 3"
"14a1" 14 228 3 33 "(0, 1, 1/2*a2 + 1/2, -1/2*a2 + 3/2, -1/2*a2 - 1/2, 2)" "x^2 - 4*x - 29"
"14a1" 14 230 3 1101 "(1, -1/2*a3 + 1/2, -1, -1/4*a3^2 + 3/2*a3 + 27/4, 1/2*a3^2 - 3/2*a3 - 11, -1/4*a3^2 + 1/2*a3 + 23/4)" "x^3 - x^2 - 37*x - 59"
"14a1" 14 230 3 13 "(-1, 1/2*a1 + 1/2, 1, -1/2*a1 + 5/2, -1/2*a1 - 5/2, -1/2*a1 + 5/2)" "x^2 - 4*x - 9"
"14a1" 14 230 3 21 "(-1, -a0 - 1, -1, -a0, -a0 + 1, a0 + 4)" "x^2 + x - 5"
"460d1" 460 230 3 13 "(-1, 1/2*a1 + 1/2, 1, -1/2*a1 + 5/2, -1/2*a1 - 5/2, -1/2*a1 + 5/2)" "x^2 - 4*x - 9"
"460a1" 460 230 3 1101 "(1, -1/2*a3 + 1/2, -1, -1/4*a3^2 + 3/2*a3 + 27/4, 1/2*a3^2 - 3/2*a3 - 11, -1/4*a3^2 + 1/2*a3 + 23/4)" "x^3 - x^2 - 37*x - 59"
"11a1" 11 231 3 837 "(a3, -1, -a3^2 + a3 + 4, -1, 1, -a3^2 + a3 + 4)" "x^3 - 6*x - 1"
"1155c1" 1155 231 3 21 "(a1, -1, 3, 1, -1, 1)" "x^2 + x - 5"
"233a1" 233 233 3 1.27E+017 "(a2, 7/4*a2^10 - 1/2*a2^9 - 107/4*a2^8 + 8*a2^7 + 139*a2^6 - 65/2*a2^5 - 1147/4*a2^4 + 31/4*a2^3 + 883/4*a2^2 + 203/4*a2 - 16, 27/2*a2^10 - 9/2*a2^9 - 409/2*a2^8 + 145/2*a2^7 + 1046*a2^6 - 310*a2^5 - 4193/2*a2^4 + 183*a2^3 + 1550*a2^2 + 294*a2 - 219/2, a2^10 - 1/2*a2^9 - 15*a2^8 + 15/2*a2^7 + 75*a2^6 - 31*a2^5 - 143*a2^4 + 43/2*a2^3 + 195/2*a2^2 + 41/2*a2 - 5/2, 9/4*a2^10 - 3/4*a2^9 - 135/4*a2^8 + 49/4*a2^7 + 170*a2^6 - 107/2*a2^5 - 1331/4*a2^4 + 75/2*a2^3 + 242*a2^2 + 37*a2 - 81/4, -a2^10 + 15*a2^8 - a2^7 - 76*a2^6 + 6*a2^5 + 150*a2^4 + 3*a2^3 - 104*a2^2 - 20*a2 + 7)" "x^11 + 2*x^10 - 16*x^9 - 30*x^8 + 91*x^7 + 158*x^6 - 213*x^5 - 349*x^4 + 152*x^3 + 290*x^2 + 41*x - 19"
"699a1" 699 233 3 25164057 "(a1, a1^5 + a1^4 - 5*a1^3 - 4*a1^2 + 3*a1, -a1^5 - 2*a1^4 + 4*a1^3 + 8*a1^2 - a1 - 3, -a1^6 - 3*a1^5 + 5*a1^4 + 16*a1^3 - 6*a1^2 - 16*a1 + 3, -a1^6 - 2*a1^5 + 7*a1^4 + 11*a1^3 - 13*a1^2 - 11*a1 + 5, 6*a1^6 + 14*a1^5 - 29*a1^4 - 68*a1^3 + 25*a1^2 + 52*a1 - 16)" "x^7 + 2*x^6 - 6*x^5 - 10*x^4 + 10*x^3 + 8*x^2 - 7*x + 1"
"118a1" 118 236 3 321 "(0, 1/2*a2, -1/12*a2^2 + 1/6*a2 + 2/3, -1/12*a2^2 - 1/3*a2 + 14/3, 1/6*a2^2 - 1/3*a2 - 10/3, -1/6*a2^2 + 1/3*a2 + 16/3)" "x^3 - 36*x + 8"
"118b1" 118 236 3 321 "(0, 1/2*a2, -1/12*a2^2 + 1/6*a2 + 2/3, -1/12*a2^2 - 1/3*a2 + 14/3, 1/6*a2^2 - 1/3*a2 - 10/3, -1/6*a2^2 + 1/3*a2 + 16/3)" "x^3 - 36*x + 8"
"79a1" 79 237 3 1957 "(a1, -1, -a1^3 - 3*a1^2 + 2, 2*a1^3 + 4*a1^2 - 4*a1 - 4, -a1^3 - a1^2 + 2*a1 - 3, -a1^3 + a1^2 + 6*a1 - 5)" "x^4 + 3*x^3 - x^2 - 5*x + 1"
"121b1" 121 242 3 12 "(1, 1/2*a4 - 1/2, -1/2*a4 - 1/2, 1/2*a4 + 7/2, 0, 3)" "x^2 + 2*x - 11"
"121b1" 121 242 3 12 "(-1, 1/2*a2 + 1/2, -1/2*a2 - 3/2, -1/2*a2 - 9/2, 0, -3)" "x^2 + 6*x - 3"
"14a1" 14 243 3 12 "(a2, 0, 2*a2, -1, -2*a2, 5)" "x^2 - 3"
"14a1" 14 243 3 81 "(a5, 0, -a5 + 3, -2*a5^2 + 3*a5 + 2, -3*a5^2 + 4*a5 + 6, a5^2 - 3*a5 - 1)" "x^3 - 3*x^2 + 3"
"14a1" 14 243 3 24 "(a3, 0, -a3, 2, a3, -1)" "x^2 - 6"
"14a1" 14 243 3 81 "(a4, 0, -a4 - 3, -2*a4^2 - 3*a4 + 2, 3*a4^2 + 4*a4 - 6, a4^2 + 3*a4 - 1)" "x^3 + 3*x^2 - 3"
"122a1" 122 244 3 20308 "(0, -a1, -1/4*a1^3 + 2*a1 + 2, 1/4*a1^3 - 1/2*a1^2 - 2*a1 + 2, 1/4*a1^3 - 1/2*a1^2 - a1 + 2, -1/4*a1^3 + 3*a1 + 2)" "x^4 - 12*x^2 - 4*x + 16"
"14a1" 14 247 3 81 "(a1, -a1^2 - a1 + 1, -a1^2 - 2*a1, 2*a1^2 + 3*a1 - 4, a1^2 - 3, 1)" "x^3 + 3*x^2 - 3"
"744d1" 744 248 3 33 "(0, 2, -1/2*a3 - 1, 1/2*a3 + 3, -2, a3 + 6)" "x^2 + 10*x - 8"
"506b1" 506 253 3 81 "(a1, -a1^2 + a1 + 3, a1^2 - 2*a1, -a1^2 + a1 + 3, -1, a1^2 - 3*a1 - 1)" "x^3 - 3*x^2 + 3"
"14a1" 14 254 3 2949696 "(-1, 1/2*a5 + 1/2, -5/32*a5^4 - 7/8*a5^3 + 81/16*a5^2 + 125/8*a5 - 677/32, 3/32*a5^4 + 1/2*a5^3 - 53/16*a5^2 - 35/4*a5 + 575/32, 1/32*a5^4 + 1/4*a5^3 - 11/16*a5^2 - 5*a5 + 29/32, 2)" "x^5 + 9*x^4 - 14*x^3 - 214*x^2 - 195*x + 509"
"14a1" 14 255 3 13768 "(a3, 1, -1, -a3^3 - a3^2 + 5*a3 + 5, a3^3 + a3^2 - 7*a3 - 3, -2*a3^2 + 8)" "x^4 - x^3 - 8*x^2 + 7*x + 9"
"85a1" 85 255 3 13 "(a0, -1, -1, 2*a0 - 1, 5, -2*a0 - 2)" "x^2 - x - 3"
"510a1" 510 255 3 13 "(a0, -1, -1, 2*a0 - 1, 5, -2*a0 - 2)" "x^2 - x - 3"
"14a1" 14 259 3 81 "(a3, -a3^2 - 2*a3 + 1, a3^2 + 2*a3 - 3, 1, a3^2 - 6, 3*a3^2 + 3*a3 - 7)" "x^3 + 3*x^2 - 3"
"37a1" 37 259 3 22545 "(a6, -a6^3 + 4*a6, a6^2 - 3, 1, a6^3 - 6*a6 + 3, -a6^2 + a6 + 1)" "x^4 - x^3 - 6*x^2 + 5*x + 4"
"14a1" 14 260 3 564 "(0, 1/2*a1, 1, -1/4*a1^2 + 6, 1/4*a1^2 - 1/2*a1 - 6, 1)" "x^3 - 4*x^2 - 32*x + 96"
"130b1" 130 260 3 564 "(0, 1/2*a1, 1, -1/4*a1^2 + 6, 1/4*a1^2 - 1/2*a1 - 6, 1)" "x^3 - 4*x^2 - 32*x + 96"
"131a1" 131 262 3 13 "(-1, 1/2*a2 + 1/2, -1/2*a2 - 7/2, -1/2*a2 + 1/2, -1/2*a2 - 9/2, 1/2*a2 - 3/2)" "x^2 + 4*x - 9"
"131a1" 131 262 3 12 "(1, a4 - 1, a4 + 1, -a4 + 2, -2*a4, -a4 - 3)" "x^2 - 3"
"262b1" 262 262 3 13 "(-1, 1/2*a2 + 1/2, -1/2*a2 - 7/2, -1/2*a2 + 1/2, -1/2*a2 - 9/2, 1/2*a2 - 3/2)" "x^2 + 4*x - 9"
"14a1" 14 265 3 13 "(a4, a4 + 1, 1, -1, 3, 2*a4 - 1)" "x^2 + x - 3"
"53a1" 53 265 3 13 "(a4, a4 + 1, 1, -1, 3, 2*a4 - 1)" "x^2 + x - 3"
"530d1" 530 265 3 12 "(a5, 2, -1, a5 + 1, -2*a5 + 2, -2*a5)" "x^2 - 3"
"795d1" 795 265 3 21 "(a2, -a2 - 1, -1, -3, -5, 2*a2 + 1)" "x^2 + x - 5"
"14a1" 14 266 3 13 "(1, -a2 + 1, a2, 1, a2 - 3, 2*a2 + 2)" "x^2 - x - 3"
"532a1" 532 266 3 13 "(1, -a2 + 1, a2, 1, a2 - 3, 2*a2 + 2)" "x^2 - x - 3"
"89b1" 89 267 3 23377 "(a5, -1, a5^2 - 3, -a5^3 - a5^2 + 5*a5 + 5, -a5^2 + a5 + 2, -a5^3 - a5^2 + 4*a5 + 6)" "x^4 - x^3 - 7*x^2 + 6*x + 7"
"89a1" 89 267 3 81 "(a3, -1, -a3^2 - 2*a3 + 1, -a3^2, 3*a3^2 + a3 - 4, a3^2 + a3 - 7)" "x^3 - 3*x + 1"
"268a1" 268 268 3 21 "(0, a2, -1, -a2 + 1, 5, a2 + 1)" "x^2 - x - 5"
"269a1" 269 269 3 65657 "(a1, a1^4 - 5*a1^2 + 3, -a1^4 + 5*a1^2 - a1 - 5, -a1^4 - a1^3 + 3*a1^2 + 2*a1 - 1, a1^4 - 4*a1^2, 2*a1^3 + 3*a1^2 - 5*a1 - 7)" "x^5 + x^4 - 5*x^3 - 4*x^2 + 5*x + 3"
"14a1" 14 271 3 2.30E+028 "(a1, 4966/763*a1^15 - 26858/763*a1^14 - 49243/763*a1^13 + 474081/763*a1^12 - 128875/763*a1^11 - 3063997/763*a1^10 + 3087453/763*a1^9 + 8695891/763*a1^8 - 1814217/109*a1^7 - 9799739/763*a1^6 + 19637291/763*a1^5 + 2259965/763*a1^4 - 1419203/109*a1^3 - 760516/763*a1^2 + 1897494/763*a1 + 406918/763, -2931/763*a1^15 + 15816/763*a1^14 + 29560/763*a1^13 - 280031/763*a1^12 + 67017/763*a1^11 + 1819457/763*a1^10 - 1760793/763*a1^9 - 5219351/763*a1^8 + 1043544/109*a1^7 + 6055573/763*a1^6 - 11326071/763*a1^5 - 1666627/763*a1^4 + 817097/109*a1^3 + 533915/763*a1^2 - 1063246/763*a1 - 229968/763, 4747/763*a1^15 - 25342/763*a1^14 - 48836/763*a1^13 + 449248/763*a1^12 - 91214/763*a1^11 - 2925197/763*a1^10 + 2735429/763*a1^9 + 8428341/763*a1^8 - 1639143/109*a1^7 - 9899208/763*a1^6 + 17856212/763*a1^5 + 2928854/763*a1^4 - 1289523/109*a1^3 - 966229/763*a1^2 + 1684731/763*a1 + 377795/763, 7251/763*a1^15 - 38561/763*a1^14 - 74756/763*a1^13 + 683219/763*a1^12 - 136608/763*a1^11 - 4444746/763*a1^10 + 4161832/763*a1^9 + 12784879/763*a1^8 - 2498112/109*a1^7 - 14949252/763*a1^6 + 27259040/763*a1^5 + 4317273/763*a1^4 - 1977730/109*a1^3 - 1421394/763*a1^2 + 2608957/763*a1 + 583200/763, -5580/763*a1^15 + 29983/763*a1^14 + 56725/763*a1^13 - 531848/763*a1^12 + 121076/763*a1^11 + 3466885/763*a1^10 - 3325823/763*a1^9 - 10012231/763*a1^8 + 1988907/109*a1^7 + 11833721/763*a1^6 - 21864055/763*a1^5 - 3620923/763*a1^4 + 1631536/109*a1^3 + 1218208/763*a1^2 - 2212377/763*a1 - 498223/763)" "x^16 - 5*x^15 - 12*x^14 + 91*x^13 + 11*x^12 - 620*x^11 + 381*x^10 + 1953*x^9 - 1863*x^8 - 2853*x^7 + 3137*x^6 + 1830*x^5 - 1758*x^4 - 831*x^3 + 308*x^2 + 204*x + 27"
"14a1" 14 271 3 2.30E+028 "(a1, 4966/763*a1^15 - 26858/763*a1^14 - 49243/763*a1^13 + 474081/763*a1^12 - 128875/763*a1^11 - 3063997/763*a1^10 + 3087453/763*a1^9 + 8695891/763*a1^8 - 1814217/109*a1^7 - 9799739/763*a1^6 + 19637291/763*a1^5 + 2259965/763*a1^4 - 1419203/109*a1^3 - 760516/763*a1^2 + 1897494/763*a1 + 406918/763, -2931/763*a1^15 + 15816/763*a1^14 + 29560/763*a1^13 - 280031/763*a1^12 + 67017/763*a1^11 + 1819457/763*a1^10 - 1760793/763*a1^9 - 5219351/763*a1^8 + 1043544/109*a1^7 + 6055573/763*a1^6 - 11326071/763*a1^5 - 1666627/763*a1^4 + 817097/109*a1^3 + 533915/763*a1^2 - 1063246/763*a1 - 229968/763, 4747/763*a1^15 - 25342/763*a1^14 - 48836/763*a1^13 + 449248/763*a1^12 - 91214/763*a1^11 - 2925197/763*a1^10 + 2735429/763*a1^9 + 8428341/763*a1^8 - 1639143/109*a1^7 - 9899208/763*a1^6 + 17856212/763*a1^5 + 2928854/763*a1^4 - 1289523/109*a1^3 - 966229/763*a1^2 + 1684731/763*a1 + 377795/763, 7251/763*a1^15 - 38561/763*a1^14 - 74756/763*a1^13 + 683219/763*a1^12 - 136608/763*a1^11 - 4444746/763*a1^10 + 4161832/763*a1^9 + 12784879/763*a1^8 - 2498112/109*a1^7 - 14949252/763*a1^6 + 27259040/763*a1^5 + 4317273/763*a1^4 - 1977730/109*a1^3 - 1421394/763*a1^2 + 2608957/763*a1 + 583200/763, -5580/763*a1^15 + 29983/763*a1^14 + 56725/763*a1^13 - 531848/763*a1^12 + 121076/763*a1^11 + 3466885/763*a1^10 - 3325823/763*a1^9 - 10012231/763*a1^8 + 1988907/109*a1^7 + 11833721/763*a1^6 - 21864055/763*a1^5 - 3620923/763*a1^4 + 1631536/109*a1^3 + 1218208/763*a1^2 - 2212377/763*a1 - 498223/763)" "x^16 - 5*x^15 - 12*x^14 + 91*x^13 + 11*x^12 - 620*x^11 + 381*x^10 + 1953*x^9 - 1863*x^8 - 2853*x^7 + 3137*x^6 + 1830*x^5 - 1758*x^4 - 831*x^3 + 308*x^2 + 204*x + 27"
"80b1" 80 272 3 12 "(0, -1/2*a4, -a4 + 2, 1/2*a4, -1/2*a4 + 4, a4)" "x^2 - 4*x - 8"
"14a1" 14 273 3 17428 "(a4, 1, -a4^2 + 3, 1, -a4^3 + 5*a4, 1)" "x^4 - x^3 - 7*x^2 + 5*x + 6"
"14a1" 14 275 3 13 "(a5, -a5 + 1, 0, a5 + 2, -1, 5)" "x^2 - x - 3"
"50b1" 50 275 3 13 "(a4, -a4 - 1, 0, a4 - 2, -1, -5)" "x^2 + x - 3"
"55a1" 55 275 3 13 "(a5, -a5 + 1, 0, a5 + 2, -1, 5)" "x^2 - x - 3"
"275a1" 275 275 3 13 "(a4, -a4 - 1, 0, a4 - 2, -1, -5)" "x^2 + x - 3"
"138a1" 138 276 3 40 "(0, -1, 1/2*a0 + 1, -1/2*a0 + 1, 0, 4)" "x^2 + 4*x - 36"
"138c1" 138 276 3 40 "(0, -1, 1/2*a0 + 1, -1/2*a0 + 1, 0, 4)" "x^2 + 4*x - 36"
"556a1" 556 278 3 81 "(-1, -a3 - 1, -2*a3^2 - 8*a3 - 4, -a3^2 - 3*a3 + 3, 2*a3^2 + 8*a3 + 4, 4*a3^2 + 14*a3 + 4)" "x^3 + 6*x^2 + 9*x + 1"
"14a1" 14 279 3 361944768 "(a3, 0, -1/3*a3^5 + 2*a3^3 - 1/3*a3, a3^4 - 7*a3^2 + 8, 2/3*a3^5 - 6*a3^3 + 32/3*a3, -2*a3^2 + 8)" "x^6 - 12*x^4 + 40*x^2 - 27"
"840h1" 840 280 3 33 "(0, 1/2*a2, -1, -1, 1/2*a2 + 4, 1/2*a2 + 2)" "x^2 + 2*x - 32"
"843a1" 843 281 3 25164057 "(a0, a0^6 + a0^5 - 6*a0^4 - 4*a0^3 + 9*a0^2 + 3*a0 - 2, -a0^6 - a0^5 + 7*a0^4 + 5*a0^3 - 13*a0^2 - 6*a0 + 3, -a0^6 - a0^5 + 5*a0^4 + 3*a0^3 - 6*a0^2 - 2*a0 - 1, -a0^6 - 2*a0^5 + 2*a0^4 + 4*a0^3 + 3*a0^2 + 2*a0 - 4, a0^4 - 3*a0^2 + 2*a0 - 1)" "x^7 + 2*x^6 - 5*x^5 - 9*x^4 + 7*x^3 + 10*x^2 - 2*x - 1"
"14a1" 14 282 3 24 "(-1, 1, -1/2*a3 - 1, 2, 1/2*a3 + 1, 1/2*a3 + 3)" "x^2 + 4*x - 20"
"141d1" 141 282 3 12 "(-1, -1, 1/2*a2 - 1/2, -a2 - 1, -1/2*a2 - 7/2, 3/2*a2 + 1/2)" "x^2 + 2*x - 11"
"14a1" 14 284 3 321 "(0, -1/2*a1, -1/4*a1^2 - 1/2*a1 + 3, 2, a1 + 2, 1/2*a1^2 + a1 - 4)" "x^3 + 2*x^2 - 16*x - 8"
"142b1" 142 284 3 321 "(0, -1/2*a1, -1/4*a1^2 - 1/2*a1 + 3, 2, a1 + 2, 1/2*a1^2 + a1 - 4)" "x^3 + 2*x^2 - 16*x - 8"
"142a1" 142 284 3 81 "(0, 1/2*a0, -1/4*a0^2 - 3/2*a0 - 1, 1/2*a0^2 + a0 - 6, a0, -a0^2 - 3*a0 + 4)" "x^3 + 6*x^2 - 24"
"14a1" 14 285 3 12 "(a4, 1, 1, a4 - 1, -a4 + 3, -a4 - 1)" "x^2 - 3"
"15a1" 15 285 3 28 "(a3, -1, 1, -a3 - 1, a3 + 3, -a3 - 3)" "x^2 - 7"
"57a1" 57 285 3 28 "(a3, -1, 1, -a3 - 1, a3 + 3, -a3 - 3)" "x^2 - 7"
"14a1" 14 287 3 633117 "(a4, a4 + 1, a4^4 - 7*a4^2 + a4 + 6, 1, -a4^4 - a4^3 + 3*a4^2 + 2*a4 + 3, -a4^4 - a4^3 + 6*a4^2 + 3*a4 - 4)" "x^5 + x^4 - 6*x^3 - 4*x^2 + 6*x + 3"
5.74E+003 574 287 3 257 "(a2, a2^2 - a2 - 3, 2, 1, -2, -a2^2 + 6)" "x^3 - x^2 - 4*x + 3"
"14a1" 14 289 3 13 "(a2, a2 + 1, -a2, a2 + 2, 3, a2 - 1)" "x^2 + x - 3"
"17a1" 17 289 3 81 "(a4, a4^2 - 1, a4 + 2, -a4^2 + 2, -2*a4^2 - 2*a4 + 6, -2*a4^2 - 3*a4 + 6)" "x^3 - 3*x + 1"
"17a1" 17 289 3 13 "(a2, a2 + 1, -a2, a2 + 2, 3, a2 - 1)" "x^2 + x - 3"
"289a1" 289 289 3 13 "(a1, -a1 - 1, a1, -a1 - 2, -3, a1 - 1)" "x^2 + x - 3"
"289a1" 289 289 3 81 "(a3, -a3^2 + 1, -a3 - 2, a3^2 - 2, 2*a3^2 + 2*a3 - 6, -2*a3^2 - 3*a3 + 6)" "x^3 - 3*x + 1"
"578a1" 578 289 3 13 "(a1, -a1 - 1, a1, -a1 - 2, -3, a1 - 1)" "x^2 + x - 3"
"14a1" 14 290 3 13 "(-1, a2 + 1, 1, a2 + 2, -2*a2, -a2 - 1)" "x^2 + x - 3"
"14a1" 14 290 3 621 "(1, a4 - 1, -1, -a4^2 + 2*a4 + 5, -2*a4 + 4, 2*a4^2 - 7*a4 - 1)" "x^3 - 6*x^2 + 6*x + 7"
"14a1" 14 290 3 13 "(-1, -1/2*a1 - 1/2, -1, 1/2*a1 + 7/2, -a1 - 3, -1/2*a1 + 7/2)" "x^2 + 4*x - 9"
"58a1" 58 290 3 13 "(-1, a2 + 1, 1, a2 + 2, -2*a2, -a2 - 1)" "x^2 + x - 3"
"580a1" 580 290 3 13 "(-1, -1/2*a1 - 1/2, -1, 1/2*a1 + 7/2, -a1 - 3, -1/2*a1 + 7/2)" "x^2 + 4*x - 9"
"291c1" 291 291 3 13 "(a4, -1, -3, -a4 + 1, -a4 - 2, a4 - 1)" "x^2 + x - 3"
"582a1" 582 291 3 13 "(a4, -1, -3, -a4 + 1, -a4 - 2, a4 - 1)" "x^2 + x - 3"
"586a1" 586 293 3 4.44E+028 "(a1, -577/16858*a1^15 + 4393/33716*a1^14 + 16563/33716*a1^13 - 18220/8429*a1^12 - 74523/33716*a1^11 + 435367/33716*a1^10 + 21555/8429*a1^9 - 286976/8429*a1^8 + 130715/33716*a1^7 + 1398031/33716*a1^6 - 320453/33716*a1^5 - 230781/8429*a1^4 + 82231/8429*a1^3 + 483617/33716*a1^2 - 38240/8429*a1 - 18467/8429, 761/33716*a1^15 - 713/33716*a1^14 - 17781/33716*a1^13 + 6135/16858*a1^12 + 163023/33716*a1^11 - 65719/33716*a1^10 - 739285/33716*a1^9 + 44693/33716*a1^8 + 1715335/33716*a1^7 + 154804/8429*a1^6 - 1882511/33716*a1^5 - 1693565/33716*a1^4 + 697325/33716*a1^3 + 319291/8429*a1^2 + 78445/33716*a1 - 86901/16858, 297/16858*a1^15 - 479/33716*a1^14 - 3143/8429*a1^13 + 949/33716*a1^12 + 115053/33716*a1^11 + 34451/16858*a1^10 - 597641/33716*a1^9 - 139484/8429*a1^8 + 1843485/33716*a1^7 + 751603/16858*a1^6 - 1559611/16858*a1^5 - 1306309/33716*a1^4 + 1221403/16858*a1^3 - 53941/33716*a1^2 - 576815/33716*a1 + 54207/8429, -233/33716*a1^15 + 1511/67432*a1^14 + 8529/67432*a1^13 - 16297/67432*a1^12 - 49515/33716*a1^11 + 18855/67432*a1^10 + 844103/67432*a1^9 + 245827/67432*a1^8 - 4050371/67432*a1^7 - 567485/67432*a1^6 + 4635547/33716*a1^5 - 340967/67432*a1^4 - 8679221/67432*a1^3 + 1068839/67432*a1^2 + 1152697/33716*a1 - 303691/67432, -623/33716*a1^15 + 193/8429*a1^14 + 5855/16858*a1^13 - 9325/33716*a1^12 - 82399/33716*a1^11 + 6083/16858*a1^10 + 130703/16858*a1^9 + 62912/8429*a1^8 - 155665/16858*a1^7 - 1292109/33716*a1^6 - 175301/33716*a1^5 + 611969/8429*a1^4 + 172165/8429*a1^3 - 1923829/33716*a1^2 - 471027/33716*a1 + 411913/33716)" "x^16 - 3*x^15 - 22*x^14 + 69*x^13 + 184*x^12 - 621*x^11 - 716*x^10 + 2758*x^9 + 1234*x^8 - 6287*x^7 - 554*x^6 + 7023*x^5 - 572*x^4 - 3385*x^3 + 508*x^2 + 526*x - 111"
"590d1" 590 295 3 32223476 "(a2, -a2^5 + a2^4 + 6*a2^3 - 4*a2^2 - 7*a2 + 1, 1, a2^5 - 7*a2^3 - a2^2 + 10*a2 + 3, a2^4 - a2^3 - 5*a2^2 + 3*a2 + 4, -a2^4 + a2^3 + 4*a2^2 - 3*a2 + 1)" "x^6 - 2*x^5 - 6*x^4 + 11*x^3 + 8*x^2 - 11*x - 3"
"590c1" 590 295 3 81 "(a0, a0^2 + a0 - 3, 1, -2*a0^2 - 3*a0 + 1, -a0^2 + 4, 2*a0^2 + 2*a0 - 7)" "x^3 + 3*x^2 - 3"
"11a1" 11 297 3 12 "(a5, 0, -a5 + 2, -a5 - 1, 1, a5 - 3)" "x^2 - 2*x - 2"
"11a1" 11 297 3 564 "(a6, 0, a6^2 - 3, -a6 + 2, 1, -a6^2 + 5)" "x^3 + x^2 - 5*x - 3"
"14a1" 14 297 3 564 "(a7, 0, -a7^2 + 3, a7 + 2, -1, -a7^2 + 5)" "x^3 - x^2 - 5*x + 3"
"14a1" 14 297 3 564 "(a6, 0, a6^2 - 3, -a6 + 2, 1, -a6^2 + 5)" "x^3 + x^2 - 5*x - 3"
"99a1" 99 297 3 12 "(a4, 0, -a4 - 2, a4 - 1, -1, -a4 - 3)" "x^2 + 2*x - 2"
"99a1" 99 297 3 564 "(a7, 0, -a7^2 + 3, a7 + 2, -1, -a7^2 + 5)" "x^3 - x^2 - 5*x + 3"
"298a1" 298 298 3 12 "(-1, 1/2*a2 + 1/2, -1/2*a2 + 3/2, -1/2*a2 + 3/2, 1/2*a2 + 5/2, 1/2*a2 - 5/2)" "x^2 - 2*x - 11"
"14a1" 14 299 3 788 "(0, -a5, -1/2*a5^2 + 7/2, -a5 + 1, -1/2*a5^2 + a5 + 9/2, 1)" "x^3 - x^2 - 9*x + 5"
"897d1" 897 299 3 21 "(a1, a1, -a1 + 1, 1, a1 + 2, 1)" "x^2 + x - 5"
"14a1" 14 301 3 1957 "(a0, -a0^3 - 2*a0^2 + 2*a0 + 1, -a0^2 - 2*a0, 1, -a0^3 - 3*a0^2 + a0, 3*a0^3 + 8*a0^2 - 2*a0 - 7)" "x^4 + 4*x^3 + 2*x^2 - 5*x - 3"
"14a1" 14 302 3 25808 "(-1, -1/2*a4 - 1/2, -1/12*a4^3 - 1/2*a4^2 + 19/12*a4 + 3, 1/24*a4^3 + 1/8*a4^2 - 25/24*a4 + 7/8, -1/4*a4^2 - 3/2*a4 + 15/4, -1/24*a4^3 - 1/8*a4^2 + 25/24*a4 + 25/8)" "x^4 + 4*x^3 - 34*x^2 - 28*x + 153"
"302a1" 302 302 3 25808 "(-1, -1/2*a4 - 1/2, -1/12*a4^3 - 1/2*a4^2 + 19/12*a4 + 3, 1/24*a4^3 + 1/8*a4^2 - 25/24*a4 + 7/8, -1/4*a4^2 - 3/2*a4 + 15/4, -1/24*a4^3 - 1/8*a4^2 + 25/24*a4 + 25/8)" "x^4 + 4*x^3 - 34*x^2 - 28*x + 153"
"101a1" 101 303 3 12334732 "(a3, 1, a3^4 - a3^3 - 5*a3^2 + 3*a3 + 5, -a3^5 + a3^4 + 5*a3^3 - 5*a3^2 - 3*a3 + 4, -2*a3^4 + a3^3 + 11*a3^2 - 4*a3 - 8, 2*a3^5 - 2*a3^4 - 11*a3^3 + 9*a3^2 + 10*a3 - 5)" "x^6 - x^5 - 7*x^4 + 5*x^3 + 13*x^2 - 4*x - 6"
"14a1" 14 305 3 5262019648 "(a2, -1/2*a2^5 + 4*a2^3 - 1/2*a2^2 - 11/2*a2 - 1/2, -1, a2^4 - 7*a2^2 + 2*a2 + 8, 1/2*a2^6 - 5*a2^4 + 1/2*a2^3 + 25/2*a2^2 - 3/2*a2 - 6, -a2^2 + 5)" "x^7 + 2*x^6 - 11*x^5 - 19*x^4 + 35*x^3 + 48*x^2 - 25*x - 27"
"61a1" 61 305 3 333399296 "(a3, -1/2*a3^6 + a3^5 + 4*a3^4 - 15/2*a3^3 - 15/2*a3^2 + 27/2*a3, 1, a3^4 - 2*a3^3 - 5*a3^2 + 8*a3 + 2, a3^6 - 3/2*a3^5 - 10*a3^4 + 13*a3^3 + 49/2*a3^2 - 55/2*a3 - 1/2, a3^6 - a3^5 - 10*a3^4 + 9*a3^3 + 25*a3^2 - 22*a3 - 2)" "x^7 - 2*x^6 - 9*x^5 + 17*x^4 + 19*x^3 - 36*x^2 + 5*x + 1"
"61a1" 61 305 3 81 "(a0, -a0, -1, -2*a0^2 - a0 + 2, -a0^2 + a0, 3*a0^2 + 4*a0 - 7)" "x^3 - 3*x + 1"
"14a1" 14 306 3 24 "(1, 0, a5 - 1, -a5 + 3, -2*a5 + 2, 2*a5)" "x^2 - 2*x - 5"
"14a1" 14 306 3 24 "(-1, 0, 1/2*a4 + 1/2, 1/2*a4 + 5/2, -a4 - 1, -a4 + 1)" "x^2 + 2*x - 23"
"14a1" 14 307 3 13 "(a4, -a4 - 2, 3, -a4 + 2, -a4 + 3, 2*a4 - 1)" "x^2 + x - 3"
"307d1" 307 307 3 13 "(a4, -a4 - 2, 3, -a4 + 2, -a4 + 3, 2*a4 - 1)" "x^2 + x - 3"
"14a1" 14 308 3 1016 "(0, -1/2*a2, -1/4*a2^2 + 4, 1, 1, 1/4*a2^2 - 1/2*a2)" "x^3 - 2*x^2 - 24*x + 16"
"77a1" 77 308 3 24 "(0, -a1, 2, -1, -1, a1 + 2)" "x^2 - 6"
"155c1" 155 310 3 12 "(-1, -a2 - 1, -1, 2*a2, a2 - 1, -a2 - 3)" "x^2 - 3"
"620b1" 620 310 3 24 "(-1, 1/2*a3 + 1/2, 1, -2, 1/2*a3 + 5/2, 1/2*a3 + 5/2)" "x^2 + 2*x - 23"
"14a1" 14 314 3 48599781 "(-1, 1/2*a1 + 1/2, -5/416*a1^5 - 9/416*a1^4 + 109/208*a1^3 + 105/208*a1^2 - 1893/416*a1 - 1113/416, -1/208*a1^5 - 7/208*a1^4 + 7/52*a1^3 + 43/52*a1^2 - 155/208*a1 - 389/208, 5/416*a1^5 + 35/416*a1^4 - 83/208*a1^3 - 573/208*a1^2 + 1217/416*a1 + 7639/416, 1/52*a1^5 + 1/104*a1^4 - 41/52*a1^3 + 5/26*a1^2 + 81/13*a1 - 93/104)" "x^6 - 51*x^4 + 24*x^3 + 683*x^2 - 280*x - 2489"
"628a1" 628 314 3 8278122173 "(1, a2 - 1, -1/3*a2^5 + 5/3*a2^4 + 1/3*a2^3 - 9*a2^2 + 17/3*a2 + 3, 1/15*a2^6 + 1/15*a2^5 - 7/3*a2^4 + 13/5*a2^3 + 146/15*a2^2 - 196/15*a2 + 3, -1/15*a2^6 + 4/15*a2^5 + a2^4 - 74/15*a2^3 - 16/15*a2^2 + 266/15*a2 - 8, -1/15*a2^6 + 3/5*a2^5 - a2^4 - 34/15*a2^3 + 79/15*a2^2 - 64/15*a2 + 5)" "x^7 - 6*x^6 - 2*x^5 + 59*x^4 - 47*x^3 - 143*x^2 + 157*x - 15"
"158b1" 158 316 3 13 "(0, 2, -a3 + 4, 0, a3 - 1, 3*a3 - 7)" "x^2 - 5*x + 3"
"158c1" 158 316 3 13 "(0, 2, -a3 + 4, 0, a3 - 1, 3*a3 - 7)" "x^2 - 5*x + 3"
"158a1" 158 316 3 13 "(0, 0, 1/2*a2, -a2 - 6, -1/2*a2 - 5, 1/2*a2 + 1)" "x^2 + 10*x + 12"
"316b1" 316 316 3 13 "(0, 0, 1/2*a2, -a2 - 6, -1/2*a2 - 5, 1/2*a2 + 1)" "x^2 + 10*x + 12"
"11a1" 11 319 3 81 "(a1, -a1, -2*a1^2 + a1 + 2, 2*a1^2 - 2*a1 - 5, 1, a1^2 + a1 - 4)" "x^3 - 3*x - 1"
"11a1" 11 319 3 905721709 "(a3, -a3^4 + a3^3 + 5*a3^2 - 3*a3 - 3, a3^5 - a3^4 - 6*a3^3 + 4*a3^2 + 7*a3 - 1, a3^6 - 3*a3^5 - 4*a3^4 + 14*a3^3 + 2*a3^2 - 11*a3 - 1, 1, a3^5 - 2*a3^4 - 4*a3^3 + 6*a3^2 + 2*a3 + 1)" "x^7 - 3*x^6 - 4*x^5 + 15*x^4 + x^3 - 14*x^2 + 1"
"14a1" 14 321 3 13231312 "(a2, 1, 1/2*a2^5 - 1/2*a2^4 - 4*a2^3 + 5/2*a2^2 + 13/2*a2, -1/2*a2^5 + 1/2*a2^4 + 3*a2^3 - 5/2*a2^2 - 5/2*a2 + 2, -a2^5 + 3/2*a2^4 + 13/2*a2^3 - 7*a2^2 - 19/2*a2 + 9/2, 1/2*a2^4 + 1/2*a2^3 - 4*a2^2 - 5/2*a2 + 7/2)" "x^6 - 3*x^5 - 5*x^4 + 18*x^3 + x^2 - 19*x + 3"
"322c1" 322 322 3 12 "(1, -1/2*a5 + 1/2, -1/2*a5 + 5/2, 1, a5 - 3, a5 - 1)" "x^2 - 6*x - 3"
"14a1" 14 323 3 28145473 "(a4, 1/2*a4^5 - 1/2*a4^4 - 4*a4^3 + 5/2*a4^2 + 6*a4 - 1/2, -a4^4 + a4^3 + 7*a4^2 - 4*a4 - 9, 1/2*a4^5 - 1/2*a4^4 - 4*a4^3 + 5/2*a4^2 + 7*a4 + 1/2, 1/2*a4^5 - 1/2*a4^4 - 5*a4^3 + 5/2*a4^2 + 11*a4 + 3/2, -a4^5 + a4^4 + 8*a4^3 - 4*a4^2 - 13*a4 - 1)" "x^6 - 2*x^5 - 9*x^4 + 15*x^3 + 23*x^2 - 23*x - 21"
"17a1" 17 323 3 1957 "(a2, a2^3 - 2*a2^2 - 4*a2 + 5, -a2^3 + a2^2 + 3*a2 - 4, -a2^3 + 2*a2^2 + 3*a2 - 8, -2*a2^3 + 4*a2^2 + 7*a2 - 11, -2*a2^3 + a2^2 + 7*a2 - 4)" "x^4 - 6*x^2 - x + 7"
"50b1" 50 325 3 12 "(a6, -a6 - 1, 0, -2, -a6 - 3, -1)" "x^2 - 3"
"163a1" 163 326 3 17844257 "(1, a4 - 1, a4^5 - 7*a4^4 + 12*a4^3 + 5*a4^2 - 16*a4 - 2, -3*a4^5 + 22*a4^4 - 40*a4^3 - 19*a4^2 + 62*a4 + 19, 3*a4^5 - 23*a4^4 + 45*a4^3 + 17*a4^2 - 73*a4 - 17, a4^5 - 8*a4^4 + 15*a4^3 + 12*a4^2 - 30*a4 - 13)" "x^6 - 11*x^5 + 40*x^4 - 41*x^3 - 47*x^2 + 71*x + 23"
"328b1" 328 328 3 788 "(0, 1/2*a4, -1/4*a4^2 + 6, 1/2*a4 + 2, -1/2*a4 - 2, -a4 - 2)" "x^3 + 4*x^2 - 24*x - 80"
"984d1" 984 328 3 12 "(0, -a2, 0, a2 + 2, a2 + 4, 0)" "x^2 + 2*x - 2"
"14a1" 14 329 3 102441812 "(a6, -a6^3 + 6*a6 - 2, 1/2*a6^5 + 1/2*a6^4 - 9/2*a6^3 - 2*a6^2 + 10*a6 - 3/2, 1, -1/2*a6^5 - 1/2*a6^4 + 9/2*a6^3 + a6^2 - 11*a6 + 15/2, -a6^5 - a6^4 + 10*a6^3 + 4*a6^2 - 26*a6 + 8)" "x^6 - 12*x^4 + 5*x^3 + 36*x^2 - 29*x + 3"
"658a1" 658 329 3 1032140 "(a5, -a5^2 + 5, a5 - 1, -1, -a5^4 + 10*a5^2 + a5 - 20, a5^3 - 2*a5^2 - 6*a5 + 11)" "x^5 - x^4 - 11*x^3 + 12*x^2 + 28*x - 33"
"331a1" 331 331 3 30653489 "(a2, -a2^6 - 3*a2^5 + 4*a2^4 + 13*a2^3 - 4*a2^2 - 9*a2 + 3, 4*a2^6 + 10*a2^5 - 19*a2^4 - 42*a2^3 + 23*a2^2 + 25*a2 - 11, -5*a2^6 - 11*a2^5 + 27*a2^4 + 45*a2^3 - 41*a2^2 - 24*a2 + 13, 8*a2^6 + 20*a2^5 - 38*a2^4 - 82*a2^3 + 48*a2^2 + 45*a2 - 20, -7*a2^6 - 17*a2^5 + 34*a2^4 + 70*a2^3 - 42*a2^2 - 38*a2 + 14)" "x^7 + 2*x^6 - 6*x^5 - 8*x^4 + 11*x^3 + 3*x^2 - 5*x + 1"
"14a1" 14 332 3 28 "(0, -1/2*a1, -1/2*a1 - 1, 1/2*a1, -1/2*a1 + 2, 1/2*a1 - 3)" "x^2 - 28"
"166a1" 166 332 3 28 "(0, -1/2*a1, -1/2*a1 - 1, 1/2*a1, -1/2*a1 + 2, 1/2*a1 - 3)" "x^2 - 28"
"14a1" 14 333 3 27648 "(a5, 0, -a5^3 + 5*a5, 2, 0, 2)" "x^4 - 6*x^2 + 3"
"14a1" 14 335 3 454756917 "(a3, -2*a3^6 + a3^5 + 23*a3^4 - 8*a3^3 - 66*a3^2 + 12*a3 + 10, -1, 2*a3^6 + 2*a3^5 - 23*a3^4 - 26*a3^3 + 61*a3^2 + 81*a3 + 20, -2*a3^5 + 22*a3^3 + 2*a3^2 - 58*a3 - 12, 3*a3^6 - 4*a3^5 - 34*a3^4 + 39*a3^3 + 100*a3^2 - 90*a3 - 34)" "x^7 - 2*x^6 - 12*x^5 + 21*x^4 + 42*x^3 - 52*x^2 - 39*x - 6"
"674a1" 674 337 3 2.36E+017 "(a0, -41/27*a0^11 - 23/3*a0^10 + 148/27*a0^9 + 679/9*a0^8 + 1208/27*a0^7 - 2122/9*a0^6 - 5621/27*a0^5 + 8552/27*a0^4 + 7303/27*a0^3 - 5185/27*a0^2 - 316/3*a0 + 124/3, 76/27*a0^11 + 40/3*a0^10 - 356/27*a0^9 - 1184/9*a0^8 - 1393/27*a0^7 + 3701/9*a0^6 + 7618/27*a0^5 - 14677/27*a0^4 - 9914/27*a0^3 + 8360/27*a0^2 + 422/3*a0 - 182/3, -49/27*a0^11 - 22/3*a0^10 + 356/27*a0^9 + 671/9*a0^8 - 362/27*a0^7 - 2189/9*a0^6 - 976/27*a0^5 + 8845/27*a0^4 + 1571/27*a0^3 - 4607/27*a0^2 - 68/3*a0 + 68/3, 2*a0^11 + 26/3*a0^10 - 13*a0^9 - 268/3*a0^8 - 3*a0^7 + 895/3*a0^6 + 107*a0^5 - 1243/3*a0^4 - 473/3*a0^3 + 683/3*a0^2 + 187/3*a0 - 37, -5/3*a0^11 - 22/3*a0^10 + 31/3*a0^9 + 224/3*a0^8 + 20/3*a0^7 - 731/3*a0^6 - 293/3*a0^5 + 976/3*a0^4 + 401/3*a0^3 - 491/3*a0^2 - 146/3*a0 + 19)" "x^12 + 6*x^11 + x^10 - 54*x^9 - 76*x^8 + 135*x^7 + 289*x^6 - 97*x^5 - 392*x^4 - 28*x^3 + 201*x^2 + 36*x - 27"
"170a1" 170 340 3 404 "(0, -1/2*a1, 1, -1/2*a1, -1/4*a1^2 + 1/2*a1 + 6, -1/4*a1^2 + a1 + 6)" "x^3 - 32*x - 32"
"11a1" 11 341 3 1.12E+019 "(a3, -7/88*a3^10 + 1/44*a3^9 + 3/2*a3^8 - 15/44*a3^7 - 867/88*a3^6 + 67/44*a3^5 + 2301/88*a3^4 - 69/44*a3^3 - 1029/44*a3^2 - 17/11*a3 + 171/88, -1/88*a3^10 - 3/44*a3^9 + 1/4*a3^8 + 45/44*a3^7 - 171/88*a3^6 - 201/44*a3^5 + 555/88*a3^4 + 229/44*a3^3 - 167/22*a3^2 + 47/22*a3 + 191/88, 13/88*a3^10 + 3/22*a3^9 - 11/4*a3^8 - 28/11*a3^7 + 1563/88*a3^6 + 721/44*a3^5 - 4091/88*a3^4 - 933/22*a3^3 + 464/11*a3^2 + 1627/44*a3 - 107/88, 1, 3/88*a3^10 + 9/44*a3^9 - 3/4*a3^8 - 157/44*a3^7 + 513/88*a3^6 + 933/44*a3^5 - 1621/88*a3^4 - 2183/44*a3^3 + 201/11*a3^2 + 827/22*a3 + 219/88)" "x^11 - x^10 - 20*x^9 + 20*x^8 + 141*x^7 - 135*x^6 - 421*x^5 + 347*x^4 + 530*x^3 - 288*x^2 - 239*x + 17"
"14a1" 14 341 3 924424326976 "(a2, 1/4*a2^7 - 1/4*a2^6 - 13/4*a2^5 + 5/2*a2^4 + 51/4*a2^3 - 25/4*a2^2 - 55/4*a2 + 1, -1/2*a2^4 + 1/2*a2^3 + 3*a2^2 - 5/2*a2 - 3/2, -1/4*a2^6 + 1/4*a2^5 + 9/4*a2^4 - 3/2*a2^3 - 19/4*a2^2 + 1/4*a2 + 11/4, -1, 1/2*a2^5 - 1/2*a2^4 - 5*a2^3 + 5/2*a2^2 + 23/2*a2 + 2)" "x^8 - x^7 - 14*x^6 + 11*x^5 + 60*x^4 - 31*x^3 - 74*x^2 + 5*x + 3"
"1032a1" 1032 344 3 12 "(0, -a1, a1 - 2, a1 - 2, -3, -3)" "x^2 - 2*x - 2"
"14a1" 14 345 3 24 "(a8, 1, -1, -1, -a8, -a8 + 2)" "x^2 - 6"
"15a1" 15 345 3 12 "(a6, -1, 1, -3, a6, -3*a6 - 2)" "x^2 + 2*x - 2"
"1038b1" 1038 346 3 2075621 "(1, 1/2*a4 - 1/2, -1/32*a4^4 + 1/16*a4^3 + 3/4*a4^2 - 21/16*a4 + 17/32, 1/32*a4^4 - 1/16*a4^3 - a4^2 + 21/16*a4 + 151/32, 1/4*a4^2 - 1/2*a4 - 15/4, 1/8*a4^3 + 1/8*a4^2 - 25/8*a4 - 9/8)" "x^5 + x^4 - 46*x^3 - 46*x^2 + 509*x + 477"
"700h1" 700 350 3 24 "(1, -1/2*a7 + 1/2, 0, 1, a7 - 1, 1/2*a7 - 5/2)" "x^2 - 2*x - 23"
7.00E+003 700 350 3 24 "(-1, 1/2*a6 + 1/2, 0, -1, a6 + 1, -1/2*a6 + 3/2)" "x^2 + 2*x - 23"
"14a1" 14 351 3 13 "(a0, 0, -a0 - 3, -1, a0, 1)" "x^2 + x - 3"
"14a1" 14 351 3 65712 "(a5, 0, -a5^3 + 6*a5, 2, -2*a5, 1)" "x^4 - 7*x^2 + 3"
"14a1" 14 351 3 13 "(a3, 0, -a3 + 3, -1, a3, 1)" "x^2 - x - 3"
"39a1" 39 351 3 13 "(a3, 0, -a3 + 3, -1, a3, 1)" "x^2 - x - 3"
"39a1" 39 351 3 65712 "(a5, 0, -a5^3 + 6*a5, 2, -2*a5, 1)" "x^4 - 7*x^2 + 3"
"117a1" 117 351 3 13 "(a0, 0, -a0 - 3, -1, a0, 1)" "x^2 + x - 3"
"117a1" 117 351 3 65712 "(a5, 0, -a5^3 + 6*a5, 2, -2*a5, 1)" "x^4 - 7*x^2 + 3"
"353a1" 353 353 3 1.35E+025 "(a3, 1/8*a3^13 - 7/8*a3^12 - 9/8*a3^11 + 65/4*a3^10 - 55/8*a3^9 - 855/8*a3^8 + 405/4*a3^7 + 2405/8*a3^6 - 2763/8*a3^5 - 2871/8*a3^4 + 3453/8*a3^3 + 1145/8*a3^2 - 1245/8*a3 - 75/8, 7/4*a3^13 - 25/4*a3^12 - 103/4*a3^11 + 221/2*a3^10 + 415/4*a3^9 - 2793/4*a3^8 + 89/2*a3^7 + 7619/4*a3^6 - 3777/4*a3^5 - 8801/4*a3^4 + 6115/4*a3^3 + 3263/4*a3^2 - 2347/4*a3 - 121/4, 3/8*a3^13 - 13/8*a3^12 - 39/8*a3^11 + 113/4*a3^10 + 99/8*a3^9 - 1409/8*a3^8 + 253/4*a3^7 + 3815/8*a3^6 - 2637/8*a3^5 - 4409/8*a3^4 + 3663/8*a3^3 + 1667/8*a3^2 - 1371/8*a3 - 53/8, -1/2*a3^13 + 3/2*a3^12 + 15/2*a3^11 - 25*a3^10 - 71/2*a3^9 + 299/2*a3^8 + 41*a3^7 - 777/2*a3^6 + 191/2*a3^5 + 853/2*a3^4 - 443/2*a3^3 - 293/2*a3^2 + 191/2*a3 + 9/2, 5/4*a3^13 - 15/4*a3^12 - 81/4*a3^11 + 135/2*a3^10 + 417/4*a3^9 - 1735/4*a3^8 - 287/2*a3^7 + 4805/4*a3^6 - 927/4*a3^5 - 5623/4*a3^4 + 2489/4*a3^3 + 2093/4*a3^2 - 1073/4*a3 - 59/4)" "x^14 - 4*x^13 - 14*x^12 + 71*x^11 + 47*x^10 - 452*x^9 + 101*x^8 + 1251*x^7 - 740*x^6 - 1488*x^5 + 1096*x^4 + 600*x^3 - 410*x^2 - 42*x - 1"
"710a1" 710 355 3 1957 "(a1, -a1^3 - 3*a1^2 + 2, 1, a1^3 + 4*a1^2 + 2*a1 - 5, a1^3 + a1^2 - 5*a1 - 2, 2*a1^3 + 5*a1^2 - 4*a1 - 10)" "x^4 + 4*x^3 + 2*x^2 - 5*x - 3"
"14a1" 14 356 3 49413201792 "(0, a1, -46/73*a1^6 - 6/73*a1^5 + 799/73*a1^4 + 126/73*a1^3 - 3888/73*a1^2 - 552/73*a1 + 4734/73, 28/73*a1^6 + 10/73*a1^5 - 480/73*a1^4 - 137/73*a1^3 + 2246/73*a1^2 + 409/73*a1 - 2488/73, 37/73*a1^6 + 8/73*a1^5 - 676/73*a1^4 - 168/73*a1^3 + 3505/73*a1^2 + 736/73*a1 - 4414/73, -1/73*a1^6 - 16/73*a1^5 + 38/73*a1^4 + 190/73*a1^3 - 367/73*a1^2 - 450/73*a1 + 944/73)" "x^7 - x^6 - 18*x^5 + 18*x^4 + 93*x^3 - 95*x^2 - 126*x + 134"
"21a1" 21 357 3 12 "(a4, 1, -a4 - 3, -1, -5, 3*a4 + 1)" "x^2 + 2*x - 2"
"358a1" 358 358 3 21 "(-1, -a2 - 1, 3, 1, -1, a2)" "x^2 + 3*x - 3"
"718a1" 718 359 3 7.50E+050 "(a3, -1602259971281292311414/235747603462801695253721*a3^23 + 2535070199865138113860/235747603462801695253721*a3^22 + 58364780315011524436024/235747603462801695253721*a3^21 - 87316532202790041766744/235747603462801695253721*a3^20 - 914060976817924221583118/235747603462801695253721*a3^19 + 1264665868878600575782134/235747603462801695253721*a3^18 + 8088919438943353164191194/235747603462801695253721*a3^17 - 10018516587867869759577110/235747603462801695253721*a3^16 - 44752146629281025763159134/235747603462801695253721*a3^15 + 47225317260747136454940921/235747603462801695253721*a3^14 + 161849990574404999407680046/235747603462801695253721*a3^13 - 134535096935674829898945662/235747603462801695253721*a3^12 - 388545929698346391432449898/235747603462801695253721*a3^11 + 222408874791265956416071774/235747603462801695253721*a3^10 + 613906725607214891686644074/235747603462801695253721*a3^9 - 183651607254654342889069074/235747603462801695253721*a3^8 - 613267952857175869139934302/235747603462801695253721*a3^7 + 28535102178044191495017546/235747603462801695253721*a3^6 + 351940465805991912886831381/235747603462801695253721*a3^5 + 51026380098522174374104544/235747603462801695253721*a3^4 - 93412339482037596682677712/235747603462801695253721*a3^3 - 21883690704068331298381066/235747603462801695253721*a3^2 + 6227221811979044886354542/235747603462801695253721*a3 + 1026953395498779305597052/235747603462801695253721, 2845845013662546464739/235747603462801695253721*a3^23 - 2447792018482001570617/235747603462801695253721*a3^22 - 101596799773264261973636/235747603462801695253721*a3^21 + 76404212950225242413899/235747603462801695253721*a3^20 + 1547314517788223949714671/235747603462801695253721*a3^19 - 958236983994120443104695/235747603462801695253721*a3^18 - 13158464440448911424043463/235747603462801695253721*a3^17 + 6045500883849570828566849/235747603462801695253721*a3^16 + 68676383557081059207753001/235747603462801695253721*a3^15 - 18699558052070012014843887/235747603462801695253721*a3^14 - 227537807635293992915686339/235747603462801695253721*a3^13 + 14267359498739287105320709/235747603462801695253721*a3^12 + 477170573176822561669772612/235747603462801695253721*a3^11 + 73651738052628121096722953/235747603462801695253721*a3^10 - 607737947281787201499665289/235747603462801695253721*a3^9 - 210728066092986939219944726/235747603462801695253721*a3^8 + 422157970536179111909121713/235747603462801695253721*a3^7 + 191589646943914323560838765/235747603462801695253721*a3^6 - 123363657169095027209115171/235747603462801695253721*a3^5 - 38101634714152134188816408/235747603462801695253721*a3^4 + 10517562601958539988713856/235747603462801695253721*a3^3 - 10255503074075539732514609/235747603462801695253721*a3^2 - 1342706028625085600442226/235747603462801695253721*a3 + 969740879854942598224584/235747603462801695253721, -3140151164664093291007/235747603462801695253721*a3^23 + 458407022175633631052/235747603462801695253721*a3^22 + 119861803682872242733257/235747603462801695253721*a3^21 - 13204876435189221365070/235747603462801695253721*a3^20 - 1971607964340997034402034/235747603462801695253721*a3^19 + 133775356305913808218979/235747603462801695253721*a3^18 + 18310581440368569048285533/235747603462801695253721*a3^17 - 352867661979863664045897/235747603462801695253721*a3^16 - 105662090233093338945990217/235747603462801695253721*a3^15 - 3726267360428420153376431/235747603462801695253721*a3^14 + 392794100154810843180147811/235747603462801695253721*a3^13 + 37512623181767439350164961/235747603462801695253721*a3^12 - 943599597386818461978694935/235747603462801695253721*a3^11 - 152026494955699155837468431/235747603462801695253721*a3^10 + 1430721336441804888988900597/235747603462801695253721*a3^9 + 330558417519231746815222453/235747603462801695253721*a3^8 - 1298840875371663911768671473/235747603462801695253721*a3^7 - 391342160018673505469509525/235747603462801695253721*a3^6 + 644841998130504491198834599/235747603462801695253721*a3^5 + 231650733011752018906928272/235747603462801695253721*a3^4 - 151714295960640239955706559/235747603462801695253721*a3^3 - 57209110453375976111844952/235747603462801695253721*a3^2 + 11761368072815550434303905/235747603462801695253721*a3 + 3282214419272575620760487/235747603462801695253721, -4975284508894749084208/235747603462801695253721*a3^23 - 1885966507969865227747/235747603462801695253721*a3^22 + 202871705177743937677709/235747603462801695253721*a3^21 + 57657250969201435183432/235747603462801695253721*a3^20 - 3572612192677847926059913/235747603462801695253721*a3^19 - 713445715874446701682734/235747603462801695253721*a3^18 + 35574947430300041328981156/235747603462801695253721*a3^17 + 4544314139729983484447578/235747603462801695253721*a3^16 - 220318208812274214800729346/235747603462801695253721*a3^15 - 15580417016815457449090158/235747603462801695253721*a3^14 + 879668055335024691681716618/235747603462801695253721*a3^13 + 27557935985880445312401597/235747603462801695253721*a3^12 - 2272637286075763627424768130/235747603462801695253721*a3^11 - 28381090590019355374659958/235747603462801695253721*a3^10 + 3717217345612673115843299966/235747603462801695253721*a3^9 + 61193565040696548170447242/235747603462801695253721*a3^8 - 3661787458291825325700175535/235747603462801695253721*a3^7 - 154254833078233761269112182/235747603462801695253721*a3^6 + 1977285409091483549444642116/235747603462801695253721*a3^5 + 159607236095480214549743126/235747603462801695253721*a3^4 - 481041123485813689228832701/235747603462801695253721*a3^3 - 56130468072617860810445281/235747603462801695253721*a3^2 + 29473816041248689534163004/235747603462801695253721*a3 + 3991312265997797979503931/235747603462801695253721, 969380424784224618619/235747603462801695253721*a3^23 + 2508674814477409255825/235747603462801695253721*a3^22 - 47373563549591843668231/235747603462801695253721*a3^21 - 76650330316937868506021/235747603462801695253721*a3^20 + 958664243632398123401039/235747603462801695253721*a3^19 + 934340141759355758848092/235747603462801695253721*a3^18 - 10598593469475775120973006/235747603462801695253721*a3^17 - 5634251907961684292013102/235747603462801695253721*a3^16 + 70648362996302155076127230/235747603462801695253721*a3^15 + 15726708240508670322130004/235747603462801695253721*a3^14 - 294320866160295633335209924/235747603462801695253721*a3^13 - 3101983071604815217852166/235747603462801695253721*a3^12 + 766121724422905387651600722/235747603462801695253721*a3^11 - 96123344447668685089673852/235747603462801695253721*a3^10 - 1208216440193682290415559912/235747603462801695253721*a3^9 + 237982646258405001874239702/235747603462801695253721*a3^8 + 1080645208142704411800453810/235747603462801695253721*a3^7 - 229895213862721708873530460/235747603462801695253721*a3^6 - 486411162012764409954826960/235747603462801695253721*a3^5 + 92450869102871749010500757/235747603462801695253721*a3^4 + 86734285593739853642787003/235747603462801695253721*a3^3 - 15179139862623490132348579/235747603462801695253721*a3^2 - 1912808202391911782131331/235747603462801695253721*a3 + 1349430867283171232987307/235747603462801695253721)" "x^24 - x^23 - 39*x^22 + 38*x^21 + 658*x^20 - 619*x^19 - 6300*x^18 + 5654*x^17 + 37740*x^16 - 31780*x^15 - 147096*x^14 + 113400*x^13 + 376092*x^12 - 255412*x^11 - 621508*x^10 + 349080*x^9 + 638532*x^8 - 266744*x^7 - 378124*x^6 + 98609*x^5 + 110695*x^4 - 14509*x^3 - 11972*x^2 + 780*x + 381"
"1077c1" 1077 359 3 7.50E+050 "(a3, -1602259971281292311414/235747603462801695253721*a3^23 + 2535070199865138113860/235747603462801695253721*a3^22 + 58364780315011524436024/235747603462801695253721*a3^21 - 87316532202790041766744/235747603462801695253721*a3^20 - 914060976817924221583118/235747603462801695253721*a3^19 + 1264665868878600575782134/235747603462801695253721*a3^18 + 8088919438943353164191194/235747603462801695253721*a3^17 - 10018516587867869759577110/235747603462801695253721*a3^16 - 44752146629281025763159134/235747603462801695253721*a3^15 + 47225317260747136454940921/235747603462801695253721*a3^14 + 161849990574404999407680046/235747603462801695253721*a3^13 - 134535096935674829898945662/235747603462801695253721*a3^12 - 388545929698346391432449898/235747603462801695253721*a3^11 + 222408874791265956416071774/235747603462801695253721*a3^10 + 613906725607214891686644074/235747603462801695253721*a3^9 - 183651607254654342889069074/235747603462801695253721*a3^8 - 613267952857175869139934302/235747603462801695253721*a3^7 + 28535102178044191495017546/235747603462801695253721*a3^6 + 351940465805991912886831381/235747603462801695253721*a3^5 + 51026380098522174374104544/235747603462801695253721*a3^4 - 93412339482037596682677712/235747603462801695253721*a3^3 - 21883690704068331298381066/235747603462801695253721*a3^2 + 6227221811979044886354542/235747603462801695253721*a3 + 1026953395498779305597052/235747603462801695253721, 2845845013662546464739/235747603462801695253721*a3^23 - 2447792018482001570617/235747603462801695253721*a3^22 - 101596799773264261973636/235747603462801695253721*a3^21 + 76404212950225242413899/235747603462801695253721*a3^20 + 1547314517788223949714671/235747603462801695253721*a3^19 - 958236983994120443104695/235747603462801695253721*a3^18 - 13158464440448911424043463/235747603462801695253721*a3^17 + 6045500883849570828566849/235747603462801695253721*a3^16 + 68676383557081059207753001/235747603462801695253721*a3^15 - 18699558052070012014843887/235747603462801695253721*a3^14 - 227537807635293992915686339/235747603462801695253721*a3^13 + 14267359498739287105320709/235747603462801695253721*a3^12 + 477170573176822561669772612/235747603462801695253721*a3^11 + 73651738052628121096722953/235747603462801695253721*a3^10 - 607737947281787201499665289/235747603462801695253721*a3^9 - 210728066092986939219944726/235747603462801695253721*a3^8 + 422157970536179111909121713/235747603462801695253721*a3^7 + 191589646943914323560838765/235747603462801695253721*a3^6 - 123363657169095027209115171/235747603462801695253721*a3^5 - 38101634714152134188816408/235747603462801695253721*a3^4 + 10517562601958539988713856/235747603462801695253721*a3^3 - 10255503074075539732514609/235747603462801695253721*a3^2 - 1342706028625085600442226/235747603462801695253721*a3 + 969740879854942598224584/235747603462801695253721, -3140151164664093291007/235747603462801695253721*a3^23 + 458407022175633631052/235747603462801695253721*a3^22 + 119861803682872242733257/235747603462801695253721*a3^21 - 13204876435189221365070/235747603462801695253721*a3^20 - 1971607964340997034402034/235747603462801695253721*a3^19 + 133775356305913808218979/235747603462801695253721*a3^18 + 18310581440368569048285533/235747603462801695253721*a3^17 - 352867661979863664045897/235747603462801695253721*a3^16 - 105662090233093338945990217/235747603462801695253721*a3^15 - 3726267360428420153376431/235747603462801695253721*a3^14 + 392794100154810843180147811/235747603462801695253721*a3^13 + 37512623181767439350164961/235747603462801695253721*a3^12 - 943599597386818461978694935/235747603462801695253721*a3^11 - 152026494955699155837468431/235747603462801695253721*a3^10 + 1430721336441804888988900597/235747603462801695253721*a3^9 + 330558417519231746815222453/235747603462801695253721*a3^8 - 1298840875371663911768671473/235747603462801695253721*a3^7 - 391342160018673505469509525/235747603462801695253721*a3^6 + 644841998130504491198834599/235747603462801695253721*a3^5 + 231650733011752018906928272/235747603462801695253721*a3^4 - 151714295960640239955706559/235747603462801695253721*a3^3 - 57209110453375976111844952/235747603462801695253721*a3^2 + 11761368072815550434303905/235747603462801695253721*a3 + 3282214419272575620760487/235747603462801695253721, -4975284508894749084208/235747603462801695253721*a3^23 - 1885966507969865227747/235747603462801695253721*a3^22 + 202871705177743937677709/235747603462801695253721*a3^21 + 57657250969201435183432/235747603462801695253721*a3^20 - 3572612192677847926059913/235747603462801695253721*a3^19 - 713445715874446701682734/235747603462801695253721*a3^18 + 35574947430300041328981156/235747603462801695253721*a3^17 + 4544314139729983484447578/235747603462801695253721*a3^16 - 220318208812274214800729346/235747603462801695253721*a3^15 - 15580417016815457449090158/235747603462801695253721*a3^14 + 879668055335024691681716618/235747603462801695253721*a3^13 + 27557935985880445312401597/235747603462801695253721*a3^12 - 2272637286075763627424768130/235747603462801695253721*a3^11 - 28381090590019355374659958/235747603462801695253721*a3^10 + 3717217345612673115843299966/235747603462801695253721*a3^9 + 61193565040696548170447242/235747603462801695253721*a3^8 - 3661787458291825325700175535/235747603462801695253721*a3^7 - 154254833078233761269112182/235747603462801695253721*a3^6 + 1977285409091483549444642116/235747603462801695253721*a3^5 + 159607236095480214549743126/235747603462801695253721*a3^4 - 481041123485813689228832701/235747603462801695253721*a3^3 - 56130468072617860810445281/235747603462801695253721*a3^2 + 29473816041248689534163004/235747603462801695253721*a3 + 3991312265997797979503931/235747603462801695253721, 969380424784224618619/235747603462801695253721*a3^23 + 2508674814477409255825/235747603462801695253721*a3^22 - 47373563549591843668231/235747603462801695253721*a3^21 - 76650330316937868506021/235747603462801695253721*a3^20 + 958664243632398123401039/235747603462801695253721*a3^19 + 934340141759355758848092/235747603462801695253721*a3^18 - 10598593469475775120973006/235747603462801695253721*a3^17 - 5634251907961684292013102/235747603462801695253721*a3^16 + 70648362996302155076127230/235747603462801695253721*a3^15 + 15726708240508670322130004/235747603462801695253721*a3^14 - 294320866160295633335209924/235747603462801695253721*a3^13 - 3101983071604815217852166/235747603462801695253721*a3^12 + 766121724422905387651600722/235747603462801695253721*a3^11 - 96123344447668685089673852/235747603462801695253721*a3^10 - 1208216440193682290415559912/235747603462801695253721*a3^9 + 237982646258405001874239702/235747603462801695253721*a3^8 + 1080645208142704411800453810/235747603462801695253721*a3^7 - 229895213862721708873530460/235747603462801695253721*a3^6 - 486411162012764409954826960/235747603462801695253721*a3^5 + 92450869102871749010500757/235747603462801695253721*a3^4 + 86734285593739853642787003/235747603462801695253721*a3^3 - 15179139862623490132348579/235747603462801695253721*a3^2 - 1912808202391911782131331/235747603462801695253721*a3 + 1349430867283171232987307/235747603462801695253721)" "x^24 - x^23 - 39*x^22 + 38*x^21 + 658*x^20 - 619*x^19 - 6300*x^18 + 5654*x^17 + 37740*x^16 - 31780*x^15 - 147096*x^14 + 113400*x^13 + 376092*x^12 - 255412*x^11 - 621508*x^10 + 349080*x^9 + 638532*x^8 - 266744*x^7 - 378124*x^6 + 98609*x^5 + 110695*x^4 - 14509*x^3 - 11972*x^2 + 780*x + 381"
"14a1" 14 361 3 81 "(a6, a6^2 + 2*a6 - 2, -a6^2 - 2*a6, -a6 - 1, a6^2 + 3*a6, -a6^2 - 4*a6 - 1)" "x^3 + 3*x^2 - 3"
"361b1" 361 361 3 81 "(a7, -a7^2 + 2*a7 + 2, -a7^2 + 2*a7, a7 - 1, a7^2 - 3*a7, a7^2 - 4*a7 + 1)" "x^3 - 3*x^2 + 3"
"14a1" 14 362 3 864824 "(-1, 1/2*a4 + 1/2, 1/16*a4^4 - 1/8*a4^3 - 3/2*a4^2 + 13/8*a4 + 95/16, -1/8*a4^3 + 1/8*a4^2 + 17/8*a4 - 1/8, 1/8*a4^3 - 3/8*a4^2 - 17/8*a4 + 43/8, -1/16*a4^4 + 1/8*a4^3 + 3/2*a4^2 - 13/8*a4 - 63/16)" "x^5 - 3*x^4 - 30*x^3 + 74*x^2 + 205*x - 439"
"1810b1" 1810 362 3 5673845 "(1, -1/2*a5 + 1/2, -1/32*a5^4 + 1/8*a5^3 + 15/16*a5^2 - 19/8*a5 - 117/32, 1/32*a5^4 - 1/8*a5^3 - 15/16*a5^2 + 19/8*a5 + 149/32, -1/4*a5^2 + a5 + 21/4, 1/32*a5^4 - 1/4*a5^3 - 17/16*a5^2 + 15/2*a5 + 313/32)" "x^5 - 5*x^4 - 42*x^3 + 122*x^2 + 505*x + 315"
"121b1" 121 363 3 12 "(a5, -1, -3, -2*a5, 0, -a5)" "x^2 - 3"
"14a1" 14 364 3 12 "(0, -1/2*a3, 1/2*a3 + 1, 1, 1/2*a3 + 4, 1)" "x^2 + 4*x - 8"
"26b1" 26 364 3 24 "(0, -1/2*a2, -1/2*a2 - 1, -1, 1/2*a2 + 4, -1)" "x^2 - 24"
"14a1" 14 365 3 1050324147376 "(a4, -1/2*a4^5 + 1/2*a4^4 + 9/2*a4^3 - 3*a4^2 - 8*a4 + 5/2, -1, 1/2*a4^7 - 1/2*a4^6 - 5*a4^5 + 7/2*a4^4 + 23/2*a4^3 - 9/2*a4^2 - 3*a4 + 7/2, -1/4*a4^7 + 5/4*a4^6 + 3/2*a4^5 - 45/4*a4^4 - 1/4*a4^3 + 87/4*a4^2 + a4 - 15/4, 1/2*a4^6 - 1/2*a4^5 - 9/2*a4^4 + 3*a4^3 + 8*a4^2 - 5/2*a4 + 2)" "x^8 - 2*x^7 - 11*x^6 + 19*x^5 + 36*x^4 - 46*x^3 - 41*x^2 + 25*x + 3"
"730d1" 730 365 3 12 "(a0, 2, 1, -a0 + 3, -a0 - 3, 2*a0)" "x^2 - 3"
"730d1" 730 365 3 1771745264 "(a3, -1/2*a3^5 - 1/2*a3^4 + 5/2*a3^3 + 2*a3^2 + 2*a3 + 1/2, 1, a3^5 + 2*a3^4 - 6*a3^3 - 11*a3^2 + 3*a3 + 3, -1/2*a3^5 - 3/2*a3^4 + 5/2*a3^3 + 8*a3^2 + a3 + 3/2, -1/2*a3^6 - 1/2*a3^5 + 13/2*a3^4 + 4*a3^3 - 22*a3^2 - 11/2*a3 + 6)" "x^7 + x^6 - 12*x^5 - 9*x^4 + 39*x^3 + 19*x^2 - 16*x - 3"
"185b1" 185 370 3 33 "(1, 2, 1, -1/2*a5 + 1/2, 1/2*a5 - 5/2, a5 - 3)" "x^2 - 8*x - 17"
"185b1" 185 370 3 12 "(-1, -a4 - 1, 1, a4 - 3, 2*a4 - 2, 2*a4 - 2)" "x^2 - 3"
"14a1" 14 371 3 3.08E+018 "(a5, 3/4*a5^10 + 3/8*a5^9 - 121/8*a5^8 - 53/8*a5^7 + 215/2*a5^6 + 313/8*a5^5 - 2513/8*a5^4 - 715/8*a5^3 + 315*a5^2 + 127/2*a5 - 38, -1/2*a5^10 - 1/4*a5^9 + 10*a5^8 + 9/2*a5^7 - 281/4*a5^6 - 109/4*a5^5 + 403/2*a5^4 + 129/2*a5^3 - 779/4*a5^2 - 97/2*a5 + 21, 1, 3*a5^10 + 3/2*a5^9 - 243/4*a5^8 - 107/4*a5^7 + 1733/4*a5^6 + 160*a5^5 - 5065/4*a5^4 - 1487/4*a5^3 + 5027/4*a5^2 + 271*a5 - 144, -13/8*a5^10 - 7/8*a5^9 + 263/8*a5^8 + 31/2*a5^7 - 1875/8*a5^6 - 735/8*a5^5 + 5485/8*a5^4 + 841/4*a5^3 - 1365/2*a5^2 - 148*a5 + 80)" "x^11 + x^10 - 20*x^9 - 19*x^8 + 140*x^7 + 125*x^6 - 396*x^5 - 333*x^4 + 359*x^3 + 298*x^2 - 4*x - 24"
"14a1" 14 374 3 55585 "(-1, -a3 - 1, a3^2 + 2*a3 - 3, a3^3 + a3^2 - 8*a3 + 2, 1, -2*a3^3 - 4*a3^2 + 11*a3 + 3)" "x^4 + 5*x^3 - x^2 - 22*x - 1"
"14a1" 14 374 3 785 "(-1, 1/2*a1 + 1/2, -1/4*a1^2 - 1/2*a1 + 15/4, -1/4*a1^2 + 21/4, -1, 1/2*a1 + 9/2)" "x^3 + 5*x^2 - 17*x - 61"
"14a1" 14 374 3 257 "(1, 1/2*a2 - 1/2, -1/4*a2^2 + 1/2*a2 + 15/4, 1/4*a2^2 - a2 - 1/4, -1, -1/2*a2 + 1/2)" "x^3 - 9*x^2 + 7*x + 57"
"14a1" 14 377 3 85823052923200 "(a5, 3/4*a5^8 - 37/4*a5^6 + 133/4*a5^4 - 1/4*a5^3 - 31*a5^2 - 17/4*a5 + 7/4, 1/2*a5^8 - 13/2*a5^6 + 51/2*a5^4 - 1/2*a5^3 - 29*a5^2 - 1/2*a5 + 9/2, -1/4*a5^8 - 1/2*a5^7 + 13/4*a5^6 + 6*a5^5 - 51/4*a5^4 - 83/4*a5^3 + 15*a5^2 + 75/4*a5 + 5/4, -1/2*a5^8 + 13/2*a5^6 - a5^5 - 49/2*a5^4 + 15/2*a5^3 + 23*a5^2 - 11/2*a5 - 3/2, 1)" "x^9 - x^8 - 13*x^7 + 13*x^6 + 51*x^5 - 50*x^4 - 59*x^3 + 45*x^2 + 20*x - 3"
"754d1" 754 377 3 12 "(a1, a1 + 1, -2*a1, a1 + 3, 2, -1)" "x^2 - 3"
"754d1" 754 377 3 1326502796 "(a4, -a4^6 + 2*a4^5 + 8*a4^4 - 15*a4^3 - 7*a4^2 + 8*a4 + 1, -a4^6 + 2*a4^5 + 8*a4^4 - 15*a4^3 - 7*a4^2 + 9*a4, 4*a4^6 - 3*a4^5 - 40*a4^4 + 16*a4^3 + 83*a4^2 + 28*a4 - 6, -5*a4^6 + 5*a4^5 + 49*a4^4 - 32*a4^3 - 97*a4^2 - 13*a4 + 11, -1)" "x^7 - 3*x^6 - 8*x^5 + 26*x^4 + 9*x^3 - 36*x^2 - 14*x + 3"
"1131a1" 1131 377 3 36497 "(a3, a3^3 - 3*a3, -a3^3 - 2*a3^2 + 2*a3 + 3, -a3^4 - a3^3 + 4*a3^2 + 2*a3 - 5, a3^3 + 3*a3^2 - 2*a3 - 5, -1)" "x^5 + x^4 - 5*x^3 - 3*x^2 + 6*x + 1"
"1885d1" 1885 377 3 202817 "(a2, -2*a2^4 - 5*a2^3 + 8*a2^2 + 21*a2 + 6, 2*a2^4 + 5*a2^3 - 8*a2^2 - 22*a2 - 7, a2^4 + 3*a2^3 - 4*a2^2 - 14*a2 - 7, -a2^3 - a2^2 + 4*a2 + 1, 1)" "x^5 + 3*x^4 - 3*x^3 - 13*x^2 - 8*x - 1"
"14a1" 14 379 3 2.42E+034 "(a1, 239646933/1793175190*a1^17 - 484282877/1793175190*a1^16 - 2918698602/896587595*a1^15 + 10920077991/1793175190*a1^14 + 29192188967/896587595*a1^13 - 49015280444/896587595*a1^12 - 309792337413/1793175190*a1^11 + 446493548451/1793175190*a1^10 + 468794375957/896587595*a1^9 - 217714639577/358635038*a1^8 - 160785930047/179317519*a1^7 + 690161150041/896587595*a1^6 + 143607053551/179317519*a1^5 - 825796553337/1793175190*a1^4 - 265893375512/896587595*a1^3 + 37055169135/358635038*a1^2 + 15664352337/896587595*a1 - 3492196834/896587595, -587362301/3586350380*a1^17 + 1362705089/3586350380*a1^16 + 3490982682/896587595*a1^15 - 31159994897/3586350380*a1^14 - 33784895822/896587595*a1^13 + 142584136593/1793175190*a1^12 + 685645325291/3586350380*a1^11 - 1335062480207/3586350380*a1^10 - 975760111749/1793175190*a1^9 + 678126786911/717270076*a1^8 + 306882475889/358635038*a1^7 - 2287907721217/1793175190*a1^6 - 239276091071/358635038*a1^5 + 2998847142899/3586350380*a1^4 + 164405587057/896587595*a1^3 - 149169579219/717270076*a1^2 + 15788512921/1793175190*a1 + 5934308694/896587595, 345660171/1793175190*a1^17 - 702742249/1793175190*a1^16 - 4120088259/896587595*a1^15 + 15812721467/1793175190*a1^14 + 40042452629/896587595*a1^13 - 70877456353/896587595*a1^12 - 409354057071/1793175190*a1^11 + 645708072847/1793175190*a1^10 + 591085357224/896587595*a1^9 - 315794194981/358635038*a1^8 - 191825947930/179317519*a1^7 + 1008875577592/896587595*a1^6 + 161672018357/179317519*a1^5 - 1220808555709/1793175190*a1^4 - 287618713729/896587595*a1^3 + 54423378047/358635038*a1^2 + 20699218389/896587595*a1 - 4083266708/896587595, -132736008/896587595*a1^17 + 285175122/896587595*a1^16 + 3108067204/896587595*a1^15 - 6410410811/896587595*a1^14 - 29427805654/896587595*a1^13 + 57409574768/896587595*a1^12 + 144807378128/896587595*a1^11 - 261431891741/896587595*a1^10 - 395843560339/896587595*a1^9 + 128154480581/179317519*a1^8 + 118727431138/179317519*a1^7 - 826932759102/896587595*a1^6 - 88759808824/179317519*a1^5 + 515880487037/896587595*a1^4 + 120250963559/896587595*a1^3 - 25509324900/179317519*a1^2 + 6461272046/896587595*a1 + 6332734098/896587595, -30264879/896587595*a1^17 - 6594934/896587595*a1^16 + 870582572/896587595*a1^15 + 230342647/896587595*a1^14 - 10275736617/896587595*a1^13 - 3222650196/896587595*a1^12 + 63928825349/896587595*a1^11 + 23296598632/896587595*a1^10 - 223604548322/896587595*a1^9 - 18609033847/179317519*a1^8 + 86531089630/179317519*a1^7 + 202344819449/896587595*a1^6 - 84643457170/179317519*a1^5 - 218774233984/896587595*a1^4 + 171397060597/896587595*a1^3 + 18772501151/179317519*a1^2 - 16314528032/896587595*a1 - 4256662976/896587595)" "x^18 - 3*x^17 - 22*x^16 + 69*x^15 + 190*x^14 - 638*x^13 - 807*x^12 + 3041*x^11 + 1680*x^10 - 7967*x^9 - 1220*x^8 + 11334*x^7 - 1006*x^6 - 8079*x^5 + 1938*x^4 + 2287*x^3 - 752*x^2 - 68*x + 24"
"14a1" 14 380 3 12 "(0, a3, 1, 2, -2*a3 + 2, -a3)" "x^2 - 2*x - 2"
"1149a1" 1149 383 3 3151861 "(a1, a1^5 + 2*a1^4 - 5*a1^3 - 8*a1^2 + 5*a1 + 5, -a1^5 - 2*a1^4 + 5*a1^3 + 8*a1^2 - 6*a1 - 6, -a1^5 - 2*a1^4 + 5*a1^3 + 7*a1^2 - 6*a1 - 4, a1^5 + 3*a1^4 - 4*a1^3 - 12*a1^2 + 4*a1 + 5, -2*a1^5 - 5*a1^4 + 8*a1^3 + 18*a1^2 - 7*a1 - 11)" "x^6 + 3*x^5 - 3*x^4 - 12*x^3 - x^2 + 8*x + 3"
"14a1" 14 385 3 12 "(a2, a2 + 1, -1, 1, -1, a2 - 1)" "x^2 - 3"
"14a1" 14 386 3 154544336 "(-1, -a2 - 1, 1/2*a2^5 + 5/2*a2^4 - 1/2*a2^3 - 19/2*a2^2 + 3/2*a2 + 5/2, a2^4 + 5*a2^3 - 15*a2 + 5, -a2^4 - 5*a2^3 - a2^2 + 12*a2 - 2, -1/2*a2^5 - 3*a2^4 - 5/2*a2^3 + 6*a2^2 + 3/2*a2 + 2)" "x^6 + 7*x^5 + 8*x^4 - 25*x^3 - 28*x^2 + 35*x - 1"
"14a1" 14 387 3 12 "(0, 0, -1/2*a7, 2, 3/4*a7, 5)" "x^2 - 48"
"194a1" 194 388 3 928652 "(0, 1/2*a1, -1/8*a1^3 + 1/4*a1^2 + 5/2*a1 - 2, 1/32*a1^4 - 9/8*a1^2 - 1/4*a1 + 8, 1/8*a1^3 - 1/4*a1^2 - 5/2*a1 + 4, -1/16*a1^4 + 2*a1^2 + 1/2*a1 - 10)" "x^5 - 4*x^4 - 36*x^3 + 120*x^2 + 320*x - 768"
"14a1" 14 391 3 17083750550464 "(a3, -1/4*a3^8 + 1/4*a3^7 + 7/2*a3^6 - 5/2*a3^5 - 33/2*a3^4 + 7*a3^3 + 57/2*a3^2 - 19/4*a3 - 47/4, -1/4*a3^8 + 1/4*a3^7 + 13/4*a3^6 - 11/4*a3^5 - 55/4*a3^4 + 35/4*a3^3 + 85/4*a3^2 - 13/2*a3 - 9, -1/4*a3^7 + 1/4*a3^6 + 13/4*a3^5 - 11/4*a3^4 - 47/4*a3^3 + 31/4*a3^2 + 33/4*a3 - 5/2, 1/4*a3^8 - 15/4*a3^6 + 1/4*a3^5 + 73/4*a3^4 - 9/4*a3^3 - 125/4*a3^2 + 9/2*a3 + 57/4, -a3^8 + 3/2*a3^7 + 12*a3^6 - 16*a3^5 - 43*a3^4 + 47*a3^3 + 43*a3^2 - 26*a3 - 23/2)" "x^9 - 2*x^8 - 12*x^7 + 23*x^6 + 43*x^5 - 79*x^4 - 43*x^3 + 78*x^2 + 11*x - 21"
"782a1" 782 391 3 257 "(a1, -2, -a1^2 + 2, -a1, -a1^2 - a1 + 3, 2*a1^2 - a1 - 6)" "x^3 + x^2 - 4*x - 3"
"131a1" 131 393 3 1957 "(a2, -1, -a2^3 - a2^2 + 2*a2 + 1, a2^3 - 3*a2 - 1, 2*a2^3 + a2^2 - 7*a2, -2*a2^3 - 2*a2^2 + 5*a2)" "x^4 + x^3 - 4*x^2 - 2*x + 3"
"786d1" 786 393 3 535221 "(a3, -1, 1/3*a3^4 - 2/3*a3^3 - 7/3*a3^2 + 4*a3 + 2, 1/3*a3^4 - 2/3*a3^3 - 4/3*a3^2 + 3*a3, -2/3*a3^4 - 2/3*a3^3 + 11/3*a3^2 + 5*a3 - 2, -a3^4 + a3^3 + 6*a3^2 - 3*a3 - 5)" "x^5 - 2*x^4 - 7*x^3 + 12*x^2 + 9*x - 9"
"14a1" 14 394 3 21 "(1, -1/2*a1 + 1/2, 0, 2, -1/2*a1 - 1/2, a1 - 3)" "x^2 - 4*x - 17"
"14a1" 14 395 3 1.00E+018 "(a7, 1/32*a7^10 + 1/16*a7^9 - 25/32*a7^8 - 33/32*a7^7 + 221/32*a7^6 + 11/2*a7^5 - 823/32*a7^4 - 317/32*a7^3 + 569/16*a7^2 + 25/8*a7 - 35/4, -1, 7/32*a7^10 + 1/16*a7^9 - 143/32*a7^8 - 43/32*a7^7 + 1055/32*a7^6 + 75/8*a7^5 - 3305/32*a7^4 - 727/32*a7^3 + 1889/16*a7^2 + 71/8*a7 - 91/4, -1/16*a7^10 + 17/16*a7^8 - 1/16*a7^7 - 99/16*a7^6 + 7/8*a7^5 + 243/16*a7^4 - 57/16*a7^3 - 35/2*a7^2 + 17/4*a7 + 6, 1/8*a7^10 + 1/4*a7^9 - 21/8*a7^8 - 33/8*a7^7 + 157/8*a7^6 + 45/2*a7^5 - 491/8*a7^4 - 353/8*a7^3 + 277/4*a7^2 + 39/2*a7 - 13)" "x^11 - 21*x^9 + x^8 + 159*x^7 - 18*x^6 - 511*x^5 + 105*x^4 + 604*x^3 - 208*x^2 - 128*x + 48"
"79a1" 79 395 3 81 "(a4, -a4^2 - a4 + 2, -1, 2*a4^2 + a4 - 5, a4^2 - a4 - 4, -a4^2 - a4)" "x^3 - 3*x + 1"
"79a1" 79 395 3 564 "(2, -1/2*a5 + 1, 1, -1/4*a5^2 + 3/2*a5 + 3, 1/4*a5^2 - 3, 0)" "x^3 - 4*x^2 - 16*x + 16"
"395a1" 395 395 3 564 "(2, -1/2*a5 + 1, 1, -1/4*a5^2 + 3/2*a5 + 3, 1/4*a5^2 - 3, 0)" "x^3 - 4*x^2 - 16*x + 16"
"395a1" 395 395 3 10273 "(a6, 2*a6^3 - a6^2 - 15*a6 + 6, 1, -a6 + 1, 2*a6^3 - a6^2 - 15*a6 + 4, -a6^2 - a6 + 6)" "x^4 - x^3 - 7*x^2 + 6*x - 1"
"14a1" 14 397 3 302609750073209 "(a3, 23/11*a3^9 - 107/11*a3^8 - 72/11*a3^7 + 841/11*a3^6 - 38*a3^5 - 1753/11*a3^4 + 1294/11*a3^3 + 699/11*a3^2 - 37*a3 - 52/11, -57/11*a3^9 + 280/11*a3^8 + 122/11*a3^7 - 2166/11*a3^6 + 135*a3^5 + 4342/11*a3^4 - 4161/11*a3^3 - 1409/11*a3^2 + 125*a3 + 60/11, a3^9 - 5*a3^8 - 2*a3^7 + 39*a3^6 - 27*a3^5 - 81*a3^4 + 75*a3^3 + 35*a3^2 - 26*a3 - 4, 35/11*a3^9 - 170/11*a3^8 - 89/11*a3^7 + 1330/11*a3^6 - 72*a3^5 - 2736/11*a3^4 + 2269/11*a3^3 + 1002/11*a3^2 - 63*a3 - 27/11, 5/11*a3^9 - 29/11*a3^8 + 3/11*a3^7 + 223/11*a3^6 - 22*a3^5 - 438/11*a3^4 + 607/11*a3^3 + 118/11*a3^2 - 20*a3 + 4/11)" "x^10 - 7*x^9 + 8*x^8 + 43*x^7 - 105*x^6 - 26*x^5 + 234*x^4 - 119*x^3 - 82*x^2 + 47*x + 3"
"2779a1" 2779 397 3 302609750073209 "(a3, 23/11*a3^9 - 107/11*a3^8 - 72/11*a3^7 + 841/11*a3^6 - 38*a3^5 - 1753/11*a3^4 + 1294/11*a3^3 + 699/11*a3^2 - 37*a3 - 52/11, -57/11*a3^9 + 280/11*a3^8 + 122/11*a3^7 - 2166/11*a3^6 + 135*a3^5 + 4342/11*a3^4 - 4161/11*a3^3 - 1409/11*a3^2 + 125*a3 + 60/11, a3^9 - 5*a3^8 - 2*a3^7 + 39*a3^6 - 27*a3^5 - 81*a3^4 + 75*a3^3 + 35*a3^2 - 26*a3 - 4, 35/11*a3^9 - 170/11*a3^8 - 89/11*a3^7 + 1330/11*a3^6 - 72*a3^5 - 2736/11*a3^4 + 2269/11*a3^3 + 1002/11*a3^2 - 63*a3 - 27/11, 5/11*a3^9 - 29/11*a3^8 + 3/11*a3^7 + 223/11*a3^6 - 22*a3^5 - 438/11*a3^4 + 607/11*a3^3 + 118/11*a3^2 - 20*a3 + 4/11)" "x^10 - 7*x^9 + 8*x^8 + 43*x^7 - 105*x^6 - 26*x^5 + 234*x^4 - 119*x^3 - 82*x^2 + 47*x + 3"
"14a1" 14 398 3 82926416 "(-1, a3 + 1, 1/3*a3^5 + 2/3*a3^4 - 11/3*a3^3 - 14/3*a3^2 + 31/3*a3 + 6, 1/9*a3^5 + 4/9*a3^4 + 1/9*a3^3 - 5/3*a3^2 - 31/9*a3 + 2, -1/3*a3^4 - a3^3 + 2/3*a3^2 + 10/3*a3 + 3, 1/3*a3^4 - 11/3*a3^2 + 2/3*a3 + 5)" "x^6 + 5*x^5 - 4*x^4 - 41*x^3 - 10*x^2 + 77*x + 27"
"14a1" 14 399 3 1240016 "(a5, 1, -a5^3 + 5*a5, 1, a5^4 - 6*a5^2 + 3, -2*a5 + 2)" "x^5 - x^4 - 8*x^3 + 6*x^2 + 13*x - 3"
"798b1" 798 399 3 404 "(a4, 1, -a4^2 + 5, -1, -2*a4^2 - 2*a4 + 12, 2*a4^2 + 2*a4 - 10)" "x^3 - x^2 - 7*x + 9"
"804b1" 804 402 3 12 "(-1, -1, -1/2*a4 - 3/2, -1/4*a4 + 9/4, -2, 1/4*a4 - 1/4)" "x^2 + 6*x - 39"
"14a1" 14 403 3 5748973 "(a1, -a1^5 - 3*a1^4 + 5*a1^3 + 19*a1^2 + 6*a1 - 8, 3*a1^5 + 8*a1^4 - 17*a1^3 - 51*a1^2 - 8*a1 + 18, -2*a1^5 - 5*a1^4 + 12*a1^3 + 31*a1^2 - 10, 5*a1^5 + 12*a1^4 - 29*a1^3 - 75*a1^2 - 8*a1 + 24, 1)" "x^6 + 2*x^5 - 7*x^4 - 13*x^3 + 6*x^2 + 7*x - 3"
"2015c1" 2015 403 3 52709256921 "(a3, -a3^7 - 3*a3^6 + 6*a3^5 + 19*a3^4 - 12*a3^3 - 36*a3^2 + 8*a3 + 19, -a3^5 - 2*a3^4 + 5*a3^3 + 7*a3^2 - 6*a3 - 6, a3^4 + 2*a3^3 - 3*a3^2 - 4*a3, 2*a3^7 + 7*a3^6 - 9*a3^5 - 43*a3^4 + 8*a3^3 + 77*a3^2 + a3 - 37, -1)" "x^8 + 5*x^7 - 30*x^5 - 24*x^4 + 54*x^3 + 54*x^2 - 28*x - 29"
"101a1" 101 404 3 34707928896 "(0, a2, 8*a2^6 + 8*a2^5 - 113*a2^4 - 52*a2^3 + 368*a2^2 - 72*a2 - 154, -18*a2^6 - 17*a2^5 + 256*a2^4 + 105*a2^3 - 844*a2^2 + 189*a2 + 360, -2*a2^6 - 2*a2^5 + 28*a2^4 + 13*a2^3 - 90*a2^2 + 17*a2 + 40, 20*a2^6 + 18*a2^5 - 286*a2^4 - 106*a2^3 + 951*a2^2 - 232*a2 - 406)" "x^7 - 2*x^6 - 17*x^5 + 36*x^4 + 64*x^3 - 148*x^2 + 11*x + 58"
"14a1" 14 405 3 564 "(a8, 0, -1, a8 + 2, a8^2 - 3, -a8^2 + 5)" "x^3 + x^2 - 5*x - 3"
"14a1" 14 405 3 564 "(a9, 0, 1, -a9 + 2, -a9^2 + 3, -a9^2 + 5)" "x^3 - x^2 - 5*x + 3"
"15a1" 15 405 3 12 "(a6, 0, 1, -a6 - 4, -a6 - 5, 2*a6)" "x^2 + 2*x - 2"
"15a1" 15 405 3 564 "(a9, 0, 1, -a9 + 2, -a9^2 + 3, -a9^2 + 5)" "x^3 - x^2 - 5*x + 3"
"45a1" 45 405 3 564 "(a8, 0, -1, a8 + 2, a8^2 - 3, -a8^2 + 5)" "x^3 + x^2 - 5*x - 3"
"45a1" 45 405 3 12 "(a7, 0, -1, a7 - 4, -a7 + 5, -2*a7)" "x^2 - 2*x - 2"
"58b1" 58 406 3 12 "(1, 2, a4 - 5, -1, -2*a4 + 12, -a4 + 5)" "x^2 - 12*x + 33"
"14a1" 14 407 3 1.30E+019 "(a2, 10/59*a2^10 - 1/59*a2^9 - 156/59*a2^8 + 831/59*a2^6 + 78/59*a2^5 - 1732/59*a2^4 - 330/59*a2^3 + 1171/59*a2^2 + 305/59*a2 - 196/59, -83/59*a2^10 + 26/59*a2^9 + 1342/59*a2^8 - 6*a2^7 - 7564/59*a2^6 + 1630/59*a2^5 + 17420/59*a2^4 - 2512/59*a2^3 - 14457/59*a2^2 + 448/59*a2 + 3090/59, 61/59*a2^10 - 12/59*a2^9 - 987/59*a2^8 + 3*a2^7 + 5547/59*a2^6 - 893/59*a2^5 - 12701/59*a2^4 + 1409/59*a2^3 + 10512/59*a2^2 - 57/59*a2 - 2234/59, -1, 100/59*a2^10 - 10/59*a2^9 - 1619/59*a2^8 + 2*a2^7 + 9136/59*a2^6 - 459/59*a2^5 - 21096/59*a2^4 + 181/59*a2^3 + 17610/59*a2^2 + 1044/59*a2 - 3671/59)" "x^11 - 2*x^10 - 16*x^9 + 32*x^8 + 89*x^7 - 179*x^6 - 201*x^5 + 407*x^4 + 168*x^3 - 333*x^2 - 51*x + 75"
"14a1" 14 407 3 1957 "(a1, -a1^3 + a1^2 + 2*a1 - 2, a1^3 - a1^2 - 3*a1, -a1^2 + 2, 1, -a1^3 + a1^2 + 2*a1 - 4)" "x^4 - x^3 - 4*x^2 + 2*x + 3"
"2035c1" 2035 407 3 1957 "(a0, a0^3 + a0^2 - 4*a0, -a0^3 - a0^2 + 3*a0, -2*a0^3 - 3*a0^2 + 6*a0, -1, a0^3 + a0^2 - 2*a0 - 2)" "x^4 + x^3 - 4*x^2 + 1"
"136a1" 136 408 3 57 "(0, 1, a5 - 2, 4, -a5, -a5 + 2)" "x^2 - 3*x - 12"
"1227b1" 1227 409 3 1.25E+019 "(a0, 1/2*a0^12 + 2*a0^11 - 5*a0^10 - 51/2*a0^9 + 14*a0^8 + 237/2*a0^7 + a0^6 - 241*a0^5 - 45*a0^4 + 397/2*a0^3 + 34*a0^2 - 97/2*a0 - 7, 3*a0^12 + 19*a0^11 + 14*a0^10 - 128*a0^9 - 237*a0^8 + 208*a0^7 + 696*a0^6 + 102*a0^5 - 617*a0^4 - 284*a0^3 + 134*a0^2 + 91*a0 + 9, -11/2*a0^12 - 33*a0^11 - 14*a0^10 + 483/2*a0^9 + 349*a0^8 - 1029/2*a0^7 - 1088*a0^6 + 219*a0^5 + 1021*a0^4 + 277/2*a0^3 - 245*a0^2 - 141/2*a0 - 9, a0^12 + 6*a0^11 + 2*a0^10 - 46*a0^9 - 60*a0^8 + 111*a0^7 + 191*a0^6 - 90*a0^5 - 180*a0^4 + 31*a0^3 + 42*a0^2 - 7*a0 - 1, 5/2*a0^12 + 17*a0^11 + 18*a0^10 - 213/2*a0^9 - 246*a0^8 + 243/2*a0^7 + 697*a0^6 + 265*a0^5 - 602*a0^4 - 855/2*a0^3 + 118*a0^2 + 263/2*a0 + 14)" "x^13 + 6*x^12 + 2*x^11 - 47*x^10 - 64*x^9 + 117*x^8 + 226*x^7 - 94*x^6 - 278*x^5 + 9*x^4 + 134*x^3 + 15*x^2 - 22*x - 4"
"14a1" 14 410 3 404 "(1, -1/2*a8 + 1/2, -1, 2, -1/4*a8^2 + 1/2*a8 + 15/4, -1/4*a8^2 + 3/2*a8 + 27/4)" "x^3 - 3*x^2 - 29*x - 1"
"14a1" 14 410 3 12 "(-1, a5 + 1, -1, 2, 0, -2*a5 + 2)" "x^2 - 3"
"410a1" 410 410 3 24 "(1, a7 - 1, 1, -2, -2*a7 + 2, 4)" "x^2 - 2*x - 5"
"822d1" 822 411 3 81 "(a0, 1, -a0^2 - 2*a0 - 1, a0^2 + a0 - 3, a0^2 + 2*a0 - 4, -2*a0^2 - 3*a0 + 2)" "x^3 + 3*x^2 - 3"
"206a1" 206 412 3 21 "(0, -1, -a1 - 2, 2*a1 + 3, -a1 - 3, a1 - 2)" "x^2 + 3*x - 3"
"14a1" 14 413 3 9112541594957 "(a5, -3/8*a5^8 + 1/8*a5^7 + 5*a5^6 - 11/8*a5^5 - 169/8*a5^4 + 7/2*a5^3 + 229/8*a5^2 + 3/4*a5 - 25/8, -1/4*a5^8 - 1/4*a5^7 + 3*a5^6 + 11/4*a5^5 - 47/4*a5^4 - 9*a5^3 + 67/4*a5^2 + 17/2*a5 - 15/4, 1, 1/8*a5^8 + 1/8*a5^7 - 2*a5^6 - 15/8*a5^5 + 79/8*a5^4 + 17/2*a5^3 - 119/8*a5^2 - 47/4*a5 + 15/8, -3/8*a5^8 - 3/8*a5^7 + 4*a5^6 + 29/8*a5^5 - 93/8*a5^4 - 19/2*a5^3 + 53/8*a5^2 + 25/4*a5 + 19/8)" "x^9 - 13*x^7 + x^6 + 54*x^5 - 7*x^4 - 75*x^3 + 9*x^2 + 17*x - 3"
"2891a1" 2891 413 3 36497 "(a2, -a2^3 - a2^2 + 3*a2, a2^4 + 2*a2^3 - 3*a2^2 - 5*a2 + 1, -1, a2^4 + a2^3 - 4*a2^2 - 3*a2, a2^4 + 3*a2^3 - 2*a2^2 - 6*a2)" "x^5 + 2*x^4 - 3*x^3 - 5*x^2 + x + 1"
"14a1" 14 414 3 28 "(1, 0, 1/2*a6 - 1/2, 2, -1/2*a6 + 1/2, -a6 + 3)" "x^2 - 6*x - 19"
"14a1" 14 414 3 28 "(-1, 0, 1/2*a4 + 1/2, 2, -1/2*a4 - 1/2, a4 + 3)" "x^2 + 6*x - 19"
"46a1" 46 414 3 28 "(-1, 0, 1/2*a4 + 1/2, 2, -1/2*a4 - 1/2, a4 + 3)" "x^2 + 6*x - 19"
"414d1" 414 414 3 28 "(1, 0, 1/2*a6 - 1/2, 2, -1/2*a6 + 1/2, -a6 + 3)" "x^2 - 6*x - 19"
"14a1" 14 418 3 13 "(-1, -1/2*a3 - 1/2, 1/2*a3 - 3/2, -1/2*a3 + 1/2, 1, 1/2*a3 - 5/2)" "x^2 - 4*x - 9"
"14a1" 14 418 3 21 "(1, -1/2*a5 + 1/2, -1/2*a5 + 5/2, 1/2*a5 - 7/2, 1, 1/2*a5 + 5/2)" "x^2 - 4*x - 17"
"836b1" 836 418 3 13 "(-1, -1/2*a3 - 1/2, 1/2*a3 - 3/2, -1/2*a3 + 1/2, 1, 1/2*a3 - 5/2)" "x^2 - 4*x - 9"
"2090a1" 2090 418 3 621 "(-1, 1/2*a6 + 1/2, -1/4*a6^2 - 1/2*a6 + 11/4, 1/4*a6^2 - 1/2*a6 - 27/4, -1, 1/4*a6^2 - 1/2*a6 - 19/4)" "x^3 + 3*x^2 - 21*x - 47"
"842a1" 842 421 3 3.71E+023 "(a0, -25193/24617*a0^14 - 139169/24617*a0^13 + 111469/24617*a0^12 + 1714563/24617*a0^11 + 1101947/24617*a0^10 - 7699217/24617*a0^9 - 8792218/24617*a0^8 + 15213141/24617*a0^7 + 21912927/24617*a0^6 - 12318890/24617*a0^5 - 22124776/24617*a0^4 + 1991679/24617*a0^3 + 7618866/24617*a0^2 + 844015/24617*a0 - 229186/24617, 22400/24617*a0^14 + 122208/24617*a0^13 - 106252/24617*a0^12 - 1516251/24617*a0^11 - 900656/24617*a0^10 + 6884713/24617*a0^9 + 7511320/24617*a0^8 - 13885777/24617*a0^7 - 18990607/24617*a0^6 + 11807197/24617*a0^5 + 19349004/24617*a0^4 - 2528241/24617*a0^3 - 6727668/24617*a0^2 - 555389/24617*a0 + 212047/24617, -9732/24617*a0^14 - 52251/24617*a0^13 + 49908/24617*a0^12 + 654805/24617*a0^11 + 351986/24617*a0^10 - 3026606/24617*a0^9 - 3132051/24617*a0^8 + 6356091/24617*a0^7 + 8147248/24617*a0^6 - 6082602/24617*a0^5 - 8594613/24617*a0^4 + 2265940/24617*a0^3 + 3152696/24617*a0^2 - 229332/24617*a0 - 135633/24617, 15431/24617*a0^14 + 87106/24617*a0^13 - 62166/24617*a0^12 - 1066618/24617*a0^11 - 729237/24617*a0^10 + 4759078/24617*a0^9 + 5469436/24617*a0^8 - 9377862/24617*a0^7 - 13019022/24617*a0^6 + 7761488/24617*a0^5 + 12265003/24617*a0^4 - 1665986/24617*a0^3 - 3686252/24617*a0^2 - 271133/24617*a0 - 1979/24617, 20552/24617*a0^14 + 123942/24617*a0^13 - 45052/24617*a0^12 - 1495721/24617*a0^11 - 1499873/24617*a0^10 + 6485166/24617*a0^9 + 10133695/24617*a0^8 - 11956949/24617*a0^7 - 24682389/24617*a0^6 + 8005410/24617*a0^5 + 25309884/24617*a0^4 + 535357/24617*a0^3 - 9036331/24617*a0^2 - 1313376/24617*a0 + 200892/24617)" "x^15 + 6*x^14 - 2*x^13 - 71*x^12 - 74*x^11 + 296*x^10 + 488*x^9 - 494*x^8 - 1157*x^7 + 205*x^6 + 1137*x^5 + 203*x^4 - 374*x^3 - 127*x^2 + 3*x + 3"
"14a1" 14 422 3 785 "(-1, 1/2*a3 + 1/2, 1/4*a3^2 + 1/2*a3 - 15/4, -1/2*a3 - 1/2, -1/4*a3^2 + 13/4, 1/2*a3 + 9/2)" "x^3 + 5*x^2 - 17*x - 61"
"422a1" 422 422 3 257 "(-1, a2 + 1, -1/3*a2^2 - 4/3*a2 - 1, -a2 - 3, 1/3*a2^2 + 1/3*a2 + 1, -2/3*a2^2 - 5/3*a2 - 1)" "x^3 + 4*x^2 - 3*x - 9"
"423b1" 423 423 3 1957 "(a10, 0, -4*a10^3 - 2*a10^2 + 20*a10 + 10, -3*a10^3 - a10^2 + 16*a10 + 7, 2*a10^3 + 2*a10^2 - 10*a10 - 6, 4*a10^3 + 2*a10^2 - 22*a10 - 8)" "x^4 + x^3 - 5*x^2 - 5*x - 1"
"14a1" 14 425 3 1893456 "(a9, -1/2*a9^3 - 1/2*a9^2 + 7/2*a9 + 5/2, 0, 1/2*a9^4 - 1/2*a9^3 - 7/2*a9^2 + 5/2*a9 + 2, 1/2*a9^4 - 4*a9^2 - a9 + 9/2, -a9^3 + 6*a9 + 2)" "x^5 - x^4 - 10*x^3 + 6*x^2 + 21*x + 3"
"50b1" 50 425 3 12 "(a4, -a4 - 1, 0, a4 + 1, a4 + 3, 4)" "x^2 - 3"
"50b1" 50 425 3 1893456 "(a8, -1/2*a8^3 + 1/2*a8^2 + 7/2*a8 - 5/2, 0, -1/2*a8^4 - 1/2*a8^3 + 7/2*a8^2 + 5/2*a8 - 2, 1/2*a8^4 - 4*a8^2 + a8 + 9/2, -a8^3 + 6*a8 - 2)" "x^5 + x^4 - 10*x^3 - 6*x^2 + 21*x - 3"
"14a1" 14 427 3 4733829 "(a3, -1/3*a3^5 - 5/3*a3^4 + 1/3*a3^3 + 25/3*a3^2 + 4*a3 - 5, a3^5 + 3*a3^4 - 4*a3^3 - 15*a3^2 - 2*a3 + 6, 1, -5/3*a3^5 - 13/3*a3^4 + 23/3*a3^3 + 59/3*a3^2 - 2*a3 - 6, -a3^5 - 4*a3^4 + 2*a3^3 + 20*a3^2 + 10*a3 - 10)" "x^6 + 5*x^5 + 2*x^4 - 22*x^3 - 30*x^2 + 9"
"61a1" 61 427 3 7735165 "(a4, a4^5 + 3*a4^4 - 3*a4^3 - 9*a4^2 + 4*a4 + 3, -a4^5 - 3*a4^4 + 2*a4^3 + 7*a4^2 - 2*a4 - 2, -1, -a4^5 - 3*a4^4 + 3*a4^3 + 9*a4^2 - 4*a4 - 4, -a4^5 - 2*a4^4 + 8*a4^3 + 12*a4^2 - 14*a4 - 10)" "x^6 + 5*x^5 + 2*x^4 - 18*x^3 - 12*x^2 + 18*x + 5"
"1281b1" 1281 427 3 121243842238125 "(a6, -5/16*a6^8 + 9/8*a6^7 + 37/16*a6^6 - 85/8*a6^5 - 15/8*a6^4 + 217/8*a6^3 - 161/16*a6^2 - 161/16*a6 + 7/4, 1/8*a6^8 - 1/4*a6^7 - 9/8*a6^6 + 5/4*a6^5 + 15/4*a6^4 + 3/4*a6^3 - 43/8*a6^2 - 43/8*a6 + 5/2, -1, -1/16*a6^8 + 5/8*a6^7 - 15/16*a6^6 - 41/8*a6^5 + 93/8*a6^4 + 85/8*a6^3 - 461/16*a6^2 - 13/16*a6 + 27/4, 1/8*a6^8 - 1/4*a6^7 - 9/8*a6^6 + 5/4*a6^5 + 19/4*a6^4 - 5/4*a6^3 - 83/8*a6^2 + 21/8*a6 + 9/2)" "x^9 - 5*x^8 - 3*x^7 + 45*x^6 - 32*x^5 - 108*x^4 + 123*x^3 + 30*x^2 - 43*x + 4"
"14a1" 14 428 3 1752165 "(0, -1/2*a3, -1/24*a3^4 - 5/24*a3^3 + a3^2 + 19/6*a3 - 17/3, 1/48*a3^4 + 1/24*a3^3 - 3/4*a3^2 - 1/3*a3 + 19/3, -1/4*a3^2 - 1/2*a3 + 6, 1/16*a3^4 + 3/8*a3^3 - 3/2*a3^2 - 13/2*a3 + 9)" "x^5 + 10*x^4 - 8*x^3 - 256*x^2 - 160*x + 1376"
"214b1" 214 428 3 1752165 "(0, -1/2*a3, -1/24*a3^4 - 5/24*a3^3 + a3^2 + 19/6*a3 - 17/3, 1/48*a3^4 + 1/24*a3^3 - 3/4*a3^2 - 1/3*a3 + 19/3, -1/4*a3^2 - 1/2*a3 + 6, 1/16*a3^4 + 3/8*a3^3 - 3/2*a3^2 - 13/2*a3 + 9)" "x^5 + 10*x^4 - 8*x^3 - 256*x^2 - 160*x + 1376"
"214a1" 214 428 3 13 "(0, -1/2*a2, 1/2*a2 - 2, -1, 1, -2)" "x^2 - 6*x - 4"
"428b1" 428 428 3 13 "(0, -1/2*a2, 1/2*a2 - 2, -1, 1, -2)" "x^2 - 6*x - 4"
"11a1" 11 429 3 564 "(a4, -1, a4^2 + a4 - 4, a4^2 - 3, 1, -1)" "x^3 + x^2 - 5*x - 3"
"143a1" 143 429 3 12 "(a3, -1, -a3 - 1, -2, -1, -1)" "x^2 - 3"
"858a1" 858 429 3 564 "(a4, -1, a4^2 + a4 - 4, a4^2 - 3, 1, -1)" "x^3 + x^2 - 5*x - 3"
"215a1" 215 430 3 24 "(1, 1/2*a5 - 1/2, -1, 1, -1/2*a5 + 5/2, -1)" "x^2 - 2*x - 23"
"430d1" 430 430 3 12 "(-1, -1/2*a4 - 1/2, 1, a4 + 4, 1/2*a4 + 5/2, -a4 - 2)" "x^2 + 6*x - 3"
"862b1" 862 431 3 257 "(a3, -a3, -a3^2 + 2, -2, 0, -2)" "x^3 - x^2 - 4*x + 3"
"1293d1" 1293 431 3 473 "(a2, a2^2 - 3, a2^2 + a2 - 3, -2*a2, -4, 2*a2^2 - 4)" "x^3 - 5*x + 1"
"14a1" 14 433 3 6.78E+028 "(a3, 3364/49429*a3^15 - 28373/98858*a3^14 - 107815/98858*a3^13 + 258788/49429*a3^12 + 350948/49429*a3^11 - 3787471/98858*a3^10 - 2600707/98858*a3^9 + 7085854/49429*a3^8 + 3337167/49429*a3^7 - 14044214/49429*a3^6 - 12055899/98858*a3^5 + 13153828/49429*a3^4 + 12276925/98858*a3^3 - 7391141/98858*a3^2 - 1965284/49429*a3 - 162529/98858, 7937/49429*a3^15 - 80035/98858*a3^14 - 239229/98858*a3^13 + 793664/49429*a3^12 + 600510/49429*a3^11 - 12594013/98858*a3^10 - 2013751/98858*a3^9 + 25390228/49429*a3^8 + 503083/49429*a3^7 - 54050496/49429*a3^6 - 10121395/98858*a3^5 + 54992077/49429*a3^4 + 28175043/98858*a3^3 - 33332341/98858*a3^2 - 5344871/49429*a3 - 82767/98858, 13927/49429*a3^15 - 65146/49429*a3^14 - 451983/98858*a3^13 + 1307187/49429*a3^12 + 1299411/49429*a3^11 - 10432928/49429*a3^10 - 6129257/98858*a3^9 + 41960809/49429*a3^8 + 3228040/49429*a3^7 - 88189139/49429*a3^6 - 7409068/49429*a3^5 + 176059573/98858*a3^4 + 34422491/98858*a3^3 - 26963958/49429*a3^2 - 13190897/98858*a3 + 179455/98858, -68823/98858*a3^15 + 319749/98858*a3^14 + 555916/49429*a3^13 - 3177931/49429*a3^12 - 6425979/98858*a3^11 + 50230627/98858*a3^10 + 7934153/49429*a3^9 - 99992803/49429*a3^8 - 10277701/49429*a3^7 + 416113753/98858*a3^6 + 23198686/49429*a3^5 - 411857973/98858*a3^4 - 91203129/98858*a3^3 + 63067083/49429*a3^2 + 34013857/98858*a3 - 95214/49429, -182691/197716*a3^15 + 213527/49429*a3^14 + 2938339/197716*a3^13 - 8509457/98858*a3^12 - 16723251/197716*a3^11 + 67437849/98858*a3^10 + 39072321/197716*a3^9 - 134692546/49429*a3^8 - 21136039/98858*a3^7 + 1125412803/197716*a3^6 + 102144287/197716*a3^5 - 1117812989/197716*a3^4 - 57707857/49429*a3^3 + 340584749/197716*a3^2 + 87448217/197716*a3 - 555115/197716)" "x^16 - 7*x^15 - 5*x^14 + 129*x^13 - 125*x^12 - 929*x^11 + 1471*x^10 + 3333*x^9 - 6394*x^8 - 6443*x^7 + 13118*x^6 + 7162*x^5 - 12217*x^4 - 4691*x^3 + 3598*x^2 + 1114*x - 3"
"1299a1" 1299 433 3 404 "(1, a1 - 1, a1 - 1, -1/2*a1^2 + a1 + 9/2, -a1 + 3, -a1^2 + 8)" "x^3 - 3*x^2 - 5*x + 11"
"1299a1" 1299 433 3 6.78E+028 "(a3, 3364/49429*a3^15 - 28373/98858*a3^14 - 107815/98858*a3^13 + 258788/49429*a3^12 + 350948/49429*a3^11 - 3787471/98858*a3^10 - 2600707/98858*a3^9 + 7085854/49429*a3^8 + 3337167/49429*a3^7 - 14044214/49429*a3^6 - 12055899/98858*a3^5 + 13153828/49429*a3^4 + 12276925/98858*a3^3 - 7391141/98858*a3^2 - 1965284/49429*a3 - 162529/98858, 7937/49429*a3^15 - 80035/98858*a3^14 - 239229/98858*a3^13 + 793664/49429*a3^12 + 600510/49429*a3^11 - 12594013/98858*a3^10 - 2013751/98858*a3^9 + 25390228/49429*a3^8 + 503083/49429*a3^7 - 54050496/49429*a3^6 - 10121395/98858*a3^5 + 54992077/49429*a3^4 + 28175043/98858*a3^3 - 33332341/98858*a3^2 - 5344871/49429*a3 - 82767/98858, 13927/49429*a3^15 - 65146/49429*a3^14 - 451983/98858*a3^13 + 1307187/49429*a3^12 + 1299411/49429*a3^11 - 10432928/49429*a3^10 - 6129257/98858*a3^9 + 41960809/49429*a3^8 + 3228040/49429*a3^7 - 88189139/49429*a3^6 - 7409068/49429*a3^5 + 176059573/98858*a3^4 + 34422491/98858*a3^3 - 26963958/49429*a3^2 - 13190897/98858*a3 + 179455/98858, -68823/98858*a3^15 + 319749/98858*a3^14 + 555916/49429*a3^13 - 3177931/49429*a3^12 - 6425979/98858*a3^11 + 50230627/98858*a3^10 + 7934153/49429*a3^9 - 99992803/49429*a3^8 - 10277701/49429*a3^7 + 416113753/98858*a3^6 + 23198686/49429*a3^5 - 411857973/98858*a3^4 - 91203129/98858*a3^3 + 63067083/49429*a3^2 + 34013857/98858*a3 - 95214/49429, -182691/197716*a3^15 + 213527/49429*a3^14 + 2938339/197716*a3^13 - 8509457/98858*a3^12 - 16723251/197716*a3^11 + 67437849/98858*a3^10 + 39072321/197716*a3^9 - 134692546/49429*a3^8 - 21136039/98858*a3^7 + 1125412803/197716*a3^6 + 102144287/197716*a3^5 - 1117812989/197716*a3^4 - 57707857/49429*a3^3 + 340584749/197716*a3^2 + 87448217/197716*a3 - 555115/197716)" "x^16 - 7*x^15 - 5*x^14 + 129*x^13 - 125*x^12 - 929*x^11 + 1471*x^10 + 3333*x^9 - 6394*x^8 - 6443*x^7 + 13118*x^6 + 7162*x^5 - 12217*x^4 - 4691*x^3 + 3598*x^2 + 1114*x - 3"
"435c1" 435 435 3 21 "(a5, 1, 1, 1, 5, -2*a5 - 1)" "x^2 + x - 5"
"14a1" 14 436 3 81 "(0, a1, -a1 - 2, -a1^2 - a1 + 1, 3*a1^2 - 2*a1 - 7, -2*a1^2 + a1 + 3)" "x^3 - 3*x - 1"
"1090d1" 1090 436 3 30273 "(0, -1/2*a2, 1/2*a2 + 2, -1/8*a2^3 - 1/4*a2^2 + 2*a2 + 4, 1/8*a2^3 + 1/4*a2^2 - 5/2*a2 - 2, 1/8*a2^3 - 2*a2 + 2)" "x^4 - 28*x^2 + 8*x + 128"
"14a1" 14 437 3 1.54E+021 "(a7, -47/244*a7^11 + 91/244*a7^10 + 391/122*a7^9 - 23/4*a7^8 - 1137/61*a7^7 + 117/4*a7^6 + 5647/122*a7^5 - 13993/244*a7^4 - 10833/244*a7^3 + 2207/61*a7^2 + 299/61*a7 - 140/61, -6/61*a7^11 + 22/61*a7^10 + 175/122*a7^9 - 6*a7^8 - 395/61*a7^7 + 69/2*a7^6 + 1099/122*a7^5 - 5044/61*a7^4 + 120/61*a7^3 + 9121/122*a7^2 - 408/61*a7 - 675/61, 5/244*a7^11 + 63/244*a7^10 - 50/61*a7^9 - 17/4*a7^8 + 1105/122*a7^7 + 97/4*a7^6 - 2327/61*a7^5 - 14239/244*a7^4 + 14601/244*a7^3 + 3311/61*a7^2 - 1379/61*a7 - 355/61, 7/122*a7^11 + 15/122*a7^10 - 79/61*a7^9 - 5/2*a7^8 + 1325/122*a7^7 + 37/2*a7^6 - 4967/122*a7^5 - 3605/61*a7^4 + 7607/122*a7^3 + 8623/122*a7^2 - 1348/61*a7 - 567/61, -13/122*a7^11 + 7/122*a7^10 + 215/122*a7^9 - 1/2*a7^8 - 616/61*a7^7 - a7^6 + 2985/122*a7^5 + 1861/122*a7^4 - 2973/122*a7^3 - 3605/122*a7^2 + 473/61*a7 + 626/61)" "x^12 - 2*x^11 - 19*x^10 + 35*x^9 + 137*x^8 - 219*x^7 - 483*x^6 + 605*x^5 + 866*x^4 - 707*x^3 - 682*x^2 + 236*x + 96"
"49a1" 49 441 3 28 "(a7, 0, 0, 0, -2*a7, 0)" "x^2 - 7"
"98a1" 98 441 3 12 "(a6, 0, 2*a6, 0, 2*a6, -2)" "x^2 - 3"
"441d1" 441 441 3 28 "(a7, 0, 0, 0, -2*a7, 0)" "x^2 - 7"
"443a1" 443 443 3 7.76E+017 "(a3, -953/3391*a3^11 - 2407/3391*a3^10 + 12118/3391*a3^9 + 28943/3391*a3^8 - 54989/3391*a3^7 - 118907/3391*a3^6 + 107898/3391*a3^5 + 192792/3391*a3^4 - 89082/3391*a3^3 - 106533/3391*a3^2 + 22942/3391*a3 + 7855/3391, 1928/10173*a3^11 + 5446/10173*a3^10 - 7892/3391*a3^9 - 22794/3391*a3^8 + 101843/10173*a3^7 + 100645/3391*a3^6 - 64436/3391*a3^5 - 184296/3391*a3^4 + 197453/10173*a3^3 + 360922/10173*a3^2 - 126538/10173*a3 - 5494/3391, 2606/10173*a3^11 + 10126/10173*a3^10 - 8613/3391*a3^9 - 41834/3391*a3^8 + 70319/10173*a3^7 + 182256/3391*a3^6 - 4206/3391*a3^5 - 331390/3391*a3^4 - 88522/10173*a3^3 + 670810/10173*a3^2 - 16183/10173*a3 - 19590/3391, -2324/10173*a3^11 - 6649/10173*a3^10 + 7923/3391*a3^9 + 24732/3391*a3^8 - 67316/10173*a3^7 - 92015/3391*a3^6 + 4110/3391*a3^5 + 130128/3391*a3^4 + 116590/10173*a3^3 - 173890/10173*a3^2 - 59543/10173*a3 - 3438/3391, -1705/10173*a3^11 - 8288/10173*a3^10 + 4749/3391*a3^9 + 34907/3391*a3^8 - 15523/10173*a3^7 - 153681/3391*a3^6 - 34989/3391*a3^5 + 273166/3391*a3^4 + 202298/10173*a3^3 - 485564/10173*a3^2 - 26056/10173*a3 - 8315/3391)" "x^12 + 3*x^11 - 13*x^10 - 39*x^9 + 64*x^8 + 181*x^7 - 159*x^6 - 357*x^5 + 226*x^4 + 264*x^3 - 156*x^2 - 20*x + 6"
"14a1" 14 444 3 24 "(0, 1, -1/2*a3 + 1/2, 2, 0, a3 + 1)" "x^2 - 2*x - 23"
"148a1" 148 444 3 12 "(0, -1, -a2 + 2, 2*a2 - 6, -4, -2*a2 + 6)" "x^2 - 6*x + 6"
"14a1" 14 445 3 12 "(a1, a1 + 1, 1, -a1 - 1, 0, 2)" "x^2 - 3"
"890d1" 890 445 3 324323556 "(a5, 2/3*a5^6 + 5/3*a5^5 - 4*a5^4 - 9*a5^3 + 14/3*a5^2 + 19/3*a5 - 3, 1, -1/3*a5^6 - 4/3*a5^5 + a5^4 + 7*a5^3 + 5/3*a5^2 - 14/3*a5 - 2, -1/3*a5^6 - 1/3*a5^5 + 4*a5^4 + 3*a5^3 - 40/3*a5^2 - 20/3*a5 + 7, -5/3*a5^6 - 17/3*a5^5 + 5*a5^4 + 28*a5^3 + 40/3*a5^2 - 37/3*a5 - 10)" "x^7 + 4*x^6 - 3*x^5 - 24*x^4 - 8*x^3 + 29*x^2 + 6*x - 9"
"14a1" 14 446 3 4851886067712 "(-1, -a5 - 1, 1/33*a5^7 + 7/33*a5^6 + 2/33*a5^5 - 58/33*a5^4 - 31/33*a5^3 + 193/33*a5^2 + 17/11*a5 - 43/11, 4/33*a5^6 + 26/33*a5^5 - 5/33*a5^4 - 82/11*a5^3 - 166/33*a5^2 + 164/11*a5 + 85/11, -2/33*a5^7 - 20/33*a5^6 - 43/33*a5^5 + 107/33*a5^4 + 365/33*a5^3 - 71/33*a5^2 - 203/11*a5 - 47/11, 2/33*a5^7 + 6/11*a5^6 + 10/11*a5^5 - 8/3*a5^4 - 13/3*a5^3 + 17/3*a5^2 + 10/11)" "x^8 + 12*x^7 + 44*x^6 + 14*x^5 - 206*x^4 - 244*x^3 + 214*x^2 + 294*x + 57"
"446a1" 446 446 3 12638384896 "(1, 1/2*a4 - 1/2, -3/7648*a4^6 + 55/7648*a4^5 - 23/3824*a4^4 - 929/3824*a4^3 + 1137/7648*a4^2 + 14475/7648*a4 + 428/239, -41/15296*a4^6 + 97/7648*a4^5 + 1841/15296*a4^4 - 1369/3824*a4^3 - 24135/15296*a4^2 + 12753/7648*a4 + 86719/15296, 9/3824*a4^6 - 91/7648*a4^5 - 919/7648*a4^4 + 1511/3824*a4^3 + 459/239*a4^2 - 21603/7648*a4 - 37483/7648, 1/239*a4^6 - 67/1912*a4^5 - 49/478*a4^4 + 2007/1912*a4^3 + 553/1912*a4^2 - 2719/478*a4 + 363/1912)" "x^7 - 9*x^6 - 23*x^5 + 311*x^4 - 69*x^3 - 2467*x^2 + 1627*x + 2933"
"892a1" 892 446 3 12638384896 "(1, 1/2*a4 - 1/2, -3/7648*a4^6 + 55/7648*a4^5 - 23/3824*a4^4 - 929/3824*a4^3 + 1137/7648*a4^2 + 14475/7648*a4 + 428/239, -41/15296*a4^6 + 97/7648*a4^5 + 1841/15296*a4^4 - 1369/3824*a4^3 - 24135/15296*a4^2 + 12753/7648*a4 + 86719/15296, 9/3824*a4^6 - 91/7648*a4^5 - 919/7648*a4^4 + 1511/3824*a4^3 + 459/239*a4^2 - 21603/7648*a4 - 37483/7648, 1/239*a4^6 - 67/1912*a4^5 - 49/478*a4^4 + 2007/1912*a4^3 + 553/1912*a4^2 - 2719/478*a4 + 363/1912)" "x^7 - 9*x^6 - 23*x^5 + 311*x^4 - 69*x^3 - 2467*x^2 + 1627*x + 2933"
"892c1" 892 446 3 4851886067712 "(-1, -a5 - 1, 1/33*a5^7 + 7/33*a5^6 + 2/33*a5^5 - 58/33*a5^4 - 31/33*a5^3 + 193/33*a5^2 + 17/11*a5 - 43/11, 4/33*a5^6 + 26/33*a5^5 - 5/33*a5^4 - 82/11*a5^3 - 166/33*a5^2 + 164/11*a5 + 85/11, -2/33*a5^7 - 20/33*a5^6 - 43/33*a5^5 + 107/33*a5^4 + 365/33*a5^3 - 71/33*a5^2 - 203/11*a5 - 47/11, 2/33*a5^7 + 6/11*a5^6 + 10/11*a5^5 - 8/3*a5^4 - 13/3*a5^3 + 17/3*a5^2 + 10/11)" "x^8 + 12*x^7 + 44*x^6 + 14*x^5 - 206*x^4 - 244*x^3 + 214*x^2 + 294*x + 57"
"298a1" 298 447 3 81 "(a0, 1, -2, -a0 - 2, -a0^2 - 3*a0 - 3, -2*a0^2 - 2*a0 + 4)" "x^3 + 3*x^2 - 3"
"898c1" 898 449 3 1.43E+021 "(a0, 1367/581*a0^13 + 2544/581*a0^12 - 21440/581*a0^11 - 35460/581*a0^10 + 130273/581*a0^9 + 25269/83*a0^8 - 397316/581*a0^7 - 387181/581*a0^6 + 91749/83*a0^5 + 359615/581*a0^4 - 504323/581*a0^3 - 105389/581*a0^2 + 145130/581*a0 - 6416/581, -689/581*a0^13 - 1037/581*a0^12 + 11692/581*a0^11 + 15082/581*a0^10 - 77477/581*a0^9 - 11333/83*a0^8 + 255690/581*a0^7 + 183819/581*a0^6 - 62325/83*a0^5 - 177694/581*a0^4 + 352434/581*a0^3 + 49678/581*a0^2 - 102958/581*a0 + 5809/581, 291/581*a0^13 + 1035/581*a0^12 - 3099/581*a0^11 - 13492/581*a0^10 + 8490/581*a0^9 + 8691/83*a0^8 + 3319/581*a0^7 - 115074/581*a0^6 - 4771/83*a0^5 + 87935/581*a0^4 + 28887/581*a0^3 - 19559/581*a0^2 - 5371/581*a0 - 1821/581, -1275/581*a0^13 - 2672/581*a0^12 + 18861/581*a0^11 + 36126/581*a0^10 - 106601/581*a0^9 - 24622/83*a0^8 + 302097/581*a0^7 + 354412/581*a0^6 - 66075/83*a0^5 - 303487/581*a0^4 + 350578/581*a0^3 + 81426/581*a0^2 - 98052/581*a0 + 3684/581, -1506/581*a0^13 - 3260/581*a0^12 + 21920/581*a0^11 + 44015/581*a0^10 - 121175/581*a0^9 - 29968/83*a0^8 + 335676/581*a0^7 + 432049/581*a0^6 - 72910/83*a0^5 - 373914/581*a0^4 + 397996/581*a0^3 + 102307/581*a0^2 - 118436/581*a0 + 5441/581)" "x^14 + 3*x^13 - 13*x^12 - 42*x^11 + 59*x^10 + 214*x^9 - 117*x^8 - 503*x^7 + 109*x^6 + 576*x^5 - 50*x^4 - 309*x^3 + 14*x^2 + 62*x - 3"
"898b1" 898 449 3 6.86E+048 "(a1, 3587401463/505414861488*a1^22 - 7650779429/336943240992*a1^21 - 150864645115/505414861488*a1^20 + 825392841079/1010829722976*a1^19 + 5450047860893/1010829722976*a1^18 - 6344315242307/505414861488*a1^17 - 27696702887935/505414861488*a1^16 + 108892865144615/1010829722976*a1^15 + 6012670597195/17428098672*a1^14 - 71421083468347/126353715372*a1^13 - 470356381031857/336943240992*a1^12 + 943155604067327/505414861488*a1^11 + 1228712346186743/336943240992*a1^10 - 1940384255679473/505414861488*a1^9 - 3041227590875047/505414861488*a1^8 + 43884038119555/9359534472*a1^7 + 6017749368007493/1010829722976*a1^6 - 1532894924053417/505414861488*a1^5 - 809680458782215/252707430744*a1^4 + 194797323522557/252707430744*a1^3 + 86827452979241/112314413664*a1^2 - 1239867085561/336943240992*a1 - 4509261066899/112314413664, 36207620017/1516244584464*a1^22 - 392715416/31588428843*a1^21 - 347942083499/379061146116*a1^20 + 326631794837/758122292232*a1^19 + 11567268044365/758122292232*a1^18 - 9606455528161/1516244584464*a1^17 - 108957607448593/758122292232*a1^16 + 78030276152777/1516244584464*a1^15 + 2760254289026/3267768501*a1^14 - 381574682954333/1516244584464*a1^13 - 812551049946659/252707430744*a1^12 + 286698557455579/379061146116*a1^11 + 4027851952874915/505414861488*a1^10 - 1032782020658657/758122292232*a1^9 - 9557529760524427/758122292232*a1^8 + 75413531184863/56157206832*a1^7 + 9196221796045171/758122292232*a1^6 - 791176870326971/1516244584464*a1^5 - 9824972033892583/1516244584464*a1^4 - 24143673588209/189530573058*a1^3 + 133443099270145/84235810248*a1^2 + 55513767426557/505414861488*a1 - 15548291459519/168471620496, -3203239213/379061146116*a1^22 - 595819192/31588428843*a1^21 + 131419749017/379061146116*a1^20 + 135495968281/189530573058*a1^19 - 578128330394/94765286529*a1^18 - 2208746478799/189530573058*a1^17 + 11406429012787/189530573058*a1^16 + 10118781621100/94765286529*a1^15 - 4772077428473/13071074004*a1^14 - 57120718814416/94765286529*a1^13 + 177572889554965/126353715372*a1^12 + 204603006231941/94765286529*a1^11 - 108026982272480/31588428843*a1^10 - 1843832442646961/379061146116*a1^9 + 1928985934508705/379061146116*a1^8 + 46197173442761/7019650854*a1^7 - 1647721213925357/379061146116*a1^6 - 1835788779751429/379061146116*a1^5 + 369514164098459/189530573058*a1^4 + 151311038776075/94765286529*a1^3 - 17053794357965/42117905124*a1^2 - 4474501036763/31588428843*a1 + 1456347043919/42117905124, 1316367895/13071074004*a1^22 + 143938909/4357024668*a1^21 - 98901947617/26142148008*a1^20 - 31767174607/26142148008*a1^19 + 800451361073/13071074004*a1^18 + 504571904809/26142148008*a1^17 - 14614387602187/26142148008*a1^16 - 4536403667465/26142148008*a1^15 + 10335990602869/3267768501*a1^14 + 12686579651077/13071074004*a1^13 - 50010652113031/4357024668*a1^12 - 91081664277415/26142148008*a1^11 + 232891347633433/8714049336*a1^10 + 104039493898811/13071074004*a1^9 - 507807968945921/13071074004*a1^8 - 1338455500426/121028463*a1^7 + 217470996651883/6535537002*a1^6 + 223508416742801/26142148008*a1^5 - 398585214435515/26142148008*a1^4 - 83332756026185/26142148008*a1^3 + 9178192928377/2904683112*a1^2 + 450488942858/1089256167*a1 - 550385323477/2904683112, 195233617/42117905124*a1^22 - 414868283/14039301708*a1^21 - 15796492285/84235810248*a1^20 + 86437170467/84235810248*a1^19 + 135808599155/42117905124*a1^18 - 1277406335507/84235810248*a1^17 - 2585591022709/84235810248*a1^16 + 10490165145163/84235810248*a1^15 + 256148401301/1452341556*a1^14 - 6555531117833/10529476281*a1^13 - 2189147016799/3509825427*a1^12 + 164502933796967/84235810248*a1^11 + 36917895584197/28078603416*a1^10 - 40262902255258/10529476281*a1^9 - 30931084418797/21058952562*a1^8 + 21094288477639/4679767236*a1^7 + 22239202918745/42117905124*a1^6 - 248588646677557/84235810248*a1^5 + 28578818562373/84235810248*a1^4 + 74722840056937/84235810248*a1^3 - 2281389091951/9359534472*a1^2 - 1034343318067/14039301708*a1 + 227399339381/9359534472)" "x^23 - 38*x^21 + x^20 + 623*x^19 - 31*x^18 - 5771*x^17 + 398*x^16 + 33229*x^15 - 2753*x^14 - 123306*x^13 + 11230*x^12 + 296022*x^11 - 28009*x^10 - 450008*x^9 + 43215*x^8 + 412760*x^7 - 40559*x^6 - 210040*x^5 + 21311*x^4 + 50781*x^3 - 5664*x^2 - 3789*x + 621"
"451a1" 451 451 3 36497 "(a1, -a1^4 - a1^3 + 6*a1^2 + 3*a1 - 8, -2*a1^4 - a1^3 + 11*a1^2 + 3*a1 - 12, 2*a1^4 + a1^3 - 12*a1^2 - 4*a1 + 13, -1, 3*a1^4 + a1^3 - 18*a1^2 - 3*a1 + 21)" "x^5 + 2*x^4 - 5*x^3 - 10*x^2 + 4*x + 9"
"14a1" 14 452 3 68931919168 "(0, a1, a1^6 - 2*a1^5 - 13*a1^4 + 16*a1^3 + 52*a1^2 - 22*a1 - 44, -3*a1^6 + 5*a1^5 + 44*a1^4 - 46*a1^3 - 188*a1^2 + 82*a1 + 156, 4*a1^6 - 7*a1^5 - 58*a1^4 + 64*a1^3 + 246*a1^2 - 112*a1 - 200, -2*a1^6 + 4*a1^5 + 27*a1^4 - 34*a1^3 - 111*a1^2 + 52*a1 + 96)" "x^7 - 3*x^6 - 12*x^5 + 33*x^4 + 40*x^3 - 98*x^2 - 16*x + 58"
"226a1" 226 452 3 81 "(0, -1/2*a0, -1, -1/4*a0^2 + 2*a0 - 1, 1/2*a0^2 - 3/2*a0 - 3, -1/2*a0 - 3)" "x^3 - 6*x^2 + 8"
"302a1" 302 453 3 12 "(a2, -1, 2, 1, a2 + 2, 2*a2)" "x^2 - 3"
"14a1" 14 455 3 45853772 "(a4, -a4^3 + a4^2 + 4*a4 - 2, 1, 1, -a4^5 + 2*a4^4 + 6*a4^3 - 10*a4^2 - 8*a4 + 9, 1)" "x^6 - 3*x^5 - 6*x^4 + 20*x^3 + 6*x^2 - 31*x + 9"
"65a1" 65 455 3 8908883364 "(a5, -1/14*a5^6 - 5/14*a5^5 + 9/7*a5^4 + 23/7*a5^3 - 44/7*a5^2 - 73/14*a5 + 71/14, -1, 1, 3/14*a5^6 + 1/14*a5^5 - 13/7*a5^4 - 6/7*a5^3 + 13/7*a5^2 + 51/14*a5 + 53/14, -1)" "x^7 - 15*x^5 + 2*x^4 + 66*x^3 - 17*x^2 - 72*x + 19"
"91a1" 91 455 3 1957 "(a3, -a3^3 + 3*a3^2 - 2, 1, -1, -2*a3^3 + 2*a3^2 + 6*a3, -1)" "x^4 - 3*x^3 - x^2 + 5*x + 1"
"1365b1" 1365 455 3 45853772 "(a4, -a4^3 + a4^2 + 4*a4 - 2, 1, 1, -a4^5 + 2*a4^4 + 6*a4^3 - 10*a4^2 - 8*a4 + 9, 1)" "x^6 - 3*x^5 - 6*x^4 + 20*x^3 + 6*x^2 - 31*x + 9"
"14a1" 14 458 3 4954452093 "(-1, a3 + 1, a3^6 + a3^5 - 9*a3^4 - 2*a3^3 + 21*a3^2 - 14*a3 + 3, a3^6 + a3^5 - 10*a3^4 - 4*a3^3 + 27*a3^2 - 6*a3 - 4, -a3^5 - a3^4 + 9*a3^3 + 3*a3^2 - 21*a3 + 9, -a3^6 + 11*a3^4 - 6*a3^3 - 32*a3^2 + 30*a3 + 2)" "x^7 + 3*x^6 - 9*x^5 - 24*x^4 + 31*x^3 + 46*x^2 - 51*x + 6"
"458a1" 458 458 3 13 "(-1, 0, -1/2*a2 - 1/2, 1/2*a2 - 1/2, a2 + 1, -4)" "x^2 + 4*x - 9"
"916c1" 916 458 3 13 "(-1, 0, -1/2*a2 - 1/2, 1/2*a2 - 1/2, a2 + 1, -4)" "x^2 + 4*x - 9"
9.16E+003 916 458 3 4954452093 "(-1, a3 + 1, a3^6 + a3^5 - 9*a3^4 - 2*a3^3 + 21*a3^2 - 14*a3 + 3, a3^6 + a3^5 - 10*a3^4 - 4*a3^3 + 27*a3^2 - 6*a3 - 4, -a3^5 - a3^4 + 9*a3^3 + 3*a3^2 - 21*a3 + 9, -a3^6 + 11*a3^4 - 6*a3^3 - 32*a3^2 + 30*a3 + 2)" "x^7 + 3*x^6 - 9*x^5 - 24*x^4 + 31*x^3 + 46*x^2 - 51*x + 6"
"14a1" 14 459 3 13 "(a8, 0, -a8 - 3, a8 + 2, -3, -2*a8 - 4)" "x^2 + x - 3"
"14a1" 14 459 3 404 "(a12, 0, a12^2 - 6, a12^2 - 2*a12 - 7, 2*a12^2 - 2*a12 - 12, -2*a12^2 + 2*a12 + 11)" "x^3 + x^2 - 7*x - 9"
"14a1" 14 459 3 13 "(a11, 0, -a11 + 3, -a11 + 2, 3, 2*a11 - 4)" "x^2 - x - 3"
"14a1" 14 459 3 404 "(a13, 0, -a13^2 + 6, a13^2 + 2*a13 - 7, -2*a13^2 - 2*a13 + 12, -2*a13^2 - 2*a13 + 11)" "x^3 - x^2 - 7*x + 9"
"17a1" 17 459 3 13 "(a8, 0, -a8 - 3, a8 + 2, -3, -2*a8 - 4)" "x^2 + x - 3"
"153a1" 153 459 3 13 "(a11, 0, -a11 + 3, -a11 + 2, 3, 2*a11 - 4)" "x^2 - x - 3"
"14a1" 14 462 3 12 "(-1, 1, a7 + 2, 1, 1, 2)" "x^2 + 4*x - 8"
"926a1" 926 463 3 1.11E+026 "(a0, 16567/27157*a0^15 + 123555/27157*a0^14 + 7867/2089*a0^13 - 1241603/27157*a0^12 - 2734229/27157*a0^11 + 3506452/27157*a0^10 + 13535438/27157*a0^9 - 203986/27157*a0^8 - 2042287/2089*a0^7 - 10979775/27157*a0^6 + 21686537/27157*a0^5 + 12171527/27157*a0^4 - 6229152/27157*a0^3 - 202430/2089*a0^2 + 913821/27157*a0 - 7771/27157, 6394/2089*a0^15 + 42479/2089*a0^14 + 6706/2089*a0^13 - 475877/2089*a0^12 - 683687/2089*a0^11 + 1793911/2089*a0^10 + 3791707/2089*a0^9 - 2575474/2089*a0^8 - 8085535/2089*a0^7 + 839943/2089*a0^6 + 7462280/2089*a0^5 + 668947/2089*a0^4 - 2727902/2089*a0^3 - 128487/2089*a0^2 + 371447/2089*a0 - 33144/2089, -100601/27157*a0^15 - 682759/27157*a0^14 - 15891/2089*a0^13 + 7436061/27157*a0^12 + 11817341/27157*a0^11 - 26290788/27157*a0^10 - 63030099/27157*a0^9 + 30652400/27157*a0^8 + 9949387/2089*a0^7 + 5968668/27157*a0^6 - 111675910/27157*a0^5 - 24976422/27157*a0^4 + 35430488/27157*a0^3 + 363111/2089*a0^2 - 4565284/27157*a0 + 330669/27157, 51912/27157*a0^15 + 357832/27157*a0^14 + 12242/2089*a0^13 - 3738178/27157*a0^12 - 6545388/27157*a0^11 + 11919997/27157*a0^10 + 33076029/27157*a0^9 - 8494259/27157*a0^8 - 4846435/2089*a0^7 - 15977128/27157*a0^6 + 46393421/27157*a0^5 + 21152721/27157*a0^4 - 8688081/27157*a0^3 - 231023/2089*a0^2 + 593608/27157*a0 - 175870/27157, -178593/27157*a0^15 - 1226292/27157*a0^14 - 35551/2089*a0^13 + 13173181/27157*a0^12 + 21987011/27157*a0^11 - 45123967/27157*a0^10 - 115304471/27157*a0^9 + 46716958/27157*a0^8 + 17954689/2089*a0^7 + 24575881/27157*a0^6 - 197951075/27157*a0^5 - 53985991/27157*a0^4 + 60659504/27157*a0^3 + 783143/2089*a0^2 - 7530115/27157*a0 + 452346/27157)" "x^16 + 9*x^15 + 17*x^14 - 70*x^13 - 282*x^12 + 7*x^11 + 1223*x^10 + 1073*x^9 - 2045*x^8 - 2946*x^7 + 1137*x^6 + 2847*x^5 + 88*x^4 - 954*x^3 - 47*x^2 + 118*x - 9"
"155c1" 155 465 3 12 "(a3, -1, -1, -a3 - 3, -2*a3 + 2, a3 - 3)" "x^2 - 3"
"155b1" 155 465 3 564 "(a4, -1, -1, -a4 + 3, 2*a4, a4 + 1)" "x^3 - x^2 - 5*x + 3"
"930b1" 930 465 3 564 "(a4, -1, -1, -a4 + 3, 2*a4, a4 + 1)" "x^3 - x^2 - 5*x + 3"
"14a1" 14 469 3 81 "(a4, -a4 - 2, a4^2 + 2*a4, 1, -3*a4^2 - 4*a4 + 3, -2*a4^2 - 3*a4 + 2)" "x^3 + 3*x^2 - 3"
"67a1" 67 469 3 20355065832336 "(a8, 1/2*a8^6 - 5*a8^4 + 3/2*a8^3 + 12*a8^2 - 11/2*a8 - 3/2, -1/4*a8^8 - 1/2*a8^7 + 13/4*a8^6 + 21/4*a8^5 - 14*a8^4 - 31/2*a8^3 + 81/4*a8^2 + 39/4*a8 - 9/4, -1, -1/2*a8^7 - 1/2*a8^6 + 5*a8^5 + 7/2*a8^4 - 27/2*a8^3 - 13/2*a8^2 + 8*a8 + 9/2, 1/4*a8^8 - 1/2*a8^7 - 13/4*a8^6 + 19/4*a8^5 + 10*a8^4 - 17/2*a8^3 - 13/4*a8^2 - 19/4*a8 + 5/4)" "x^9 + x^8 - 13*x^7 - 10*x^6 + 53*x^5 + 28*x^4 - 69*x^3 - 12*x^2 + 12*x + 1"
"14a1" 14 470 3 837 "(-1, -1/2*a7 - 1/2, -1, -1/4*a7^2 - a7 + 17/4, -1/4*a7^2 - 1/2*a7 + 15/4, 1/4*a7^2 - 13/4)" "x^3 + 3*x^2 - 21*x - 15"
"94a1" 94 470 3 1373 "(1, 1/2*a9 - 1/2, -1, 0, -1/4*a9^2 + 1/2*a9 + 31/4, -a9 + 3)" "x^3 - 9*x^2 - 5*x + 109"
"940d1" 940 470 3 21 "(-1, -1/2*a6 - 1/2, 1, 4, -1/2*a6 - 7/2, a6 + 3)" "x^2 + 4*x - 17"
"942a1" 942 471 3 5.66E+020 "(a4, 1, a4^11 - 21*a4^9 + a4^8 + 162*a4^7 - 14*a4^6 - 553*a4^5 + 64*a4^4 + 776*a4^3 - 100*a4^2 - 285*a4 - 25, 1/2*a4^11 + 1/2*a4^10 - 19/2*a4^9 - 7*a4^8 + 68*a4^7 + 32*a4^6 - 222*a4^5 - 49*a4^4 + 615/2*a4^3 + 19/2*a4^2 - 219/2*a4 - 16, a4^10 + 3*a4^9 - 14*a4^8 - 42*a4^7 + 66*a4^6 + 194*a4^5 - 120*a4^4 - 322*a4^3 + 75*a4^2 + 137*a4 + 18, -a4^11 - 3/2*a4^10 + 35/2*a4^9 + 41/2*a4^8 - 115*a4^7 - 90*a4^6 + 348*a4^5 + 128*a4^4 - 462*a4^3 - 33/2*a4^2 + 317/2*a4 + 37/2)" "x^12 + x^11 - 20*x^10 - 17*x^9 + 149*x^8 + 106*x^7 - 500*x^6 - 294*x^5 + 711*x^4 + 349*x^3 - 290*x^2 - 173*x - 15"
"14a1" 14 473 3 2.04E+019 "(a6, -19/18*a6^10 - 11/9*a6^9 + 311/18*a6^8 + 56/3*a6^7 - 293/3*a6^6 - 1769/18*a6^5 + 655/3*a6^4 + 601/3*a6^3 - 1465/9*a6^2 - 1829/18*a6 + 136/3, -7/9*a6^10 - 10/9*a6^9 + 116/9*a6^8 + 52/3*a6^7 - 223/3*a6^6 - 836/9*a6^5 + 515/3*a6^4 + 572/3*a6^3 - 1214/9*a6^2 - 878/9*a6 + 125/3, -1/3*a6^10 - 1/3*a6^9 + 17/3*a6^8 + 5*a6^7 - 33*a6^6 - 77/3*a6^5 + 74*a6^4 + 50*a6^3 - 149/3*a6^2 - 59/3*a6 + 10, -1, 1/3*a6^10 + 1/3*a6^9 - 17/3*a6^8 - 5*a6^7 + 34*a6^6 + 77/3*a6^5 - 84*a6^4 - 51*a6^3 + 224/3*a6^2 + 80/3*a6 - 18)" "x^11 + x^10 - 17*x^9 - 15*x^8 + 102*x^7 + 77*x^6 - 255*x^5 - 150*x^4 + 248*x^3 + 59*x^2 - 93*x + 18"
"43a1" 43 473 3 19156584941212 "(a5, a5^8 - 3*a5^7 - 7*a5^6 + 27*a5^5 - 2*a5^4 - 49*a5^3 + 33*a5^2 + 4*a5 - 3, -5*a5^8 + 18*a5^7 + 31*a5^6 - 165*a5^5 + 45*a5^4 + 320*a5^3 - 224*a5^2 - 69*a5 + 21, 2*a5^8 - 8*a5^7 - 11*a5^6 + 74*a5^5 - 31*a5^4 - 148*a5^3 + 115*a5^2 + 40*a5 - 9, 1, 4*a5^8 - 14*a5^7 - 26*a5^6 + 128*a5^5 - 25*a5^4 - 245*a5^3 + 158*a5^2 + 43*a5 - 13)" "x^9 - 4*x^8 - 5*x^7 + 36*x^6 - 20*x^5 - 65*x^4 + 66*x^3 + 4*x^2 - 8*x + 1"
"2365a1" 2365 473 3 2.04E+019 "(a6, -19/18*a6^10 - 11/9*a6^9 + 311/18*a6^8 + 56/3*a6^7 - 293/3*a6^6 - 1769/18*a6^5 + 655/3*a6^4 + 601/3*a6^3 - 1465/9*a6^2 - 1829/18*a6 + 136/3, -7/9*a6^10 - 10/9*a6^9 + 116/9*a6^8 + 52/3*a6^7 - 223/3*a6^6 - 836/9*a6^5 + 515/3*a6^4 + 572/3*a6^3 - 1214/9*a6^2 - 878/9*a6 + 125/3, -1/3*a6^10 - 1/3*a6^9 + 17/3*a6^8 + 5*a6^7 - 33*a6^6 - 77/3*a6^5 + 74*a6^4 + 50*a6^3 - 149/3*a6^2 - 59/3*a6 + 10, -1, 1/3*a6^10 + 1/3*a6^9 - 17/3*a6^8 - 5*a6^7 + 34*a6^6 + 77/3*a6^5 - 84*a6^4 - 51*a6^3 + 224/3*a6^2 + 80/3*a6 - 18)" "x^11 + x^10 - 17*x^9 - 15*x^8 + 102*x^7 + 77*x^6 - 255*x^5 - 150*x^4 + 248*x^3 + 59*x^2 - 93*x + 18"
"158c1" 158 474 3 151717 "(1, -1, a5 - 3, 3/4*a5^3 - 7*a5^2 + 7*a5 + 117/4, -5/4*a5^3 + 12*a5^2 - 15*a5 - 167/4, -1/4*a5^3 + 2*a5^2 - a5 - 19/4)" "x^4 - 13*x^3 + 44*x^2 - x - 127"
"50b1" 50 475 3 11344 "(a8, -a8^3 + 5*a8 + 2, 0, 2*a8^2 - 2*a8 - 8, 2*a8^2 - 2*a8 - 6, a8^3 - 2*a8^2 - 3*a8 + 4)" "x^4 - 2*x^3 - 6*x^2 + 8*x + 9"
"14a1" 14 476 3 13 "(0, -1/2*a3, -1/2*a3 - 1, 1, 0, a3 + 4)" "x^2 + 2*x - 12"
"238b1" 238 476 3 13 "(0, -1/2*a2, -1/2*a2 + 1, -1, 4, -a2)" "x^2 - 2*x - 12"
"238d1" 238 476 3 13 "(0, -1/2*a2, -1/2*a2 + 1, -1, 4, -a2)" "x^2 - 2*x - 12"
"238a1" 238 476 3 13 "(0, a0, -a0 - 3, 1, 2*a0 + 4, -2*a0 - 6)" "x^2 + 3*x - 1"
"238c1" 238 476 3 13 "(0, -1/2*a3, -1/2*a3 - 1, 1, 0, a3 + 4)" "x^2 + 2*x - 12"
2.38E+003 238 476 3 13 "(0, a0, -a0 - 3, 1, 2*a0 + 4, -2*a0 - 6)" "x^2 + 3*x - 1"
"14a1" 14 477 3 1957 "(a3, 0, -a3^3 - a3^2 + 2*a3, -a3^3 - 3*a3^2 + 2*a3 + 5, 4*a3^3 + 6*a3^2 - 12*a3 - 12, 3*a3^3 + 5*a3^2 - 8*a3 - 10)" "x^4 + 3*x^3 - x^2 - 7*x - 3"
"53a1" 53 477 3 1957 "(a2, 0, -a2^3 - 3*a2^2 + 2, a2^3 + 3*a2^2 - 3, 2*a2^2 + 2*a2 - 6, a2^3 - a2^2 - 6*a2 + 2)" "x^4 + 3*x^3 - x^2 - 5*x + 1"
"477a1" 477 477 3 1957 "(a4, 0, -a4^3 + 3*a4^2 - 2, -a4^3 + 3*a4^2 - 3, -2*a4^2 + 2*a4 + 6, -a4^3 - a4^2 + 6*a4 + 2)" "x^4 - 3*x^3 - x^2 + 5*x + 1"
"956a1" 956 478 3 398885 "(1, a2 - 1, -a2^4 + 5*a2^3 - 3*a2^2 - 8*a2 + 1, -a2^2 + 2*a2 + 3, a2^4 - 5*a2^3 + 3*a2^2 + 7*a2 + 2, 2*a2^4 - 9*a2^3 + 2*a2^2 + 17*a2 + 4)" "x^5 - 7*x^4 + 12*x^3 + 7*x^2 - 20*x - 5"
"14a1" 14 481 3 200018349 "(a2, -2*a2^6 - a2^5 + 16*a2^4 + 5*a2^3 - 33*a2^2 - 2*a2 + 13, a2^6 + a2^5 - 8*a2^4 - 6*a2^3 + 16*a2^2 + 5*a2 - 6, a2^4 - 6*a2^2 + 5, 3*a2^6 - 26*a2^4 + 2*a2^3 + 61*a2^2 - 9*a2 - 33, 1)" "x^7 + x^6 - 8*x^5 - 7*x^4 + 17*x^3 + 12*x^2 - 9*x - 6"
1.44E+004 1443 481 3 1.72E+018 "(a4, -5/4*a4^10 + 5/2*a4^9 + 16*a4^8 - 129/4*a4^7 - 241/4*a4^6 + 120*a4^5 + 293/4*a4^4 - 130*a4^3 - 139/4*a4^2 + 101/4*a4 + 5/2, -1/4*a4^10 + 5/4*a4^9 + 11/4*a4^8 - 16*a4^7 - 27/4*a4^6 + 237/4*a4^5 - 125/2*a4^3 - 13/4*a4^2 + 9*a4 + 1, 3/8*a4^10 - 1/4*a4^9 - 11/2*a4^8 + 27/8*a4^7 + 215/8*a4^6 - 13*a4^5 - 423/8*a4^4 + 27/2*a4^3 + 321/8*a4^2 + 17/8*a4 - 21/4, 3/8*a4^10 - 1/2*a4^9 - 19/4*a4^8 + 53/8*a4^7 + 139/8*a4^6 - 103/4*a4^5 - 145/8*a4^4 + 32*a4^3 + 29/8*a4^2 - 97/8*a4 + 1/4, 1)" "x^11 - 3*x^10 - 12*x^9 + 39*x^8 + 38*x^7 - 149*x^6 - 23*x^5 + 175*x^4 - 5*x^3 - 48*x^2 + 5*x + 2"
"14a1" 14 482 3 131357120 "(-1, 1/2*a3 + 1/2, 1/64*a3^5 + 3/64*a3^4 - 17/32*a3^3 - 43/32*a3^2 + 209/64*a3 + 291/64, -1/32*a3^4 - 1/16*a3^3 + a3^2 + 21/16*a3 - 103/32, -1/4*a3^2 + 13/4, 1/16*a3^3 - 1/16*a3^2 - 21/16*a3 + 53/16)" "x^6 + 2*x^5 - 45*x^4 - 52*x^3 + 535*x^2 + 82*x - 1291"
"964a1" 964 482 3 372845137445376 "(1, 1/2*a4 - 1/2, 15/4096*a4^8 - 99/2048*a4^7 + 9/2048*a4^6 + 3793/2048*a4^5 - 871/256*a4^4 - 43561/2048*a4^3 + 80487/2048*a4^2 + 162747/2048*a4 - 331391/4096, 1/1024*a4^8 - 7/512*a4^7 + 5/512*a4^6 + 261/512*a4^5 - 317/256*a4^4 - 2885/512*a4^3 + 7027/512*a4^2 + 10567/512*a4 - 26621/1024, 13/2048*a4^8 - 85/1024*a4^7 + 7/1024*a4^6 + 3191/1024*a4^5 - 1459/256*a4^4 - 35263/1024*a4^3 + 65465/1024*a4^2 + 124829/1024*a4 - 263669/2048, -91/4096*a4^8 + 603/2048*a4^7 - 105/2048*a4^6 - 22809/2048*a4^5 + 10911/512*a4^4 + 256209/2048*a4^3 - 495415/2048*a4^2 - 932371/2048*a4 + 2050723/4096)" "x^9 - 17*x^8 + 52*x^7 + 492*x^6 - 2834*x^5 - 2030*x^4 + 31876*x^3 - 20132*x^2 - 98727*x + 83127"
"21a1" 21 483 3 13 "(a4, 1, -a4 - 3, -1, -5, -a4)" "x^2 + x - 3"
"69a1" 69 483 3 837 "(a7, 1, -a7 + 1, -1, a7^2 - a7 - 2, -a7^2 + 7)" "x^3 - 6*x - 1"
9.66E+003 966 483 3 13 "(a4, 1, -a4 - 3, -1, -5, -a4)" "x^2 + x - 3"
"121b1" 121 484 3 33 "(0, -1/2*a3, 1/2*a3 + 2, 0, 0, 0)" "x^2 + 2*x - 32"
"121b1" 121 484 3 12 "(0, 2, 3, -a4 - 7, 0, 3/2*a4 + 21/2)" "x^2 + 14*x + 37"
"485b1" 485 485 3 1957 "(a5, -a5^3 - a5^2 + 2*a5, 1, a5^3 + 2*a5^2 - 2*a5 - 4, -a5^2 - a5 - 2, 2*a5^3 - 6*a5 + 1)" "x^4 + x^3 - 4*x^2 - 2*x + 3"
"14a1" 14 486 3 81 "(1, 0, 1/2*a7 - 1/2, 1/4*a7^2 - 17/4, -1/4*a7^2 - 1/2*a7 + 27/4, -1/2*a7^2 - a7 + 31/2)" "x^3 - 3*x^2 - 33*x + 107"
"14a1" 14 486 3 81 "(-1, 0, a6 + 1, a6^2 + a6 - 4, a6^2 - 7, -2*a6^2 + 16)" "x^3 + 3*x^2 - 6*x - 17"
"14a1" 14 487 3 1.33E+028 "(a3, -7/15*a3^15 + 49/15*a3^14 + 1/3*a3^13 - 707/15*a3^12 + 313/5*a3^11 + 3839/15*a3^10 - 7567/15*a3^9 - 9707/15*a3^8 + 24712/15*a3^7 + 3888/5*a3^6 - 12804/5*a3^5 - 6799/15*a3^4 + 5450/3*a3^3 + 867/5*a3^2 - 6464/15*a3 - 37, 43/35*a3^15 - 276/35*a3^14 - 44/7*a3^13 + 629/5*a3^12 - 3121/35*a3^11 - 4023/5*a3^10 + 4709/5*a3^9 + 94118/35*a3^8 - 121943/35*a3^7 - 26023/5*a3^6 + 211363/35*a3^5 + 212736/35*a3^4 - 4744*a3^3 - 137484/35*a3^2 + 41761/35*a3 + 6381/7, -6/35*a3^15 - 73/35*a3^14 + 166/7*a3^13 - 93/5*a3^12 - 10898/35*a3^11 + 2936/5*a3^10 + 7872/5*a3^9 - 142811/35*a3^8 - 124834/35*a3^7 + 63331/5*a3^6 + 115764/35*a3^5 - 674122/35*a3^4 - 764*a3^3 + 474463/35*a3^2 - 1877/35*a3 - 22396/7, -a3^4 + a3^3 + 6*a3^2 - 3*a3 - 6, 146/105*a3^15 - 557/105*a3^14 - 635/21*a3^13 + 1948/15*a3^12 + 8276/35*a3^11 - 18526/15*a3^10 - 11962/15*a3^9 + 622486/105*a3^8 + 92914/105*a3^7 - 77067/5*a3^6 + 31587/35*a3^5 + 2251292/105*a3^4 - 6565/3*a3^3 - 506381/35*a3^2 + 78247/105*a3 + 23451/7)" "x^16 - 7*x^15 - 5*x^14 + 131*x^13 - 132*x^12 - 977*x^11 + 1666*x^10 + 3671*x^9 - 8191*x^8 - 7212*x^7 + 20571*x^6 + 6937*x^5 - 27100*x^4 - 2748*x^3 + 17207*x^2 + 360*x - 3825"
"14a1" 14 487 3 13 "(0, a1, a1 - 1, -1, -2*a1 + 5, -a1 + 3)" "x^2 - 3*x - 1"
"974c1" 974 487 3 257 "(a2, 2, 2, 2, -2*a2^2 - 4*a2 + 8, -2)" "x^3 - 5*x + 3"
"974b1" 974 487 3 13 "(0, a1, a1 - 1, -1, -2*a1 + 5, -a1 + 3)" "x^2 - 3*x - 1"
"974a1" 974 487 3 1.33E+028 "(a3, -7/15*a3^15 + 49/15*a3^14 + 1/3*a3^13 - 707/15*a3^12 + 313/5*a3^11 + 3839/15*a3^10 - 7567/15*a3^9 - 9707/15*a3^8 + 24712/15*a3^7 + 3888/5*a3^6 - 12804/5*a3^5 - 6799/15*a3^4 + 5450/3*a3^3 + 867/5*a3^2 - 6464/15*a3 - 37, 43/35*a3^15 - 276/35*a3^14 - 44/7*a3^13 + 629/5*a3^12 - 3121/35*a3^11 - 4023/5*a3^10 + 4709/5*a3^9 + 94118/35*a3^8 - 121943/35*a3^7 - 26023/5*a3^6 + 211363/35*a3^5 + 212736/35*a3^4 - 4744*a3^3 - 137484/35*a3^2 + 41761/35*a3 + 6381/7, -6/35*a3^15 - 73/35*a3^14 + 166/7*a3^13 - 93/5*a3^12 - 10898/35*a3^11 + 2936/5*a3^10 + 7872/5*a3^9 - 142811/35*a3^8 - 124834/35*a3^7 + 63331/5*a3^6 + 115764/35*a3^5 - 674122/35*a3^4 - 764*a3^3 + 474463/35*a3^2 - 1877/35*a3 - 22396/7, -a3^4 + a3^3 + 6*a3^2 - 3*a3 - 6, 146/105*a3^15 - 557/105*a3^14 - 635/21*a3^13 + 1948/15*a3^12 + 8276/35*a3^11 - 18526/15*a3^10 - 11962/15*a3^9 + 622486/105*a3^8 + 92914/105*a3^7 - 77067/5*a3^6 + 31587/35*a3^5 + 2251292/105*a3^4 - 6565/3*a3^3 - 506381/35*a3^2 + 78247/105*a3 + 23451/7)" "x^16 - 7*x^15 - 5*x^14 + 131*x^13 - 132*x^12 - 977*x^11 + 1666*x^10 + 3671*x^9 - 8191*x^8 - 7212*x^7 + 20571*x^6 + 6937*x^5 - 27100*x^4 - 2748*x^3 + 17207*x^2 + 360*x - 3825"
"974c1" 974 487 3 13 "(0, a0, -a0 + 1, 2*a0 + 1, -1, a0 + 5)" "x^2 + x - 3"
"974d1" 974 487 3 13 "(0, a0, -a0 + 1, 2*a0 + 1, -1, a0 + 5)" "x^2 + x - 3"
"123b1" 123 492 3 24 "(0, -1, -a2 + 2, -a2 + 6, a2 - 5, a2 - 2)" "x^2 - 8*x + 10"
"246b1" 246 492 3 12 "(0, 1, 1/2*a3 + 1/2, 1/2*a3 + 1/2, -1/2*a3 + 5/2, -1/2*a3 - 1/2)" "x^2 - 2*x - 11"
"14a1" 14 493 3 948361400152 "(a6, -a6^2 + a6 + 4, a6^6 - 2*a6^5 - 8*a6^4 + 12*a6^3 + 21*a6^2 - 16*a6 - 18, -1/2*a6^7 + a6^6 + 4*a6^5 - 11/2*a6^4 - 11*a6^3 + 5*a6^2 + 21/2*a6 + 7/2, -a6^5 + 2*a6^4 + 6*a6^3 - 9*a6^2 - 8*a6 + 6, -1/2*a6^7 + a6^6 + 4*a6^5 - 13/2*a6^4 - 10*a6^3 + 10*a6^2 + 17/2*a6 + 1/2)" "x^8 - 3*x^7 - 10*x^6 + 29*x^5 + 37*x^4 - 88*x^3 - 65*x^2 + 80*x + 51"
"986b1" 986 493 3 270017 "(a4, -a4^2 - a4 + 2, -a4^4 - a4^3 + 4*a4^2 + a4 - 2, a4^4 + 2*a4^3 - 2*a4^2 - 3*a4 - 2, -a4^3 + 3*a4 - 5, -a4^3 - a4^2 + 3*a4 - 1)" "x^5 + 2*x^4 - 5*x^3 - 7*x^2 + 7*x + 3"
"14a1" 14 494 3 16609 "(1, -1/2*a7 + 1/2, -1/4*a7^2 + 1/2*a7 + 15/4, -1/8*a7^3 + 1/8*a7^2 + 17/8*a7 + 7/8, 1/8*a7^3 + 1/8*a7^2 - 17/8*a7 - 17/8, 1)" "x^4 - 26*x^2 - 8*x + 113"
"1482a1" 1482 494 3 81 "(-1, -1/2*a4 - 1/2, 5/12*a4^2 + 1/6*a4 - 115/12, 1/6*a4^2 + 2/3*a4 - 41/6, 1/12*a4^2 - 2/3*a4 - 29/12, -1)" "x^3 - 3*x^2 - 33*x + 107"
"14a1" 14 495 3 48704 "(a6, 0, 1, -a6^3 + 5*a6 + 2, -1, a6^3 - 7*a6 + 2)" "x^4 - 2*x^3 - 6*x^2 + 10*x + 3"
"14a1" 14 495 3 48704 "(a5, 0, -1, a5^3 - 5*a5 + 2, 1, -a5^3 + 7*a5 + 2)" "x^4 + 2*x^3 - 6*x^2 - 10*x + 3"
"14a1" 14 495 3 12 "(a2, 0, 1, 2, 1, 2*a2 + 2)" "x^2 - 3"
"55a1" 55 495 3 48704 "(a6, 0, 1, -a6^3 + 5*a6 + 2, -1, a6^3 - 7*a6 + 2)" "x^4 - 2*x^3 - 6*x^2 + 10*x + 3"
"495a1" 495 495 3 48704 "(a5, 0, -1, a5^3 - 5*a5 + 2, 1, -a5^3 + 7*a5 + 2)" "x^4 + 2*x^3 - 6*x^2 - 10*x + 3"
"80b1" 80 496 3 12 "(0, 1/2*a7, a7 + 2, -2, 1/2*a7 + 4, 3/2*a7 + 2)" "x^2 + 4*x - 8"
"1488f1" 1488 496 3 33 "(0, -2, -1/2*a6 + 1, -1/2*a6 - 1, 2, a6 + 2)" "x^2 + 2*x - 32"
"14a1" 14 497 3 4.08E+027 "(a4, -433/36186*a4^14 - 383/72372*a4^13 + 2199/6031*a4^12 + 7771/72372*a4^11 - 2116/489*a4^10 - 56773/72372*a4^9 + 304817/12062*a4^8 + 61935/24124*a4^7 - 1808897/24124*a4^6 - 161119/36186*a4^5 + 7457797/72372*a4^4 + 130151/18093*a4^3 - 3456883/72372*a4^2 - 85085/12062*a4 + 87343/24124, -4051/36186*a4^14 + 4121/36186*a4^13 + 16311/6031*a4^12 - 44429/18093*a4^11 - 24983/978*a4^10 + 705535/36186*a4^9 + 721195/6031*a4^8 - 836063/12062*a4^7 - 3479137/12062*a4^6 + 1872493/18093*a4^5 + 5996392/18093*a4^4 - 1517627/36186*a4^3 - 4765871/36186*a4^2 - 22552/6031*a4 + 30228/6031, 1, -2049/24124*a4^14 + 1765/12062*a4^13 + 49663/24124*a4^12 - 18575/6031*a4^11 - 12625/652*a4^10 + 286447/12062*a4^9 + 2148733/24124*a4^8 - 1963813/24124*a4^7 - 1245778/6031*a4^6 + 2815609/24124*a4^5 + 1341876/6031*a4^4 - 1094923/24124*a4^3 - 983403/12062*a4^2 - 148693/24124*a4 + 20022/6031, -11269/72372*a4^14 + 7735/36186*a4^13 + 97481/24124*a4^12 - 85675/18093*a4^11 - 80699/1956*a4^10 + 714844/18093*a4^9 + 5042117/24124*a4^8 - 3721257/24124*a4^7 - 3255180/6031*a4^6 + 20381369/72372*a4^5 + 11573540/18093*a4^4 - 14590109/72372*a4^3 - 4218059/18093*a4^2 + 733715/24124*a4 + 63571/12062)" "x^15 - 2*x^14 - 24*x^13 + 46*x^12 + 224*x^11 - 406*x^10 - 1026*x^9 + 1731*x^8 + 2373*x^7 - 3662*x^6 - 2504*x^5 + 3488*x^4 + 818*x^3 - 1062*x^2 - 54*x + 27"
"14a1" 14 498 3 21 "(-1, 1, -1/2*a2, 1/2*a2 - 1, 0, -1/2*a2 + 5)" "x^2 - 6*x - 12"
"166a1" 166 498 3 621 "(-1, -1, a5 + 3, -a5 - 4, 1/3*a5^2 + 1/3*a5 - 17/3, -2/3*a5^2 - 11/3*a5 - 2/3)" "x^3 + 9*x^2 + 15*x - 16"
"46a1" 46 23 5 5 "(a0, -2*a0 - 1, 2*a0, 2*a0 + 2, -2*a0 - 4, 3)" "x^2 + x - 1"
"11a1" 11 31 5 5 "(a0, -2*a0, 1, 2*a0 - 3, 2, -2*a0)" "x^2 - x - 1"
"11a1" 11 41 5 148 "(a0, -1/2*a0^2 - a0 + 3/2, -a0 - 1, 1/2*a0^2 + a0 + 1/2, 3/2*a0^2 + a0 - 9/2, -a0^2 + 3)" "x^3 + x^2 - 5*x - 1"
"106d1" 106 53 5 148 "(a1, -a1^2 - a1 + 3, a1^2 - 3, a1^2 - 1, a1^2 + 2*a1 - 3, 1)" "x^3 + x^2 - 3*x - 1"
"11a1" 11 61 5 148 "(a1, -a1^2 + 3, a1^2 - 2*a1 - 2, a1^2 - a1 - 3, a1 + 4, -2*a1^2 + 2*a1 + 1)" "x^3 - x^2 - 3*x + 1"
"67a1" 67 67 5 5 "(a2, a2 + 1, -2*a2 + 1, -a2, 1, a2)" "x^2 + x - 1"
"201c1" 201 67 5 5 "(a1, -a1 - 3, -3, 3*a1 + 4, -2*a1 - 3, -3*a1 - 8)" "x^2 + 3*x + 1"
"345a1" 345 69 5 5 "(a1, -1, -a1 - 1, -a1 + 1, 4, 2*a1)" "x^2 - 5"
"11a1" 11 71 5 257 "(a1, -a1^2 + 3, -a1 - 1, 2*a1^2 + 2*a1 - 6, -2*a1^2 - 2*a1 + 6, 4)" "x^3 - 5*x + 3"
"497a1" 497 71 5 257 "(a0, -a0, -a0^2 + a0 + 5, -2*a0, 2*a0^2 - 6, -2*a0^2 + 4)" "x^3 + x^2 - 4*x - 3"
"219c1" 219 73 5 5 "(a1, -a1 - 3, a1, -3, -a1 - 3, 3*a1 + 5)" "x^2 + 3*x + 1"
"37a1" 37 74 5 5 "(1, 1/2*a1 - 1/2, -3/2*a1 + 1/2, a1 - 1, -1/2*a1 - 5/2, 3/2*a1 + 1/2)" "x^2 - 5"
"77b1" 77 77 5 5 "(a3, -a3 + 1, -2, 1, -1, a3 + 1)" "x^2 - 5"
"913a1" 913 83 5 9059636 "(a1, 1/2*a1^4 - 1/2*a1^3 - 7/2*a1^2 + 3/2*a1 + 4, -1/2*a1^5 - 1/2*a1^4 + 9/2*a1^3 + 7/2*a1^2 - 8*a1 - 2, 3/4*a1^5 - 1/4*a1^4 - 25/4*a1^3 + 3/4*a1^2 + 19/2*a1, -1/4*a1^5 + 1/4*a1^4 + 5/4*a1^3 + 1/4*a1^2 - 4, a1^3 - 5*a1 + 2)" "x^6 - x^5 - 9*x^4 + 7*x^3 + 20*x^2 - 12*x - 8"
"43a1" 43 86 5 5 "(1, 1/2*a1 - 1/2, -1/2*a1 - 1/2, -2*a1 + 4, 2*a1 - 6, 2*a1 - 4)" "x^2 - 4*x - 1"
"258c1" 258 86 5 21 "(-1, 1/2*a0 + 1/2, -1/2*a0 + 1/2, 2, 0, 2)" "x^2 + 4*x - 17"
"430b1" 430 86 5 21 "(-1, 1/2*a0 + 1/2, -1/2*a0 + 1/2, 2, 0, 2)" "x^2 + 4*x - 17"
"11a1" 11 87 5 5 "(a0, 1, -2*a0 + 2, -2*a0 - 1, 2*a0 + 1, 4*a0 - 3)" "x^2 - x - 1"
"89b1" 89 89 5 535120 "(a2, -1/2*a2^4 + 1/2*a2^3 + 7/2*a2^2 - 5/2*a2 - 4, -a2^2 + 4, 1/2*a2^4 - 4*a2^2 - a2 + 13/2, -a2^3 + 5*a2 + 2, -a2^4 + a2^3 + 8*a2^2 - 5*a2 - 11)" "x^5 + x^4 - 10*x^3 - 10*x^2 + 21*x + 17"
"651a1" 651 93 5 5 "(a0, -1, -2*a0 - 5, 2*a0 + 1, 2*a0, 2*a0 + 2)" "x^2 + 3*x + 1"
"11a1" 11 95 5 148 "(a0, -a0^2 + 3, 1, 2*a0^2 - 2*a0 - 4, -2*a0 - 2, a0^2 - 2*a0 + 1)" "x^3 - x^2 - 3*x + 1"
"285a1" 285 95 5 11344 "(a1, -a1^3 + 5*a1 - 2, -1, -2*a1^2 - 2*a1 + 8, 2*a1^2 + 2*a1 - 6, a1^3 + 2*a1^2 - 3*a1 - 4)" "x^4 + 2*x^3 - 6*x^2 - 8*x + 9"
"11a1" 11 101 5 1124401088 "(a1, 1/4*a1^6 + 1/4*a1^5 - 5/2*a1^4 - 5/2*a1^3 + 19/4*a1^2 + 17/4*a1 + 1/2, -1/2*a1^6 - 3/4*a1^5 + 11/2*a1^4 + 7*a1^3 - 29/2*a1^2 - 45/4*a1 + 15/2, -1/4*a1^5 - 1/2*a1^4 + 5/2*a1^3 + 4*a1^2 - 21/4*a1 - 7/2, -1/4*a1^6 + 3*a1^4 - 35/4*a1^2 + 5, 3/4*a1^6 + a1^5 - 17/2*a1^4 - 9*a1^3 + 91/4*a1^2 + 12*a1 - 10)" "x^7 - 13*x^5 + 2*x^4 + 47*x^3 - 16*x^2 - 43*x + 14"
"309a1" 309 103 5 6999257 "(a1, -a1^5 + 3*a1^4 + 3*a1^3 - 11*a1^2 - a1 + 8, 2*a1^5 - 5*a1^4 - 9*a1^3 + 19*a1^2 + 9*a1 - 13, -a1^4 + 2*a1^3 + 4*a1^2 - 5*a1 - 3, -a1^5 + 2*a1^4 + 4*a1^3 - 4*a1^2 - 4*a1 - 1, 2*a1^5 - 4*a1^4 - 11*a1^3 + 15*a1^2 + 14*a1 - 11)" "x^6 - 4*x^5 - x^4 + 17*x^3 - 9*x^2 - 16*x + 11"
"1339a1" 1339 103 5 5 "(a0, -1, -a0 - 3, -1, a0, 3*a0 + 3)" "x^2 + 3*x + 1"
"35a1" 35 105 5 5 "(a1, -1, -1, 1, -2*a1 + 2, -2*a1)" "x^2 - 5"
"214c1" 214 107 5 5 "(a0, -a0 - 2, -a0 - 2, 2*a0 - 1, 2*a0 + 3, -6)" "x^2 + x - 1"
"37b1" 37 111 5 148 "(a0, -1, -a0^2 + 5, -2*a0^2 + 2*a0 + 4, 2*a0^2 - 4*a0 - 2, 2*a0^2 - 4*a0 - 4)" "x^3 - 3*x^2 - x + 5"
"555a1" 555 111 5 6224 "(a1, 1, -a1^3 - 2*a1^2 + 3*a1 + 4, 2*a1^3 + 2*a1^2 - 8*a1 - 2, 2*a1^2 - 6, -2*a1^3 - 4*a1^2 + 6*a1 + 10)" "x^4 - 6*x^2 + 2*x + 5"
"345c1" 345 115 5 5 "(a1, -1, -1, -2*a1 - 4, 2*a1 + 2, 2*a1 - 1)" "x^2 + 3*x + 1"
2.38E+003 238 119 5 9301 "(a0, -a0^3 - a0^2 + 4*a0 + 1, a0^3 + a0^2 - 4*a0, 1, -2*a0, 2*a0^3 + 4*a0^2 - 6*a0 - 4)" "x^4 + x^3 - 5*x^2 - x + 3"
"11a1" 11 125 5 5 "(a1, -a1 + 2, 0, 3, -3, 3*a1)" "x^2 - x - 1"
"11a1" 11 125 5 4400 "(a2, -1/2*a2^3 + 5/2*a2, 0, 1/2*a2^3 - 7/2*a2, 2, -2*a2)" "x^4 - 8*x^2 + 11"
"50a1" 50 125 5 5 "(a0, -a0 - 2, 0, -3, -3, 3*a0)" "x^2 + x - 1"
"50a1" 50 125 5 4400 "(a2, -1/2*a2^3 + 5/2*a2, 0, 1/2*a2^3 - 7/2*a2, 2, -2*a2)" "x^4 - 8*x^2 + 11"
"381a1" 381 127 5 603651293 "(a1, a1^6 - 2*a1^5 - 6*a1^4 + 12*a1^3 + 4*a1^2 - 11*a1 + 4, -a1^6 + a1^5 + 8*a1^4 - 6*a1^3 - 16*a1^2 + 5*a1 + 9, -a1^5 + a1^4 + 7*a1^3 - 7*a1^2 - 9*a1 + 8, a1^6 - 2*a1^5 - 6*a1^4 + 13*a1^3 + 3*a1^2 - 15*a1 + 6, -2*a1^6 + 6*a1^5 + 11*a1^4 - 38*a1^3 - 2*a1^2 + 39*a1 - 13)" "x^7 - 2*x^6 - 8*x^5 + 15*x^4 + 17*x^3 - 28*x^2 - 11*x + 15"
"129b1" 129 129 5 568 "(a3, 1, -a3 - 2, -a3^2 + 6, a3^2 - a3 - 5, 3)" "x^3 + 2*x^2 - 5*x - 8"
"11a1" 11 131 5 2.23E+015 "(a1, 1/8*a1^8 - 2*a1^6 + 81/8*a1^4 - 67/4*a1^2 + 5, -1/16*a1^9 + 9/8*a1^7 + 1/8*a1^6 - 107/16*a1^5 - 9/8*a1^4 + 117/8*a1^3 + 7/4*a1^2 - 9*a1 + 1, -1/8*a1^9 - 1/4*a1^8 + 7/4*a1^7 + 7/2*a1^6 - 57/8*a1^5 - 63/4*a1^4 + 11/2*a1^3 + 47/2*a1^2 + 15/2*a1 - 3, -1/16*a1^9 + 9/8*a1^7 - 3/8*a1^6 - 107/16*a1^5 + 31/8*a1^4 + 117/8*a1^3 - 35/4*a1^2 - 11*a1 + 2, 1/16*a1^9 + 1/8*a1^8 - 7/8*a1^7 - 15/8*a1^6 + 55/16*a1^5 + 17/2*a1^4 - 17/8*a1^3 - 21/2*a1^2 - 5*a1 + 1)" "x^10 - 18*x^8 + 2*x^7 + 111*x^6 - 18*x^5 - 270*x^4 + 28*x^3 + 232*x^2 + 16*x - 32"
"11a1" 11 133 5 5 "(a2, -a2 + 2, 1, 1, a2 - 1, -1)" "x^2 - x - 1"
"399a1" 399 133 5 5 "(a0, a0, -2*a0 - 3, -1, a0 - 3, 1)" "x^2 + 3*x + 1"
"67a1" 67 134 5 473 "(-1, a0 + 1, a0^2 + 3*a0 - 3, -2*a0^2 - 6*a0 + 8, -a0^2 - 4*a0 + 3, a0^2 + 2*a0 - 1)" "x^3 + 2*x^2 - 7*x + 3"
"408d1" 408 136 5 5 "(0, a2, 2, -a2, -a2, 2*a2 + 2)" "x^2 + 2*x - 4"
"690i1" 690 138 5 5 "(1, 1, 1/2*a3, -a3 - 2, -1/2*a3 - 4, a3 + 2)" "x^2 + 4*x - 16"
"286a1" 286 143 5 194616205 "(a2, -a2^5 - a2^4 + 8*a2^3 + 6*a2^2 - 11*a2 - 5, a2^5 + 2*a2^4 - 8*a2^3 - 14*a2^2 + 12*a2 + 15, 2*a2^5 + 2*a2^4 - 17*a2^3 - 13*a2^2 + 26*a2 + 14, -1, 1)" "x^6 - 10*x^4 + 2*x^3 + 24*x^2 - 7*x - 12"
"11a1" 11 145 5 148 "(a2, -a2^2 + 3, 1, a2^2 - 1, a2^2 - 2*a2 - 1, -2*a2)" "x^3 - x^2 - 3*x + 1"
"435b1" 435 145 5 148 "(a3, -a3^2 + 2*a3 + 1, -1, -a3^2 + 3, a3^2 - 2*a3 + 1, 2*a3 - 4)" "x^3 - 3*x^2 - x + 5"
"730h1" 730 146 5 6224 "(1, -a1 + 1, 1/2*a1^3 - 2*a1^2 + 1/2*a1 + 2, -a1^3 + 7/2*a1^2 + 3*a1 - 9/2, a1^2 - 2*a1 - 3, -3/2*a1^2 + 4*a1 + 5/2)" "x^4 - 4*x^3 - 2*x^2 + 8*x + 1"
"11a1" 11 151 5 4838537 "(a2, -a2^5 + a2^4 + 7*a2^3 - 4*a2^2 - 12*a2 - 1, a2^5 - a2^4 - 6*a2^3 + 3*a2^2 + 9*a2 + 2, -a2^4 + 3*a2^2 + 3*a2 + 3, a2^3 - 5*a2, 2*a2^5 - 3*a2^4 - 11*a2^3 + 12*a2^2 + 13*a2 - 4)" "x^6 - x^5 - 7*x^4 + 3*x^3 + 13*x^2 + 3*x - 1"
"302c1" 302 151 5 257 "(a1, 2, -a1^2 - 2*a1 + 5, -2, 2*a1^2 + a1 - 7, -2*a1^2 + 6)" "x^3 - 5*x + 3"
"11a1" 11 154 5 5 "(1, -1/2*a3 + 1/2, 1/2*a3 - 1/2, 1, 1, 1/2*a3 - 5/2)" "x^2 - 6*x - 11"
"314a1" 314 157 5 24217 "(a0, -a0^4 - 3*a0^3 + 3*a0 - 1, 2*a0^4 + 7*a0^3 + a0^2 - 10*a0 - 2, -a0^4 - 5*a0^3 - 4*a0^2 + 6*a0 + 2, -a0^4 - 2*a0^3 + 4*a0^2 + 5*a0 - 6, a0^3 + 3*a0^2 + a0 - 3)" "x^5 + 5*x^4 + 5*x^3 - 6*x^2 - 7*x + 1"
"158d1" 158 158 5 24 "(-1, -1/2*a5 - 1/2, -2, 4, 0, a5 + 3)" "x^2 + 2*x - 23"
"474b1" 474 158 5 24 "(-1, -1/2*a5 - 1/2, -2, 4, 0, a5 + 3)" "x^2 + 2*x - 23"
"795b1" 795 159 5 1054013 "(a1, -1, -a1^3 - a1^2 + 6*a1 + 4, 1/3*a1^4 + 4/3*a1^3 - 2*a1^2 - 7*a1 + 4/3, -2/3*a1^4 - 2/3*a1^3 + 4*a1^2 + 2*a1 - 2/3, 2/3*a1^4 - 1/3*a1^3 - 5*a1^2 + 2*a1 + 20/3)" "x^5 - 10*x^3 + 22*x + 5"
"161a1" 161 161 5 2147108 "(a3, 1/2*a3^4 - 1/2*a3^3 - 4*a3^2 + 5/2*a3 + 11/2, -1/2*a3^4 - 1/2*a3^3 + 5*a3^2 + 5/2*a3 - 21/2, 1, -a3^4 + 8*a3^2 + a3 - 12, a3^4 - 9*a3^2 + 14)" "x^5 - 2*x^4 - 9*x^3 + 17*x^2 + 16*x - 27"
"322d1" 322 161 5 148 "(a2, -1/2*a2^2 + 5/2, -1/2*a2^2 + 5/2, -1, -a2 + 1, a2^2 - 3)" "x^3 + x^2 - 5*x - 1"
"483a1" 483 161 5 5 "(a1, -1, -2*a1 - 2, -1, 4*a1 + 2, 2*a1 - 1)" "x^2 + x - 1"
"326b1" 326 163 5 660293912 "(a2, a2^5 - a2^4 - 6*a2^3 + 5*a2^2 + 5*a2 - 2, -a2^6 + a2^5 + 7*a2^4 - 6*a2^3 - 11*a2^2 + 6*a2 + 6, a2^6 - 2*a2^5 - 7*a2^4 + 12*a2^3 + 11*a2^2 - 11*a2 - 4, a2^6 - 2*a2^5 - 7*a2^4 + 12*a2^3 + 12*a2^2 - 12*a2 - 6, -a2^6 + a2^5 + 8*a2^4 - 6*a2^3 - 16*a2^2 + 5*a2 + 8)" "x^7 - 3*x^6 - 5*x^5 + 19*x^4 - 23*x^2 + 4*x + 6"
"1141a1" 1141 163 5 65657 "(a1, -2*a1^4 - 5*a1^3 + 6*a1^2 + 13*a1 - 3, 2*a1^4 + 5*a1^3 - 7*a1^2 - 15*a1 + 2, 3*a1^4 + 8*a1^3 - 8*a1^2 - 22*a1 - 1, -a1^4 - 4*a1^3 + a1^2 + 13*a1 + 3, -a1^4 - 3*a1^3 + 2*a1^2 + 8*a1 - 2)" "x^5 + 5*x^4 + 3*x^3 - 15*x^2 - 16*x + 3"
"11a1" 11 165 5 148 "(a2, 1, 1, -a2^2 - 2*a2 + 3, 1, -a2^2 + 3)" "x^3 + x^2 - 5*x - 1"
"498b1" 498 166 5 5 "(-1, 1/2*a1 + 1/2, 1/4*a1 + 9/4, 1/4*a1 - 3/4, -1/2*a1 + 3/2, -1/4*a1 + 3/4)" "x^2 + 6*x - 11"
"1670a1" 1670 167 5 5 "(a0, -a0 - 1, -1, a0 - 2, 0, -a0 - 3)" "x^2 + x - 1"
"1211a1" 1211 173 5 2.51E+015 "(a1, 9/116*a1^9 - 11/58*a1^8 - 69/58*a1^7 + 81/29*a1^6 + 645/116*a1^5 - 1439/116*a1^4 - 235/29*a1^3 + 465/29*a1^2 + 98/29*a1 - 303/116, -7/58*a1^9 + 15/29*a1^8 + 44/29*a1^7 - 213/29*a1^6 - 231/58*a1^5 + 1783/58*a1^4 - 179/29*a1^3 - 1023/29*a1^2 + 376/29*a1 + 371/58, -1/58*a1^9 - 37/116*a1^8 + 79/116*a1^7 + 537/116*a1^6 - 849/116*a1^5 - 579/29*a1^4 + 3125/116*a1^3 + 2767/116*a1^2 - 2913/116*a1 - 387/116, 23/116*a1^9 + 5/116*a1^8 - 343/116*a1^7 - 71/116*a1^6 + 400/29*a1^5 + 389/116*a1^4 - 2399/116*a1^3 - 921/116*a1^2 + 715/116*a1 + 275/58, -25/116*a1^9 - 13/116*a1^8 + 393/116*a1^7 + 173/116*a1^6 - 1007/58*a1^5 - 791/116*a1^4 + 3755/116*a1^3 + 1455/116*a1^2 - 2265/116*a1 - 140/29)" "x^10 - x^9 - 16*x^8 + 16*x^7 + 85*x^6 - 80*x^5 - 175*x^4 + 136*x^3 + 138*x^2 - 71*x - 25"
"11a1" 11 175 5 5 "(a4, 2*a4 - 2, 0, 1, 2*a4 + 1, -2*a4)" "x^2 - x - 1"
"50a1" 50 175 5 5 "(a3, 2*a3 + 2, 0, -1, -2*a3 + 1, -2*a3)" "x^2 + x - 1"
"11a1" 11 177 5 5 "(a2, 1, 1, -a2 + 1, -2*a2 + 3, -1)" "x^2 - x - 1"
"354c1" 354 177 5 5 "(a1, -1, -2*a1 - 1, a1 - 3, 2*a1 + 1, -2*a1 - 5)" "x^2 + x - 1"
"3363f1" 3363 177 5 5 "(a0, 1, -3, -a0 - 5, -4*a0 - 7, 6*a0 + 9)" "x^2 + 3*x + 1"
"11a1" 11 178 5 568 "(1, -1/2*a3 + 1/2, 1/2*a3 - 1/2, -1/8*a3^2 + 1/2*a3 + 21/8, 2, 1/8*a3^2 + 1/2*a3 - 29/8)" "x^3 - x^2 - 33*x + 1"
"11a1" 11 181 5 6664578334400 "(a1, 1/2*a1^8 - 2*a1^7 - 5/2*a1^6 + 16*a1^5 - 7/2*a1^4 - 59/2*a1^3 + 12*a1^2 + 25/2*a1 - 7/2, 1/4*a1^7 - 1/4*a1^6 - 5/2*a1^5 + 2*a1^4 + 25/4*a1^3 - 9/2*a1^2 - 5/2*a1 + 15/4, 1/4*a1^8 - 3/4*a1^7 - a1^6 + 5*a1^5 - 19/4*a1^4 - 5*a1^3 + 29/2*a1^2 - 1/4*a1 - 11/2, -1/2*a1^8 + 1/2*a1^7 + 6*a1^6 - 4*a1^5 - 47/2*a1^4 + 8*a1^3 + 35*a1^2 - 9/2*a1 - 12, -1/2*a1^8 + 7/4*a1^7 + 11/4*a1^6 - 29/2*a1^5 + 7/2*a1^4 + 121/4*a1^3 - 41/2*a1^2 - 18*a1 + 47/4)" "x^9 - 3*x^8 - 9*x^7 + 29*x^6 + 23*x^5 - 84*x^4 - 23*x^3 + 89*x^2 + 8*x - 27"
"905b1" 905 181 5 24217 "(a0, -a0^4 - 2*a0^3 + 2*a0^2 + 3*a0 - 1, 2*a0^4 + 5*a0^3 - 4*a0^2 - 11*a0 - 1, -2*a0^3 - 2*a0^2 + 5*a0 + 1, -a0^4 - 3*a0^3 + a0^2 + 6*a0 - 3, -2*a0^4 - 3*a0^3 + 8*a0^2 + 8*a0 - 5)" "x^5 + 3*x^4 - x^3 - 7*x^2 - 2*x + 1"
"366g1" 366 183 5 148 "(a1, -1, 2, -2*a1^2 + 2*a1 + 4, -a1^2 + 3, 2*a1^2 - 2*a1 - 2)" "x^3 - x^2 - 3*x + 1"
"187b1" 187 187 5 33844 "(a5, -a5^3 + a5^2 + 5*a5 - 1, -a5 + 1, 0, -1, a5^3 - 2*a5^2 - 5*a5 + 4)" "x^4 - x^3 - 6*x^2 + 2*x + 2"
"374a1" 374 187 5 148 "(a4, -a4^2 - a4 + 1, -a4 - 3, 2*a4^2 + 2*a4 - 4, -1, 3*a4 + 2)" "x^3 + 2*x^2 - 2*x - 2"
"564a1" 564 188 5 5 "(0, -a0, 2*a0 - 4, a0 - 5, -4*a0 + 4, -4*a0 + 4)" "x^2 - 3*x + 1"
"11a1" 11 191 5 3.30E+024 "(a1, -145153/114035*a1^13 + 32777/114035*a1^12 + 3364061/114035*a1^11 - 874037/114035*a1^10 - 30238352/114035*a1^9 + 8179107/114035*a1^8 + 133274007/114035*a1^7 - 31876833/114035*a1^6 - 300314067/114035*a1^5 + 43961084/114035*a1^4 + 328052329/114035*a1^3 + 4557079/114035*a1^2 - 27781803/22807*a1 - 29013772/114035, -44318/114035*a1^13 - 468/114035*a1^12 + 996676/114035*a1^11 - 67192/114035*a1^10 - 8645332/114035*a1^9 + 1110732/114035*a1^8 + 36541877/114035*a1^7 - 5434583/114035*a1^6 - 78444822/114035*a1^5 + 7801444/114035*a1^4 + 81404284/114035*a1^3 + 2785164/114035*a1^2 - 6622972/22807*a1 - 6986182/114035, 148787/114035*a1^13 - 73368/114035*a1^12 - 3418414/114035*a1^11 + 1764598/114035*a1^10 + 30273378/114035*a1^9 - 15485288/114035*a1^8 - 130230738/114035*a1^7 + 59339692/114035*a1^6 + 282975218/114035*a1^5 - 90112966/114035*a1^4 - 296004726/114035*a1^3 + 24031844/114035*a1^2 + 24591132/22807*a1 + 24473743/114035, -317749/114035*a1^13 + 87501/114035*a1^12 + 7255723/114035*a1^11 - 2329051/114035*a1^10 - 63902811/114035*a1^9 + 21925031/114035*a1^8 + 273703901/114035*a1^7 - 87350029/114035*a1^6 - 592597121/114035*a1^5 + 131174117/114035*a1^4 + 615896407/114035*a1^3 - 20228013/114035*a1^2 - 50237157/22807*a1 - 50606546/114035, 169418/114035*a1^13 - 44707/114035*a1^12 - 3873501/114035*a1^11 + 1208972/114035*a1^10 + 34207957/114035*a1^9 - 11502337/114035*a1^8 - 147297467/114035*a1^7 + 46178043/114035*a1^6 + 321976277/114035*a1^5 - 69816889/114035*a1^4 - 339639974/114035*a1^3 + 10698151/114035*a1^2 + 28096743/22807*a1 + 28321417/114035)" "x^14 - 23*x^12 + x^11 + 205*x^10 - 13*x^9 - 895*x^8 + 35*x^7 + 1993*x^6 + 103*x^5 - 2135*x^4 - 465*x^3 + 853*x^2 + 374*x + 41"
"573b1" 573 191 5 5 "(a0, -1, -a0 - 1, -a0 - 1, a0, 3*a0 - 2)" "x^2 + x - 1"
"955a1" 955 191 5 3.30E+024 "(a1, -145153/114035*a1^13 + 32777/114035*a1^12 + 3364061/114035*a1^11 - 874037/114035*a1^10 - 30238352/114035*a1^9 + 8179107/114035*a1^8 + 133274007/114035*a1^7 - 31876833/114035*a1^6 - 300314067/114035*a1^5 + 43961084/114035*a1^4 + 328052329/114035*a1^3 + 4557079/114035*a1^2 - 27781803/22807*a1 - 29013772/114035, -44318/114035*a1^13 - 468/114035*a1^12 + 996676/114035*a1^11 - 67192/114035*a1^10 - 8645332/114035*a1^9 + 1110732/114035*a1^8 + 36541877/114035*a1^7 - 5434583/114035*a1^6 - 78444822/114035*a1^5 + 7801444/114035*a1^4 + 81404284/114035*a1^3 + 2785164/114035*a1^2 - 6622972/22807*a1 - 6986182/114035, 148787/114035*a1^13 - 73368/114035*a1^12 - 3418414/114035*a1^11 + 1764598/114035*a1^10 + 30273378/114035*a1^9 - 15485288/114035*a1^8 - 130230738/114035*a1^7 + 59339692/114035*a1^6 + 282975218/114035*a1^5 - 90112966/114035*a1^4 - 296004726/114035*a1^3 + 24031844/114035*a1^2 + 24591132/22807*a1 + 24473743/114035, -317749/114035*a1^13 + 87501/114035*a1^12 + 7255723/114035*a1^11 - 2329051/114035*a1^10 - 63902811/114035*a1^9 + 21925031/114035*a1^8 + 273703901/114035*a1^7 - 87350029/114035*a1^6 - 592597121/114035*a1^5 + 131174117/114035*a1^4 + 615896407/114035*a1^3 - 20228013/114035*a1^2 - 50237157/22807*a1 - 50606546/114035, 169418/114035*a1^13 - 44707/114035*a1^12 - 3873501/114035*a1^11 + 1208972/114035*a1^10 + 34207957/114035*a1^9 - 11502337/114035*a1^8 - 147297467/114035*a1^7 + 46178043/114035*a1^6 + 321976277/114035*a1^5 - 69816889/114035*a1^4 - 339639974/114035*a1^3 + 10698151/114035*a1^2 + 28096743/22807*a1 + 28321417/114035)" "x^14 - 23*x^12 + x^11 + 205*x^10 - 13*x^9 - 895*x^8 + 35*x^7 + 1993*x^6 + 103*x^5 - 2135*x^4 - 465*x^3 + 853*x^2 + 374*x + 41"
"579a1" 579 193 5 28088476877 "(a2, -1/7*a2^7 + 4/7*a2^6 + 8/7*a2^5 - 34/7*a2^4 - 16/7*a2^3 + 69/7*a2^2 + 6/7*a2 - 18/7, -8/7*a2^7 + 4/7*a2^6 + 78/7*a2^5 - 27/7*a2^4 - 212/7*a2^3 + 41/7*a2^2 + 160/7*a2 + 10/7, 15/7*a2^7 - 11/7*a2^6 - 148/7*a2^5 + 83/7*a2^4 + 408/7*a2^3 - 146/7*a2^2 - 307/7*a2 + 18/7, 3/7*a2^7 - 5/7*a2^6 - 31/7*a2^5 + 39/7*a2^4 + 97/7*a2^3 - 67/7*a2^2 - 95/7*a2 + 19/7, -4/7*a2^7 + 2/7*a2^6 + 39/7*a2^5 - 17/7*a2^4 - 99/7*a2^3 + 38/7*a2^2 + 52/7*a2 - 9/7)" "x^8 - 2*x^7 - 9*x^6 + 18*x^5 + 21*x^4 - 44*x^3 - 11*x^2 + 27*x + 1"
"4825b1" 4825 193 5 5 "(a0, -1, 2*a0 + 3, -3*a0 - 5, -3*a0 - 3, -3)" "x^2 + 3*x + 1"
"197a1" 197 197 5 24217 "(a1, -a1^4 + 4*a1^2 - a1 - 2, 3*a1^4 + a1^3 - 14*a1^2 - 3*a1 + 5, -2*a1^4 - 2*a1^3 + 9*a1^2 + 6*a1 - 6, -3*a1^4 - 2*a1^3 + 15*a1^2 + 7*a1 - 10, 2*a1^4 + 3*a1^3 - 9*a1^2 - 9*a1 + 3)" "x^5 - 5*x^3 + x^2 + 3*x - 1"
"398a1" 398 199 5 5 "(a0, 2, 3, 0, 2*a0 - 2, -4*a0 - 1)" "x^2 + x - 1"
"3417c1" 3417 201 5 148 "(a3, -1, -a3^2 + a3 + 3, -a3^2 + 2*a3 + 2, -a3^2 + 7, -a3^2 + 1)" "x^3 - 3*x^2 - x + 5"
"406a1" 406 203 5 148 "(a5, -a5^2 - a5 + 1, a5^2 - 4, -1, a5^2 - a5 - 1, -5)" "x^3 + x^2 - 3*x - 1"
"1230b1" 1230 205 5 5 "(a4, -1, -1, -3*a4, 2*a4 - 3, 3*a4)" "x^2 + x - 1"
"206a1" 206 206 5 29 "(-1, 1/2*a2 + 1/2, -1/2*a2 + 1/2, 1/2*a2 - 3/2, 4, -a2 + 1)" "x^2 - 29"
"618d1" 618 206 5 29 "(-1, 1/2*a2 + 1/2, -1/2*a2 + 1/2, 1/2*a2 - 3/2, 4, -a2 + 1)" "x^2 - 29"
"2678l1" 2678 206 5 5744 "(1, -a3 + 1, a3^3 - 3*a3^2 - 2*a3 + 2, -2*a3^3 + 5*a3^2 + 8*a3 - 2, 2*a3^3 - 4*a3^2 - 8*a3, -2*a3^3 + 6*a3^2 + 4*a3 - 4)" "x^4 - 2*x^3 - 5*x^2 + 1"
"414d1" 414 207 5 5 "(a3, 0, 2*a3, -2*a3 + 2, -2*a3 + 4, 3)" "x^2 - x - 1"
"1035c1" 1035 207 5 5 "(a2, 0, -a2 + 1, a2 + 1, -4, -2*a2)" "x^2 - 5"
"11a1" 11 209 5 246832 "(a2, 1/2*a2^4 - a2^3 - 5/2*a2^2 + 4*a2 + 1, -1/2*a2^3 + 7/2*a2 - 1, -1/2*a2^3 + 3/2*a2 + 2, 1, -1/2*a2^4 + 7/2*a2^2 - 2)" "x^5 - 2*x^4 - 6*x^3 + 10*x^2 + 5*x - 4"
"19a1" 19 209 5 20757368448 "(a3, -1/2*a3^4 + 7/2*a3^2 - a3 - 2, 1/2*a3^5 - 9/2*a3^3 + 7*a3 + 3, -1/4*a3^6 + 3*a3^4 - 37/4*a3^2 + 13/2, -1, -1/4*a3^6 - 1/2*a3^5 + 5/2*a3^4 + 9/2*a3^3 - 27/4*a3^2 - 9*a3 + 7/2)" "x^7 + x^6 - 14*x^5 - 10*x^4 + 59*x^3 + 27*x^2 - 66*x - 30"
"11a1" 11 211 5 5 "(a0, a0 + 1, -2*a0 + 2, -a0 + 1, -3, -2*a0 + 5)" "x^2 - x - 1"
"426b1" 426 213 5 5 "(a2, -1, -a2, -3, -2*a2 - 3, 3*a2 - 1)" "x^2 + x - 1"
"497a1" 497 213 5 5 "(a1, 1, -a1 - 4, 2*a1 + 1, -2*a1 - 7, -3*a1 - 5)" "x^2 + 3*x + 1"
"43a1" 43 215 5 1933097 "(a2, -a2^3 + 5*a2, 1, a2^4 - a2^3 - 6*a2^2 + 6*a2 + 2, a2^3 - 6*a2 - 1, -a2^4 + 5*a2^2 + a2 + 3)" "x^5 - 2*x^4 - 7*x^3 + 13*x^2 + 5*x - 4"
"434d1" 434 217 5 6809 "(a2, -a2^3 + 5*a2, -a2 + 1, 1, -a2^2 - 2*a2 + 3, a2^3 - a2^2 - 5*a2 + 3)" "x^4 - 5*x^2 + x + 1"
"11a1" 11 218 5 5 "(1, -1/2*a3 + 1/2, a3 + 3, -2, a3 - 1, -3/2*a3 - 3/2)" "x^2 + 4*x - 1"
"221a1" 221 221 5 21 "(a3, a3 + 1, -1, -a3 - 3, a3 + 2, -1)" "x^2 + x - 5"
"1326a1" 1326 221 5 5 "(a2, a2 - 1, -2*a2 - 1, -a2 - 1, 3*a2, -1)" "x^2 + x - 1"
"2431a1" 2431 221 5 5 "(a4, -a4 + 1, a4 - 1, 2, 2, -1)" "x^2 - 5"
"2431a1" 2431 221 5 21 "(a3, a3 + 1, -1, -a3 - 3, a3 + 2, -1)" "x^2 + x - 5"
"672b1" 672 224 5 5 "(0, 1/2*a2, 1/2*a2 + 2, 1, -a2 - 4, -1/2*a2 + 2)" "x^2 + 4*x - 16"
"672d1" 672 224 5 5 "(0, 1/2*a3, -1/2*a3 + 2, -1, -a3 + 4, 1/2*a3 + 2)" "x^2 - 4*x - 16"
"225a1" 225 225 5 5 "(a5, 0, 0, 0, 0, 0)" "x^2 - 5"
"1130c1" 1130 226 5 2000 "(1, -1/2*a3 + 1/2, -1/16*a3^3 - 1/16*a3^2 + 37/16*a3 + 61/16, 1/8*a3^3 - 1/8*a3^2 - 25/8*a3 - 23/8, 1/4*a3^2 - 1/2*a3 - 15/4, -1/4*a3^3 + 1/4*a3^2 + 29/4*a3 + 19/4)" "x^4 - 30*x^2 - 40*x + 5"
"681b1" 681 227 5 849105255012004 "(a4, 1/16*a4^9 - 21/16*a4^7 - 3/16*a4^6 + 75/8*a4^5 + 9/4*a4^4 - 209/8*a4^3 - 33/4*a4^2 + 23*a4 + 10, -3/4*a4^9 + 3/4*a4^8 + 49/4*a4^7 - 19/2*a4^6 - 269/4*a4^5 + 31*a4^4 + 289/2*a4^3 - 21/2*a4^2 - 101*a4 - 30, 13/16*a4^9 - 1/2*a4^8 - 213/16*a4^7 + 97/16*a4^6 + 589/8*a4^5 - 16*a4^4 - 1281/8*a4^3 - 53/4*a4^2 + 227/2*a4 + 42, 1/8*a4^9 - 1/4*a4^8 - 15/8*a4^7 + 27/8*a4^6 + 35/4*a4^5 - 51/4*a4^4 - 53/4*a4^3 + 11*a4^2 + 7/2*a4 + 1, -1/4*a4^8 + 13/4*a4^6 - 1/4*a4^5 - 25/2*a4^4 + a4^3 + 29/2*a4^2 + a4)" "x^10 - 17*x^8 - 3*x^7 + 98*x^6 + 40*x^5 - 218*x^4 - 148*x^3 + 136*x^2 + 144*x + 32"
"681b1" 681 227 5 29 "(1, a2 - 1, 2, -a2 + 2, a2 + 2, -2*a2 + 2)" "x^2 - x - 7"
6.81E+003 681 227 5 5 "(a1, -1/2*a1 + 3/2, -2, 1/2*a1 + 7/2, -1/2*a1 + 1/2, -a1 - 1)" "x^2 - 5"
"5675b1" 5675 227 5 29 "(1, a2 - 1, 2, -a2 + 2, a2 + 2, -2*a2 + 2)" "x^2 - x - 7"
"458b1" 458 229 5 1.36E+017 "(a2, 1/4*a2^9 - 1/4*a2^8 - 13/4*a2^7 + 11/4*a2^6 + 55/4*a2^5 - 10*a2^4 - 83/4*a2^3 + 53/4*a2^2 + 8*a2 - 11/4, -1/4*a2^9 + 1/4*a2^8 + 11/4*a2^7 - 5/4*a2^6 - 43/4*a2^5 + 65/4*a2^3 + 15/4*a2^2 - 6*a2 - 3/4, -1/4*a2^10 + 3/4*a2^9 + 9/4*a2^8 - 31/4*a2^7 - 21/4*a2^6 + 53/2*a2^5 - 3/4*a2^4 - 131/4*a2^3 + 13/2*a2^2 + 41/4*a2 + 3/2, 1/2*a2^10 - 7/4*a2^9 - 17/4*a2^8 + 71/4*a2^7 + 39/4*a2^6 - 235/4*a2^5 - 1/2*a2^4 + 265/4*a2^3 - 49/4*a2^2 - 27/2*a2 + 23/4, 1/2*a2^10 - 3/2*a2^9 - 9/2*a2^8 + 29/2*a2^7 + 25/2*a2^6 - 46*a2^5 - 19/2*a2^4 + 105/2*a2^3 - 3*a2^2 - 31/2*a2 + 2)" "x^11 - 5*x^10 - 4*x^9 + 50*x^8 - 26*x^7 - 165*x^6 + 152*x^5 + 193*x^4 - 207*x^3 - 50*x^2 + 52*x + 1"
"46a1" 46 230 5 21 "(-1, -a0 - 1, -1, -a0, -a0 + 1, a0 + 4)" "x^2 + x - 5"
6.90E+003 690 230 5 21 "(-1, -a0 - 1, -1, -a0, -a0 + 1, a0 + 4)" "x^2 + x - 5"
"1610g1" 1610 230 5 5 "(1, 1/2*a2 - 1/2, 1, -1/2*a2 + 3/2, -3/2*a2 + 7/2, -5/2*a2 + 7/2)" "x^2 - 4*x - 1"
"11a1" 11 231 5 5 "(a2, 1, 1, 1, 1, -4*a2 + 1)" "x^2 - x - 1"
"77b1" 77 231 5 21 "(a1, -1, 3, 1, -1, 1)" "x^2 + x - 5"
"231a1" 231 231 5 21 "(a1, -1, 3, 1, -1, 1)" "x^2 + x - 5"
"462b1" 462 231 5 837 "(a3, -1, -a3^2 + a3 + 4, -1, 1, -a3^2 + a3 + 4)" "x^3 - 6*x - 1"
"696c1" 696 232 5 568 "(0, -a3, -a3^2 + 6, 0, 2*a3^2 + a3 - 8, a3^2 + 2*a3 - 2)" "x^3 + 2*x^2 - 5*x - 8"
"11a1" 11 237 5 13643132296 "(a2, 1, -a2^6 + 12*a2^4 - a2^3 - 37*a2^2 + 9*a2 + 16, 3/2*a2^6 - 1/2*a2^5 - 17*a2^4 + 4*a2^3 + 49*a2^2 - 25/2*a2 - 37/2, 1/2*a2^6 + 1/2*a2^5 - 6*a2^4 - 4*a2^3 + 17*a2^2 + 7/2*a2 - 7/2, 5/2*a2^6 - 1/2*a2^5 - 28*a2^4 + 4*a2^3 + 79*a2^2 - 33/2*a2 - 57/2)" "x^7 - 2*x^6 - 11*x^5 + 22*x^4 + 30*x^3 - 65*x^2 - 2*x + 23"
"79a1" 79 237 5 13643132296 "(a2, 1, -a2^6 + 12*a2^4 - a2^3 - 37*a2^2 + 9*a2 + 16, 3/2*a2^6 - 1/2*a2^5 - 17*a2^4 + 4*a2^3 + 49*a2^2 - 25/2*a2 - 37/2, 1/2*a2^6 + 1/2*a2^5 - 6*a2^4 - 4*a2^3 + 17*a2^2 + 7/2*a2 - 7/2, 5/2*a2^6 - 1/2*a2^5 - 28*a2^4 + 4*a2^3 + 79*a2^2 - 33/2*a2 - 57/2)" "x^7 - 2*x^6 - 11*x^5 + 22*x^4 + 30*x^3 - 65*x^2 - 2*x + 23"
"714b1" 714 238 5 5 "(-1, -a5 - 1, a5 + 3, -1, -a5 + 1, 2*a5 + 6)" "x^2 + 4*x - 1"
"11a1" 11 241 5 3.24E+019 "(a1, 11/8*a1^11 - 15/4*a1^10 - 79/4*a1^9 + 54*a1^8 + 773/8*a1^7 - 1043/4*a1^6 - 1631/8*a1^5 + 4025/8*a1^4 + 827/4*a1^3 - 1375/4*a1^2 - 741/8*a1 + 93/8, 11/8*a1^11 - 17/4*a1^10 - 75/4*a1^9 + 123/2*a1^8 + 669/8*a1^7 - 1199/4*a1^6 - 1223/8*a1^5 + 4717/8*a1^4 + 589/4*a1^3 - 1677/4*a1^2 - 737/8*a1 + 117/8, -15/16*a1^11 + 7/4*a1^10 + 61/4*a1^9 - 205/8*a1^8 - 1415/16*a1^7 + 1011/8*a1^6 + 3567/16*a1^5 - 3951/16*a1^4 - 1809/8*a1^3 + 1283/8*a1^2 + 813/16*a1 - 71/16, -5/4*a1^11 + 31/8*a1^10 + 135/8*a1^9 - 445/8*a1^8 - 589/8*a1^7 + 535/2*a1^6 + 255/2*a1^5 - 4119/8*a1^4 - 443/4*a1^3 + 711/2*a1^2 + 65*a1 - 85/8, 7/8*a1^11 - 5/2*a1^10 - 25/2*a1^9 + 145/4*a1^8 + 487/8*a1^7 - 707/4*a1^6 - 1039/8*a1^5 + 2759/8*a1^4 + 569/4*a1^3 - 947/4*a1^2 - 613/8*a1 + 47/8)" "x^12 - 3*x^11 - 14*x^10 + 44*x^9 + 65*x^8 - 219*x^7 - 123*x^6 + 444*x^5 + 105*x^4 - 328*x^3 - 45*x^2 + 18*x - 1"
"11a1" 11 242 5 5 "(1, a5 - 1, -2*a5 + 6, -2, 0, -2*a5 + 4)" "x^2 - 5*x + 5"
"121d1" 121 242 5 5 "(-1, 1/2*a3 + 1/2, -a3 + 3, 2, 0, a3 - 1)" "x^2 - 4*x - 1"
"1215j1" 1215 243 5 24 "(a3, 0, -a3, 2, a3, -1)" "x^2 - 6"
"1215h1" 1215 243 5 24 "(a3, 0, -a3, 2, a3, -1)" "x^2 - 6"
"11a1" 11 247 5 5 "(a0, 2*a0 - 2, 2*a0, -2, 2*a0 - 4, 1)" "x^2 - x - 1"
"19a1" 19 247 5 288565 "(a4, -a4^2 + a4 + 3, a4^3 - 2*a4^2 - 2*a4 + 3, -a4^4 + 2*a4^3 + 3*a4^2 - 4*a4 - 1, a4^4 - 4*a4^3 + 9*a4 - 2, -1)" "x^5 - 4*x^4 + 12*x^2 - 5*x - 5"
"494a1" 494 247 5 6809 "(a2, -a2^3 - 2*a2^2 + 3*a2 + 4, a2^3 + 2*a2^2 - 4*a2 - 7, a2^3 + a2^2 - 5*a2 - 3, a2^2 + 2*a2 - 3, -1)" "x^4 + 3*x^3 - 2*x^2 - 9*x - 4"
"83a1" 83 249 5 6224 "(a3, 1, -a3 + 2, -a3^2 + 3, -2*a3^3 + a3^2 + 8*a3 - 2, -a3^3 + 5*a3 - 2)" "x^4 - 2*x^3 - 4*x^2 + 8*x - 1"
"11a1" 11 250 5 5 "(1, -a3 + 1, 0, 3*a3 + 2, 2*a3 - 2, -2*a3 - 2)" "x^2 + x - 1"
"11a1" 11 250 5 5 "(1, -a2 + 1, 0, 1/2*a2 - 1/2, -1/2*a2 + 11/2, 1/2*a2 + 1/2)" "x^2 - 4*x - 1"
"50a1" 50 250 5 5 "(-1, -1/2*a0 - 1/2, 0, 3/2*a0 - 7/2, -a0 - 1, -a0 + 3)" "x^2 - 4*x - 1"
"50a1" 50 250 5 5 "(-1, -a1 - 1, 0, 1/2*a1 + 1/2, 1/2*a1 + 11/2, 1/2*a1 - 1/2)" "x^2 + 4*x - 1"
"11a1" 11 251 5 4.20E+032 "(a1, 69/1216*a1^16 - 53/304*a1^15 - 219/152*a1^14 + 2819/608*a1^13 + 903/64*a1^12 - 1857/38*a1^11 - 79979/1216*a1^10 + 9809/38*a1^9 + 87207/608*a1^8 - 216513/304*a1^7 - 7719/64*a1^6 + 31535/32*a1^5 + 6777/152*a1^4 - 97473/152*a1^3 - 3451/76*a1^2 + 5735/38*a1 + 434/19, -21/304*a1^16 - 37/608*a1^15 + 653/304*a1^14 + 287/152*a1^13 - 109/4*a1^12 - 14297/608*a1^11 + 27443/152*a1^10 + 91723/608*a1^9 - 200943/304*a1^8 - 161767/304*a1^7 + 20607/16*a1^6 + 32619/32*a1^5 - 21707/19*a1^4 - 146925/152*a1^3 + 5341/19*a1^2 + 5948/19*a1 + 743/19, 7/19*a1^16 - 85/304*a1^15 - 801/76*a1^14 + 1009/152*a1^13 + 973/8*a1^12 - 17893/304*a1^11 - 13748/19*a1^10 + 68557/304*a1^9 + 89407/38*a1^8 - 18169/76*a1^7 - 4087*a1^6 - 9741/16*a1^5 + 518077/152*a1^4 + 205791/152*a1^3 - 68487/76*a1^2 - 10829/19*a1 - 1119/19, -4/19*a1^16 - 11/152*a1^15 + 967/152*a1^14 + 203/76*a1^13 - 313/4*a1^12 - 5829/152*a1^11 + 76243/152*a1^10 + 42431/152*a1^9 - 269993/152*a1^8 - 42051/38*a1^7 + 13471/4*a1^6 + 18769/8*a1^5 - 451977/152*a1^4 - 89797/38*a1^3 + 29179/38*a1^2 + 14852/19*a1 + 1622/19, -277/1216*a1^16 + 47/304*a1^15 + 2007/304*a1^14 - 2231/608*a1^13 - 4951/64*a1^12 + 616/19*a1^11 + 569887/1216*a1^10 - 9297/76*a1^9 - 946677/608*a1^8 + 34695/304*a1^7 + 177391/64*a1^6 + 12773/32*a1^5 - 720659/304*a1^4 - 127435/152*a1^3 + 25057/38*a1^2 + 6630/19*a1 + 606/19)" "x^17 - 2*x^16 - 28*x^15 + 54*x^14 + 317*x^13 - 582*x^12 - 1867*x^11 + 3178*x^10 + 6186*x^9 - 9216*x^8 - 11921*x^7 + 13680*x^6 + 13752*x^5 - 9400*x^4 - 8800*x^3 + 1920*x^2 + 2240*x + 256"
"11a1" 11 253 5 169 "(a0, -a0^2 - a0 + 1, a0^2 + 2*a0 - 4, -a0^2 - 3*a0 + 1, 1, a0^2 + a0 - 3)" "x^3 + x^2 - 4*x + 1"
"46a1" 46 253 5 169 "(a0, -a0^2 - a0 + 1, a0^2 + 2*a0 - 4, -a0^2 - 3*a0 + 1, 1, a0^2 + a0 - 3)" "x^3 + x^2 - 4*x + 1"
"759a1" 759 253 5 169 "(a0, -a0^2 - a0 + 1, a0^2 + 2*a0 - 4, -a0^2 - 3*a0 + 1, 1, a0^2 + a0 - 3)" "x^3 + x^2 - 4*x + 1"
"15a1" 15 255 5 5 "(a1, -1, 1, -2*a1 + 3, -4*a1 + 7, -2*a1 + 6)" "x^2 - 3*x + 1"
7.77E+003 777 259 5 26825 "(a5, -a5^2 + 5, a5^2 - 3, -1, -a5^3 - 2*a5^2 + 4*a5 + 9, a5^3 - 5*a5 + 2)" "x^4 - 9*x^2 + x + 17"
"777b1" 777 259 5 26825 "(a5, -a5^2 + 5, a5^2 - 3, -1, -a5^3 - 2*a5^2 + 4*a5 + 9, a5^3 - 5*a5 + 2)" "x^4 - 9*x^2 + x + 17"
"2849a1" 2849 259 5 22545 "(a6, -a6^3 + 4*a6, a6^2 - 3, 1, a6^3 - 6*a6 + 3, -a6^2 + a6 + 1)" "x^4 - x^3 - 6*x^2 + 5*x + 4"
"99d1" 99 261 5 5 "(a1, 0, -2*a1 - 2, 2*a1 - 1, 2*a1 - 1, -4*a1 - 3)" "x^2 + x - 1"
"522i1" 522 261 5 5 "(a2, 0, 2, 2*a2 - 1, -2*a2 + 5, -4*a2 + 1)" "x^2 - x - 1"
"522a1" 522 261 5 5 "(a0, 0, -2, -2*a0 - 1, -2*a0 - 5, 4*a0 + 1)" "x^2 + x - 1"
"786l1" 786 262 5 5 "(1, 1/2*a5 - 1/2, -1/2*a5 + 3/2, -1/2*a5 + 3/2, -1/2*a5 + 9/2, -3/2*a5 + 15/2)" "x^2 - 8*x + 11"
"1841a1" 1841 263 5 24217 "(a0, -a0^4 - a0^3 + 3*a0^2 + 2*a0 - 1, a0^4 + a0^3 - 4*a0^2 - 3*a0 + 1, a0^4 + 2*a0^3 - 3*a0^2 - 6*a0 - 1, -a0^3 + a0^2 + 3*a0 - 2, -a0^3 - a0^2 + 4*a0 - 1)" "x^5 + 2*x^4 - 3*x^3 - 6*x^2 + 1"
"106d1" 106 265 5 5 "(a3, -a3 - 1, 1, 2*a3 - 1, -5, -4*a3 - 1)" "x^2 + x - 1"
"265a1" 265 265 5 21 "(a2, -a2 - 1, -1, -3, -5, 2*a2 + 1)" "x^2 + x - 5"
"795c1" 795 265 5 21 "(a2, -a2 - 1, -1, -3, -5, 2*a2 + 1)" "x^2 + x - 5"
"2915a1" 2915 265 5 5 "(a6, a6 - 3, -1, -2*a6 + 5, 3, 1)" "x^2 - 3*x + 1"
"798c1" 798 266 5 29 "(-1, 1/2*a0 + 1/2, 1/2*a0 - 1/2, -1, -1/2*a0 + 3/2, -a0 - 1)" "x^2 - 29"
"798d1" 798 266 5 5 "(-1, -a1 - 1, 3*a1 + 8, 1, -a1 + 1, -2*a1 - 2)" "x^2 + 5*x + 5"
"1330f1" 1330 266 5 29 "(-1, 1/2*a0 + 1/2, 1/2*a0 - 1/2, -1, -1/2*a0 + 3/2, -a0 - 1)" "x^2 - 29"
"11a1" 11 267 5 169 "(a4, 1, -a4^2 + 5, -a4^2 + 2, a4^2 - a4 - 4, a4^2 + a4 - 3)" "x^3 - 2*x^2 - 3*x + 5"
"89a1" 89 267 5 169 "(a4, 1, -a4^2 + 5, -a4^2 + 2, a4^2 - a4 - 4, a4^2 + a4 - 3)" "x^3 - 2*x^2 - 3*x + 5"
"267a1" 267 267 5 169 "(a4, 1, -a4^2 + 5, -a4^2 + 2, a4^2 - a4 - 4, a4^2 + a4 - 3)" "x^3 - 2*x^2 - 3*x + 5"
"804b1" 804 268 5 5 "(0, -1/2*a1, a1 - 3, -1/2*a1 - 1, a1 - 5, -3/2*a1 + 3)" "x^2 - 6*x + 4"
"804a1" 804 268 5 21 "(0, a2, -1, -a2 + 1, 5, a2 + 1)" "x^2 - x - 5"
"6700a1" 6700 268 5 21 "(0, a2, -1, -a2 + 1, 5, a2 + 1)" "x^2 - x - 5"
"1614a1" 1614 269 5 65657 "(a1, a1^4 - 5*a1^2 + 3, -a1^4 + 5*a1^2 - a1 - 5, -a1^4 - a1^3 + 3*a1^2 + 2*a1 - 1, a1^4 - 4*a1^2, 2*a1^3 + 3*a1^2 - 5*a1 - 7)" "x^5 + x^4 - 5*x^3 - 4*x^2 + 5*x + 3"
"11a1" 11 271 5 2.30E+028 "(a1, 4966/763*a1^15 - 26858/763*a1^14 - 49243/763*a1^13 + 474081/763*a1^12 - 128875/763*a1^11 - 3063997/763*a1^10 + 3087453/763*a1^9 + 8695891/763*a1^8 - 1814217/109*a1^7 - 9799739/763*a1^6 + 19637291/763*a1^5 + 2259965/763*a1^4 - 1419203/109*a1^3 - 760516/763*a1^2 + 1897494/763*a1 + 406918/763, -2931/763*a1^15 + 15816/763*a1^14 + 29560/763*a1^13 - 280031/763*a1^12 + 67017/763*a1^11 + 1819457/763*a1^10 - 1760793/763*a1^9 - 5219351/763*a1^8 + 1043544/109*a1^7 + 6055573/763*a1^6 - 11326071/763*a1^5 - 1666627/763*a1^4 + 817097/109*a1^3 + 533915/763*a1^2 - 1063246/763*a1 - 229968/763, 4747/763*a1^15 - 25342/763*a1^14 - 48836/763*a1^13 + 449248/763*a1^12 - 91214/763*a1^11 - 2925197/763*a1^10 + 2735429/763*a1^9 + 8428341/763*a1^8 - 1639143/109*a1^7 - 9899208/763*a1^6 + 17856212/763*a1^5 + 2928854/763*a1^4 - 1289523/109*a1^3 - 966229/763*a1^2 + 1684731/763*a1 + 377795/763, 7251/763*a1^15 - 38561/763*a1^14 - 74756/763*a1^13 + 683219/763*a1^12 - 136608/763*a1^11 - 4444746/763*a1^10 + 4161832/763*a1^9 + 12784879/763*a1^8 - 2498112/109*a1^7 - 14949252/763*a1^6 + 27259040/763*a1^5 + 4317273/763*a1^4 - 1977730/109*a1^3 - 1421394/763*a1^2 + 2608957/763*a1 + 583200/763, -5580/763*a1^15 + 29983/763*a1^14 + 56725/763*a1^13 - 531848/763*a1^12 + 121076/763*a1^11 + 3466885/763*a1^10 - 3325823/763*a1^9 - 10012231/763*a1^8 + 1988907/109*a1^7 + 11833721/763*a1^6 - 21864055/763*a1^5 - 3620923/763*a1^4 + 1631536/109*a1^3 + 1218208/763*a1^2 - 2212377/763*a1 - 498223/763)" "x^16 - 5*x^15 - 12*x^14 + 91*x^13 + 11*x^12 - 620*x^11 + 381*x^10 + 1953*x^9 - 1863*x^8 - 2853*x^7 + 3137*x^6 + 1830*x^5 - 1758*x^4 - 831*x^3 + 308*x^2 + 204*x + 27"
"816c1" 816 272 5 5 "(0, -a5, 2, a5, a5, 2*a5 + 2)" "x^2 + 2*x - 4"
"822d1" 822 274 5 148 "(-1, 1/2*a3 + 1/2, -1/8*a3^2 + 1/4*a3 + 27/8, -1/4*a3^2 + 17/4, 1/4*a3^2 - 1/2*a3 - 7/4, 1/4*a3^2 - 25/4)" "x^3 - x^2 - 21*x + 13"
"11a1" 11 275 5 5 "(a6, a6 + 1, 0, -3*a6 + 2, 1, 2*a6 + 3)" "x^2 - x - 1"
"50a1" 50 275 5 5 "(a3, a3 - 1, 0, -3*a3 - 2, 1, 2*a3 - 3)" "x^2 + x - 1"
"92a1" 92 276 5 40 "(0, -1, 1/2*a0 + 1, -1/2*a0 + 1, 0, 4)" "x^2 + 4*x - 36"
"277a1" 277 277 5 485099846321 "(a2, -6*a2^8 - 26*a2^7 + 19*a2^6 + 189*a2^5 + 101*a2^4 - 302*a2^3 - 213*a2^2 + 131*a2 + 95, 8*a2^8 + 34*a2^7 - 27*a2^6 - 247*a2^5 - 122*a2^4 + 394*a2^3 + 260*a2^2 - 171*a2 - 117, -6*a2^8 - 24*a2^7 + 25*a2^6 + 175*a2^5 + 55*a2^4 - 281*a2^3 - 129*a2^2 + 118*a2 + 58, 5*a2^8 + 20*a2^7 - 22*a2^6 - 149*a2^5 - 40*a2^4 + 253*a2^3 + 111*a2^2 - 113*a2 - 59, 8*a2^8 + 34*a2^7 - 26*a2^6 - 244*a2^5 - 127*a2^4 + 375*a2^3 + 258*a2^2 - 152*a2 - 111)" "x^9 + 6*x^8 + 4*x^7 - 37*x^6 - 69*x^5 + 24*x^4 + 119*x^3 + 34*x^2 - 52*x - 25"
"831a1" 831 277 5 4116316602113 "(a3, 2*a3^8 - 4*a3^7 - 19*a3^6 + 33*a3^5 + 55*a3^4 - 74*a3^3 - 43*a3^2 + 27*a3 + 1, -2*a3^8 + 4*a3^7 + 19*a3^6 - 33*a3^5 - 54*a3^4 + 72*a3^3 + 38*a3^2 - 19*a3 + 3, -2*a3^8 + 4*a3^7 + 19*a3^6 - 33*a3^5 - 55*a3^4 + 73*a3^3 + 43*a3^2 - 22*a3, -a3^8 + 2*a3^7 + 10*a3^6 - 19*a3^5 - 28*a3^4 + 51*a3^3 + 15*a3^2 - 29*a3 + 1, -2*a3^8 + 4*a3^7 + 20*a3^6 - 36*a3^5 - 59*a3^4 + 89*a3^3 + 42*a3^2 - 38*a3 + 1)" "x^9 - 4*x^8 - 6*x^7 + 37*x^6 - 3*x^5 - 100*x^4 + 49*x^3 + 64*x^2 - 20*x - 1"
"1939b1" 1939 277 5 485099846321 "(a2, -6*a2^8 - 26*a2^7 + 19*a2^6 + 189*a2^5 + 101*a2^4 - 302*a2^3 - 213*a2^2 + 131*a2 + 95, 8*a2^8 + 34*a2^7 - 27*a2^6 - 247*a2^5 - 122*a2^4 + 394*a2^3 + 260*a2^2 - 171*a2 - 117, -6*a2^8 - 24*a2^7 + 25*a2^6 + 175*a2^5 + 55*a2^4 - 281*a2^3 - 129*a2^2 + 118*a2 + 58, 5*a2^8 + 20*a2^7 - 22*a2^6 - 149*a2^5 - 40*a2^4 + 253*a2^3 + 111*a2^2 - 113*a2 - 59, 8*a2^8 + 34*a2^7 - 26*a2^6 - 244*a2^5 - 127*a2^4 + 375*a2^3 + 258*a2^2 - 152*a2 - 111)" "x^9 + 6*x^8 + 4*x^7 - 37*x^6 - 69*x^5 + 24*x^4 + 119*x^3 + 34*x^2 - 52*x - 25"
"6925b1" 6925 277 5 148 "(a1, 2, a1^2 - 1, -a1^2 - 2*a1 + 3, a1 + 4, 2*a1 + 1)" "x^3 + x^2 - 3*x - 1"
"11a1" 11 278 5 617176 "(1, -1/2*a4 + 1/2, 1/80*a4^4 - 1/10*a4^3 - 9/40*a4^2 + 9/5*a4 + 5/16, -1/40*a4^4 + 1/5*a4^3 + 1/5*a4^2 - 13/5*a4 + 29/8, -1/8*a4^3 + 5/8*a4^2 + 25/8*a4 - 37/8, 3/80*a4^4 - 1/20*a4^3 - 57/40*a4^2 - 17/20*a4 + 91/16)" "x^5 - 3*x^4 - 38*x^3 + 34*x^2 + 245*x - 175"
"99d1" 99 279 5 5 "(a0, 0, -1, -2*a0 - 3, -2, 2*a0)" "x^2 + x - 1"
"558b1" 558 279 5 361944768 "(a3, 0, -1/3*a3^5 + 2*a3^3 - 1/3*a3, a3^4 - 7*a3^2 + 8, 2/3*a3^5 - 6*a3^3 + 32/3*a3, -2*a3^2 + 8)" "x^6 - 12*x^4 + 40*x^2 - 27"
"558f1" 558 279 5 361944768 "(a3, 0, -1/3*a3^5 + 2*a3^3 - 1/3*a3, a3^4 - 7*a3^2 + 8, 2/3*a3^5 - 6*a3^3 + 32/3*a3, -2*a3^2 + 8)" "x^6 - 12*x^4 + 40*x^2 - 27"
1.95E+004 1953 279 5 5 "(a1, 0, -2*a1 + 5, -2*a1 + 1, 2*a1, -2*a1 + 2)" "x^2 - 3*x + 1"
"11a1" 11 281 5 9.35E+029 "(a1, -13665/151856*a1^15 - 4453/75928*a1^14 + 360823/151856*a1^13 + 192549/151856*a1^12 - 3808793/151856*a1^11 - 393525/37964*a1^10 + 10220589/75928*a1^9 + 6015201/151856*a1^8 - 58521373/151856*a1^7 - 5496873/75928*a1^6 + 85533697/151856*a1^5 + 10360255/151856*a1^4 - 55824393/151856*a1^3 - 495365/9491*a1^2 + 6299351/75928*a1 + 2953595/151856, -5097/75928*a1^15 - 73/9491*a1^14 + 142687/75928*a1^13 - 599/75928*a1^12 - 1608837/75928*a1^11 + 87021/37964*a1^10 + 4649421/37964*a1^9 - 1750371/75928*a1^8 - 28958277/75928*a1^7 + 3301675/37964*a1^6 + 46755675/75928*a1^5 - 9261139/75928*a1^4 - 34843841/75928*a1^3 + 249793/9491*a1^2 + 1195511/9491*a1 + 1626197/75928, 599/18982*a1^15 + 3543/37964*a1^14 - 15197/18982*a1^13 - 42087/18982*a1^12 + 305459/37964*a1^11 + 777481/37964*a1^10 - 1529371/37964*a1^9 - 3507895/37964*a1^8 + 975791/9491*a1^7 + 1985247/9491*a1^6 - 2259949/18982*a1^5 - 8255973/37964*a1^4 + 1467147/37964*a1^3 + 739551/9491*a1^2 + 371647/37964*a1 + 33381/18982, -12727/151856*a1^15 + 204/9491*a1^14 + 346247/151856*a1^13 - 99493/151856*a1^12 - 3793561/151856*a1^11 + 144027/18982*a1^10 + 10706791/75928*a1^9 - 6451005/151856*a1^8 - 66041481/151856*a1^7 + 8902335/75928*a1^6 + 108659163/151856*a1^5 - 20422589/151856*a1^4 - 86268599/151856*a1^3 + 1062797/75928*a1^2 + 1623433/9491*a1 + 5250719/151856, 1845/18982*a1^15 + 1311/37964*a1^14 - 101841/37964*a1^13 - 8453/18982*a1^12 + 1130421/37964*a1^11 - 2887/9491*a1^10 - 3205285/18982*a1^9 + 515547/18982*a1^8 + 19453149/37964*a1^7 - 2577655/18982*a1^6 - 7543373/9491*a1^5 + 8568847/37964*a1^4 + 5259886/9491*a1^3 - 3199653/37964*a1^2 - 5388413/37964*a1 - 668059/37964)" "x^16 + x^15 - 27*x^14 - 24*x^13 + 294*x^12 + 229*x^11 - 1650*x^10 - 1115*x^9 + 5054*x^8 + 2991*x^7 - 8223*x^6 - 4526*x^5 + 6338*x^4 + 3707*x^3 - 1604*x^2 - 1215*x - 167"
"141a1" 141 282 5 148 "(1, 1, -1/2*a4 - 1/2, 1/4*a4^2 + 5/2*a4 - 7/4, -1/2*a4^2 - 7/2*a4 + 5, -1/2*a4^2 - 7/2*a4 + 7)" "x^3 + 7*x^2 - 21*x + 5"
1.41E+003 141 282 5 24 "(-1, 1, -1/2*a3 - 1, 2, 1/2*a3 + 1, 1/2*a3 + 3)" "x^2 + 4*x - 20"
"1410f1" 1410 282 5 24 "(-1, 1, -1/2*a3 - 1, 2, 1/2*a3 + 1, 1/2*a3 + 3)" "x^2 + 4*x - 20"
"574b1" 574 287 5 5 "(a1, -a1 - 1, a1 + 1, -1, -1, -2*a1 - 5)" "x^2 + x - 1"
"574f1" 574 287 5 5 "(a0, a0 - 1, -a0 - 1, 1, -2*a0 - 1, -3)" "x^2 + x - 1"
"861d1" 861 287 5 257 "(a2, a2^2 - a2 - 3, 2, 1, -2, -a2^2 + 6)" "x^3 - x^2 - 4*x + 3"
"1435a1" 1435 287 5 185257757 "(a5, -a5^3 + 5*a5, a5^5 - 9*a5^3 - a5^2 + 19*a5 + 6, -1, a5^5 + a5^4 - 11*a5^3 - 8*a5^2 + 30*a5 + 15, a5^5 + a5^4 - 10*a5^3 - 8*a5^2 + 22*a5 + 14)" "x^6 + x^5 - 10*x^4 - 10*x^3 + 23*x^2 + 24*x + 5"
"291b1" 291 291 5 5 "(a6, -1, 3, -3*a6 + 3, -a6 - 2, -a6 + 5)" "x^2 - 3*x + 1"
"4947d1" 4947 291 5 5 "(a5, 1, -2*a5 - 3, a5 - 3, 3*a5 + 2, -a5 - 5)" "x^2 + x - 1"
"876b1" 876 292 5 13448 "(0, 1/2*a1, 1/8*a1^3 - 1/2*a1^2 - 7/2*a1 + 10, -1/16*a1^3 + 1/8*a1^2 + 7/4*a1 - 2, -3/16*a1^3 + 5/8*a1^2 + 21/4*a1 - 10, -1/2*a1 + 2)" "x^4 - 6*x^3 - 20*x^2 + 128*x - 128"
"5548a1" 5548 292 5 5 "(0, a0, -a0 - 3, -2*a0 - 1, -a0 - 4, 5*a0 + 2)" "x^2 + x - 1"
"7300c1" 7300 292 5 13448 "(0, 1/2*a1, 1/8*a1^3 - 1/2*a1^2 - 7/2*a1 + 10, -1/16*a1^3 + 1/8*a1^2 + 7/4*a1 - 2, -3/16*a1^3 + 5/8*a1^2 + 21/4*a1 - 10, -1/2*a1 + 2)" "x^4 - 6*x^3 - 20*x^2 + 128*x - 128"
"11a1" 11 295 5 32223476 "(a2, -a2^5 + a2^4 + 6*a2^3 - 4*a2^2 - 7*a2 + 1, 1, a2^5 - 7*a2^3 - a2^2 + 10*a2 + 3, a2^4 - a2^3 - 5*a2^2 + 3*a2 + 4, -a2^4 + a2^3 + 4*a2^2 - 3*a2 + 1)" "x^6 - 2*x^5 - 6*x^4 + 11*x^3 + 8*x^2 - 11*x - 3"
"888a1" 888 296 5 48389 "(0, a3, a3^3 - 7*a3 + 2, -a3^3 - a3^2 + 7*a3 + 4, a3^2 - 4, -a3^3 - a3^2 + 6*a3 + 6)" "x^4 - 2*x^3 - 8*x^2 + 15*x + 4"
"11a1" 11 298 5 617176 "(1, -a4 + 1, 2/5*a4^4 - 7/5*a4^3 - 9/5*a4^2 + 18/5*a4 + 14/5, -3/5*a4^4 + 13/5*a4^3 + 1/5*a4^2 - 22/5*a4 + 9/5, -1/5*a4^4 + 1/5*a4^3 + 12/5*a4^2 + 6/5*a4 - 22/5, 3/5*a4^4 - 18/5*a4^3 + 19/5*a4^2 + 37/5*a4 - 44/5)" "x^5 - 4*x^4 - 4*x^3 + 15*x^2 + 5*x - 11"
"298b1" 298 298 5 169 "(-1, -1/2*a3 - 1/2, -1/4*a3^2 + a3 + 9/4, 1/2*a3^2 - a3 - 15/2, -3/4*a3^2 + 5/2*a3 + 21/4, 0)" "x^3 - 7*x^2 - x + 47"
"894c1" 894 298 5 169 "(-1, -1/2*a3 - 1/2, -1/4*a3^2 + a3 + 9/4, 1/2*a3^2 - a3 - 15/2, -3/4*a3^2 + 5/2*a3 + 21/4, 0)" "x^3 - 7*x^2 - x + 47"
"894b1" 894 298 5 169 "(-1, -1/2*a3 - 1/2, -1/4*a3^2 + a3 + 9/4, 1/2*a3^2 - a3 - 15/2, -3/4*a3^2 + 5/2*a3 + 21/4, 0)" "x^3 - 7*x^2 - x + 47"
"598b1" 598 299 5 5 "(a0, a0, -a0 - 1, -2*a0 - 3, -a0, 1)" "x^2 + x - 1"
8.97E+003 897 299 5 21 "(a1, a1, -a1 + 1, 1, a1 + 2, 1)" "x^2 + x - 5"
"2990g1" 2990 299 5 5 "(a3, -a3, -a3 - 1, -1, a3 - 2, -1)" "x^2 - x - 1"
"5681d1" 5681 299 5 788 "(0, -a5, -1/2*a5^2 + 7/2, -a5 + 1, -1/2*a5^2 + a5 + 9/2, 1)" "x^3 - x^2 - 9*x + 5"
"5681d1" 5681 299 5 5 "(a2, 0, a2 + 1, -a2 + 1, -a2 - 3, 1)" "x^2 - 5"
"5681d1" 5681 299 5 21 "(a1, a1, -a1 + 1, 1, a1 + 2, 1)" "x^2 + x - 5"
"906h1" 906 302 5 6224 "(1, -1/2*a5 + 1/2, -1/4*a5^2 + 1/2*a5 + 11/4, -1/8*a5^3 + 3/8*a5^2 + 17/8*a5 - 3/8, 1/4*a5^3 - 1/2*a5^2 - 15/4*a5 + 1, 1/8*a5^3 + 1/8*a5^2 - 17/8*a5 - 17/8)" "x^4 - 22*x^2 - 24*x + 29"
"610a1" 610 305 5 5262019648 "(a2, -1/2*a2^5 + 4*a2^3 - 1/2*a2^2 - 11/2*a2 - 1/2, -1, a2^4 - 7*a2^2 + 2*a2 + 8, 1/2*a2^6 - 5*a2^4 + 1/2*a2^3 + 25/2*a2^2 - 3/2*a2 - 6, -a2^2 + 5)" "x^7 + 2*x^6 - 11*x^5 - 19*x^4 + 35*x^3 + 48*x^2 - 25*x - 27"
"153d1" 153 306 5 24 "(-1, 0, 1/2*a4 + 1/2, 1/2*a4 + 5/2, -a4 - 1, -a4 + 1)" "x^2 + 2*x - 23"
"153a1" 153 306 5 24 "(1, 0, a5 - 1, -a5 + 3, -2*a5 + 2, 2*a5)" "x^2 - 2*x - 5"
"1530a1" 1530 306 5 24 "(-1, 0, 1/2*a4 + 1/2, 1/2*a4 + 5/2, -a4 - 1, -a4 + 1)" "x^2 + 2*x - 23"
"1530j1" 1530 306 5 24 "(1, 0, a5 - 1, -a5 + 3, -2*a5 + 2, 2*a5)" "x^2 - 2*x - 5"
"307d1" 307 307 5 8232339871885 "(a5, -a5^8 + 2*a5^7 + 11*a5^6 - 18*a5^5 - 38*a5^4 + 44*a5^3 + 39*a5^2 - 24*a5 - 13, a5^7 - a5^6 - 11*a5^5 + 5*a5^4 + 36*a5^3 + 3*a5^2 - 24*a5 - 9, a5^7 - a5^6 - 12*a5^5 + 5*a5^4 + 44*a5^3 + 5*a5^2 - 36*a5 - 13, a5^8 - 2*a5^7 - 10*a5^6 + 15*a5^5 + 31*a5^4 - 26*a5^3 - 23*a5^2 + 6*a5 + 3, a5^8 - a5^7 - 12*a5^6 + 6*a5^5 + 45*a5^4 - 2*a5^3 - 45*a5^2 - 8*a5 + 6)" "x^9 - 3*x^8 - 11*x^7 + 30*x^6 + 46*x^5 - 87*x^4 - 91*x^3 + 50*x^2 + 62*x + 13"
"307b1" 307 307 5 8232339871885 "(a5, -a5^8 + 2*a5^7 + 11*a5^6 - 18*a5^5 - 38*a5^4 + 44*a5^3 + 39*a5^2 - 24*a5 - 13, a5^7 - a5^6 - 11*a5^5 + 5*a5^4 + 36*a5^3 + 3*a5^2 - 24*a5 - 9, a5^7 - a5^6 - 12*a5^5 + 5*a5^4 + 44*a5^3 + 5*a5^2 - 36*a5 - 13, a5^8 - 2*a5^7 - 10*a5^6 + 15*a5^5 + 31*a5^4 - 26*a5^3 - 23*a5^2 + 6*a5 + 3, a5^8 - a5^7 - 12*a5^6 + 6*a5^5 + 45*a5^4 - 2*a5^3 - 45*a5^2 - 8*a5 + 6)" "x^9 - 3*x^8 - 11*x^7 + 30*x^6 + 46*x^5 - 87*x^4 - 91*x^3 + 50*x^2 + 62*x + 13"
"44a1" 44 308 5 24 "(0, -a1, 2, -1, -1, a1 + 2)" "x^2 - 6"
9.24E+003 924 308 5 24 "(0, -a1, 2, -1, -1, a1 + 2)" "x^2 - 6"
6.18E+003 618 309 5 148 "(a1, -1, a1, -a1^2 + 2*a1 + 1, -a1^2 + 5, -2*a1^2 + 2*a1 + 3)" "x^3 - x^2 - 3*x + 1"
"1339a1" 1339 309 5 2187277690340 "(a3, 1, -1/2*a3^7 + 11/2*a3^5 - 18*a3^3 - 3/2*a3^2 + 17*a3 + 7/2, a3^6 - 8*a3^4 + a3^3 + 13*a3^2 - 3*a3, -a3^6 - a3^5 + 8*a3^4 + 6*a3^3 - 14*a3^2 - 5*a3 + 3, 1/2*a3^7 - 11/2*a3^5 - a3^4 + 18*a3^3 + 15/2*a3^2 - 18*a3 - 11/2)" "x^8 + x^7 - 13*x^6 - 11*x^5 + 52*x^4 + 35*x^3 - 59*x^2 - 27*x + 1"
"11a1" 11 310 5 148 "(1, a4 - 1, 1, -a4^2 + 2*a4 + 3, a4^2 - 5*a4 + 2, -a4 - 1)" "x^3 - 5*x^2 + 3*x + 5"
"930c1" 930 310 5 24 "(-1, 1/2*a3 + 1/2, 1, -2, 1/2*a3 + 5/2, 1/2*a3 + 5/2)" "x^2 + 2*x - 23"
"930h1" 930 310 5 24 "(-1, 1/2*a3 + 1/2, 1, -2, 1/2*a3 + 5/2, 1/2*a3 + 5/2)" "x^2 + 2*x - 23"
"11a1" 11 311 5 6.35E+045 "(a1, -1333218028123436678/106341562018576649119*a1^21 + 1367946423136236257/106341562018576649119*a1^20 + 49328489263264063408/106341562018576649119*a1^19 - 48698618113739814119/106341562018576649119*a1^18 - 780071490285978038489/106341562018576649119*a1^17 + 731764058773877640305/106341562018576649119*a1^16 + 6883435129930837071209/106341562018576649119*a1^15 - 6029718454604453812991/106341562018576649119*a1^14 - 37117408682963362048611/106341562018576649119*a1^13 + 29643589741202443321628/106341562018576649119*a1^12 + 125904278451589035925849/106341562018576649119*a1^11 - 88764078616540344648331/106341562018576649119*a1^10 - 266400248133720180154691/106341562018576649119*a1^9 + 159042733994278329421197/106341562018576649119*a1^8 + 336261615438596631255820/106341562018576649119*a1^7 - 162008001244132052237259/106341562018576649119*a1^6 - 230084343080867524283273/106341562018576649119*a1^5 + 85032171085335940948597/106341562018576649119*a1^4 + 71086649415902837709445/106341562018576649119*a1^3 - 17051195074052769029465/106341562018576649119*a1^2 - 6284781941061791629214/106341562018576649119*a1 - 2035191172956196509/2473059581827363933, -21242974024529590/106341562018576649119*a1^21 - 1434491652110563978/106341562018576649119*a1^20 + 3209217338769634321/106341562018576649119*a1^19 + 48282217898366329351/106341562018576649119*a1^18 - 94578303848943192367/106341562018576649119*a1^17 - 676590780104692901915/106341562018576649119*a1^16 + 1270815302353166006692/106341562018576649119*a1^15 + 5102603103564094427213/106341562018576649119*a1^14 - 9439579417621543494677/106341562018576649119*a1^13 - 22357866355125222974699/106341562018576649119*a1^12 + 41280678241435124160901/106341562018576649119*a1^11 + 57441564627509462184517/106341562018576649119*a1^10 - 106882614769975285857639/106341562018576649119*a1^9 - 83882843771650414225579/106341562018576649119*a1^8 + 158593036380613931304765/106341562018576649119*a1^7 + 66319079553842412941717/106341562018576649119*a1^6 - 126427357236440356717803/106341562018576649119*a1^5 - 28369596568106140688094/106341562018576649119*a1^4 + 47782658911006380501745/106341562018576649119*a1^3 + 8238984211089590694971/106341562018576649119*a1^2 - 6439892278957108980653/106341562018576649119*a1 - 30557112079337671866/2473059581827363933, 504418815307781939/106341562018576649119*a1^21 - 1021065885099576655/106341562018576649119*a1^20 - 16604493185137817773/106341562018576649119*a1^19 + 33056103831567470983/106341562018576649119*a1^18 + 226015020692329680027/106341562018576649119*a1^17 - 435479859114799908685/106341562018576649119*a1^16 - 1641199345467818455453/106341562018576649119*a1^15 + 2956466065705411278227/106341562018576649119*a1^14 + 6861291586789371631471/106341562018576649119*a1^13 - 10597470554231302540041/106341562018576649119*a1^12 - 16835996047441621774817/106341562018576649119*a1^11 + 16674122550262725807072/106341562018576649119*a1^10 + 24918511100968457522896/106341562018576649119*a1^9 + 4438859628397342489851/106341562018576649119*a1^8 - 26019738542206463779319/106341562018576649119*a1^7 - 47775179818655449476697/106341562018576649119*a1^6 + 24030985031406062666739/106341562018576649119*a1^5 + 52435121331955185077307/106341562018576649119*a1^4 - 16943596953875463472297/106341562018576649119*a1^3 - 19178717695756638586794/106341562018576649119*a1^2 + 5034806783502259963324/106341562018576649119*a1 + 39595990210148060592/2473059581827363933, -949531404212230610/106341562018576649119*a1^21 + 1404606076267666588/106341562018576649119*a1^20 + 31860596932911204463/106341562018576649119*a1^19 - 46971051976902102427/106341562018576649119*a1^18 - 443194299396015920727/106341562018576649119*a1^17 + 654211796697056201475/106341562018576649119*a1^16 + 3289263238009343513027/106341562018576649119*a1^15 - 4909640949988760976063/106341562018576649119*a1^14 - 13911354804136965503755/106341562018576649119*a1^13 + 21492498277511827879899/106341562018576649119*a1^12 + 32809246067622506014675/106341562018576649119*a1^11 - 55848212667582391995663/106341562018576649119*a1^10 - 37152948138636735453445/106341562018576649119*a1^9 + 85393270687204170694965/106341562018576649119*a1^8 + 5583375858342452495631/106341562018576649119*a1^7 - 76499001320510405514675/106341562018576649119*a1^6 + 25817695878266203276277/106341562018576649119*a1^5 + 39666285577392711382787/106341562018576649119*a1^4 - 19730812320902394420787/106341562018576649119*a1^3 - 10921342107175992074971/106341562018576649119*a1^2 + 3730720089149782086801/106341562018576649119*a1 + 28348484555942980958/2473059581827363933, 321226424163746048/106341562018576649119*a1^21 + 3801901583102434231/106341562018576649119*a1^20 - 18552232937067380885/106341562018576649119*a1^19 - 129228358922459727636/106341562018576649119*a1^18 + 415822499184604316188/106341562018576649119*a1^17 + 1838181668057575308290/106341562018576649119*a1^16 - 4909941181790293676126/106341562018576649119*a1^15 - 14192061774488959599914/106341562018576649119*a1^14 + 33996329744624815911691/106341562018576649119*a1^13 + 64611826293534390239510/106341562018576649119*a1^12 - 143009619717835957566812/106341562018576649119*a1^11 - 177164866440755054595842/106341562018576649119*a1^10 + 363135701598845915429974/106341562018576649119*a1^9 + 289742407609106508486970/106341562018576649119*a1^8 - 534122568544790467437490/106341562018576649119*a1^7 - 275603753317877822408499/106341562018576649119*a1^6 + 420748487273236095304854/106341562018576649119*a1^5 + 145078038418898400990846/106341562018576649119*a1^4 - 153245015674186693664582/106341562018576649119*a1^3 - 38930610655526174141722/106341562018576649119*a1^2 + 18299352733124579928085/106341562018576649119*a1 + 96767738356241061887/2473059581827363933)" "x^22 - 2*x^21 - 35*x^20 + 70*x^19 + 517*x^18 - 1033*x^17 - 4195*x^16 + 8357*x^15 + 20417*x^14 - 40403*x^13 - 61287*x^12 + 119701*x^11 + 113017*x^10 - 215615*x^9 - 124399*x^8 + 228609*x^7 + 76453*x^6 - 133295*x^5 - 23503*x^4 + 36742*x^3 + 3587*x^2 - 3200*x - 473"
"939c1" 939 313 5 5 "(a0, -a0 + 2, a0 + 1, 2*a0, -2*a0 + 1, -3*a0 + 5)" "x^2 - x - 1"
"1878d1" 1878 313 5 1.26E+015 "(a1, -29/13*a1^10 - 184/13*a1^9 - 159/13*a1^8 + 1023/13*a1^7 + 1831/13*a1^6 - 1251/13*a1^5 - 3525/13*a1^4 + 133/13*a1^3 + 2052/13*a1^2 + 138/13*a1 - 290/13, 3/13*a1^10 + 15/13*a1^9 - 10/13*a1^8 - 126/13*a1^7 - 37/13*a1^6 + 341/13*a1^5 + 132/13*a1^4 - 302/13*a1^3 - 76/13*a1^2 + 31/13*a1 + 4/13, 73/13*a1^10 + 482/13*a1^9 + 502/13*a1^8 - 2559/13*a1^7 - 5238/13*a1^6 + 2582/13*a1^5 + 9959/13*a1^4 + 577/13*a1^3 - 5875/13*a1^2 - 602/13*a1 + 834/13, -8/13*a1^10 - 66/13*a1^9 - 125/13*a1^8 + 271/13*a1^7 + 1013/13*a1^6 + 135/13*a1^5 - 1860/13*a1^4 - 850/13*a1^3 + 1117/13*a1^2 + 368/13*a1 - 197/13, 73/13*a1^10 + 482/13*a1^9 + 502/13*a1^8 - 2546/13*a1^7 - 5199/13*a1^6 + 2517/13*a1^5 + 9751/13*a1^4 + 655/13*a1^3 - 5641/13*a1^2 - 641/13*a1 + 795/13)" "x^11 + 8*x^10 + 16*x^9 - 26*x^8 - 121*x^7 - 62*x^6 + 190*x^5 + 196*x^4 - 76*x^3 - 122*x^2 + 2*x + 17"
"942c1" 942 314 5 8278122173 "(1, a2 - 1, -1/3*a2^5 + 5/3*a2^4 + 1/3*a2^3 - 9*a2^2 + 17/3*a2 + 3, 1/15*a2^6 + 1/15*a2^5 - 7/3*a2^4 + 13/5*a2^3 + 146/15*a2^2 - 196/15*a2 + 3, -1/15*a2^6 + 4/15*a2^5 + a2^4 - 74/15*a2^3 - 16/15*a2^2 + 266/15*a2 - 8, -1/15*a2^6 + 3/5*a2^5 - a2^4 - 34/15*a2^3 + 79/15*a2^2 - 64/15*a2 + 5)" "x^7 - 6*x^6 - 2*x^5 + 59*x^4 - 47*x^3 - 143*x^2 + 157*x - 15"
"2198a1" 2198 314 5 48599781 "(-1, 1/2*a1 + 1/2, -5/416*a1^5 - 9/416*a1^4 + 109/208*a1^3 + 105/208*a1^2 - 1893/416*a1 - 1113/416, -1/208*a1^5 - 7/208*a1^4 + 7/52*a1^3 + 43/52*a1^2 - 155/208*a1 - 389/208, 5/416*a1^5 + 35/416*a1^4 - 83/208*a1^3 - 573/208*a1^2 + 1217/416*a1 + 7639/416, 1/52*a1^5 + 1/104*a1^4 - 41/52*a1^3 + 5/26*a1^2 + 81/13*a1 - 93/104)" "x^6 - 51*x^4 + 24*x^3 + 683*x^2 - 280*x - 2489"
"315a1" 315 315 5 5 "(a3, 0, 1, 1, -2*a3 - 2, 2*a3)" "x^2 - 5"
"2219b1" 2219 317 5 1.68E+027 "(a1, -2929/9028*a1^14 + 3305/4514*a1^13 + 31073/4514*a1^12 - 35302/2257*a1^11 - 248773/4514*a1^10 + 573563/4514*a1^9 + 919473/4514*a1^8 - 4378801/9028*a1^7 - 3005667/9028*a1^6 + 1935368/2257*a1^5 + 1592783/9028*a1^4 - 5224775/9028*a1^3 - 38286/2257*a1^2 + 248643/2257*a1 - 29861/9028, 6887/4514*a1^14 - 10787/4514*a1^13 - 144831/4514*a1^12 + 232879/4514*a1^11 + 1153635/4514*a1^10 - 1909601/4514*a1^9 - 4281777/4514*a1^8 + 3670378/2257*a1^7 + 7216765/4514*a1^6 - 12991581/4514*a1^5 - 2205724/2257*a1^4 + 8622515/4514*a1^3 + 846049/4514*a1^2 - 1576987/4514*a1 + 2893/2257, -175/122*a1^14 + 251/122*a1^13 + 3703/122*a1^12 - 5485/122*a1^11 - 29711/122*a1^10 + 45521/122*a1^9 + 111249/122*a1^8 - 88481/61*a1^7 - 189781/122*a1^6 + 316101/122*a1^5 + 59244/61*a1^4 - 210853/122*a1^3 - 22725/122*a1^2 + 38633/122*a1 - 55/61, 93/4514*a1^14 - 1741/4514*a1^13 - 2817/4514*a1^12 + 35583/4514*a1^11 + 30911/4514*a1^10 - 277307/4514*a1^9 - 158111/4514*a1^8 + 512581/2257*a1^7 + 392617/4514*a1^6 - 1800053/4514*a1^5 - 224672/2257*a1^4 + 1279815/4514*a1^3 + 214893/4514*a1^2 - 246421/4514*a1 - 3148/2257, -2172/2257*a1^14 + 2583/2257*a1^13 + 45696/2257*a1^12 - 56593/2257*a1^11 - 365097/2257*a1^10 + 469928/2257*a1^9 + 1366782/2257*a1^8 - 1822073/2257*a1^7 - 2356643/2257*a1^6 + 3225372/2257*a1^5 + 1542585/2257*a1^4 - 2096010/2257*a1^3 - 333769/2257*a1^2 + 368683/2257*a1 + 6380/2257)" "x^15 - x^14 - 22*x^13 + 22*x^12 + 188*x^11 - 184*x^10 - 786*x^9 + 723*x^8 + 1666*x^7 - 1315*x^6 - 1715*x^5 + 910*x^4 + 829*x^3 - 168*x^2 - 129*x + 1"
"106b1" 106 318 5 41 "(-1, 1, 1/2*a5 - 1/2, 0, -1/2*a5 + 5/2, 6)" "x^2 - 4*x - 37"
"318b1" 318 318 5 41 "(-1, 1, 1/2*a5 - 1/2, 0, -1/2*a5 + 5/2, 6)" "x^2 - 4*x - 37"
"11a1" 11 319 5 905721709 "(a3, -a3^4 + a3^3 + 5*a3^2 - 3*a3 - 3, a3^5 - a3^4 - 6*a3^3 + 4*a3^2 + 7*a3 - 1, a3^6 - 3*a3^5 - 4*a3^4 + 14*a3^3 + 2*a3^2 - 11*a3 - 1, 1, a3^5 - 2*a3^4 - 4*a3^3 + 6*a3^2 + 2*a3 + 1)" "x^7 - 3*x^6 - 4*x^5 + 15*x^4 + x^3 - 14*x^2 + 1"
"1595a1" 1595 319 5 230985139597 "(a4, -1/9*a4^7 - 1/9*a4^6 + 16/9*a4^5 + 10/9*a4^4 - 26/3*a4^3 - 25/9*a4^2 + 113/9*a4 + 14/9, 4/9*a4^7 - 2/9*a4^6 - 49/9*a4^5 + 17/9*a4^4 + 56/3*a4^3 - 26/9*a4^2 - 143/9*a4 + 13/9, -2/9*a4^7 - 1/3*a4^6 + 3*a4^5 + 34/9*a4^4 - 12*a4^3 - 98/9*a4^2 + 13*a4 + 29/9, -1, 2/3*a4^7 - 2/9*a4^6 - 73/9*a4^5 + 16/9*a4^4 + 86/3*a4^3 - 2*a4^2 - 254/9*a4 - 13/9)" "x^8 - 13*x^6 - x^5 + 50*x^4 + 7*x^3 - 54*x^2 - 5*x + 1"
"214c1" 214 321 5 5 "(a0, -1, 1, -2, -2*a0 - 4, -1)" "x^2 + x - 1"
"642a1" 642 321 5 8526891664 "(a3, -1, -1/4*a3^6 + 1/4*a3^5 + 11/4*a3^4 - 5/2*a3^3 - 31/4*a3^2 + 25/4*a3 + 13/4, 1/2*a3^6 - 7*a3^4 + a3^3 + 26*a3^2 - 7*a3 - 27/2, -3/4*a3^6 + 1/4*a3^5 + 41/4*a3^4 - 4*a3^3 - 151/4*a3^2 + 67/4*a3 + 93/4, -1/2*a3^6 + 1/2*a3^5 + 7*a3^4 - 11/2*a3^3 - 55/2*a3^2 + 15*a3 + 21)" "x^7 - 14*x^5 - x^4 + 55*x^3 + 8*x^2 - 46*x - 19"
"6099c1" 6099 321 5 5 "(a1, 1, -3, -2*a1 - 2, -2, -1)" "x^2 + x - 1"
"483a1" 483 322 5 5 "(-1, -1/2*a4 - 1/2, 1/2*a4 - 3/2, -1, 0, a4 - 3)" "x^2 - 2*x - 19"
"11a1" 11 323 5 9227627564 "(a5, 1/2*a5^6 - 1/2*a5^5 - 5*a5^4 + 7/2*a5^3 + 13*a5^2 - 7/2*a5 - 5, a5^6 - 10*a5^4 + 26*a5^2 + a5 - 10, -a5^3 + 5*a5, -a5^6 + 11*a5^4 + a5^3 - 33*a5^2 - 6*a5 + 18, -a5^2 - a5 + 6)" "x^7 - x^6 - 10*x^5 + 9*x^4 + 26*x^3 - 19*x^2 - 12*x + 8"
"325a1" 325 325 5 148 "(a9, a9^2 + a9 - 4, 0, -a9^2 - 2*a9 + 1, a9 - 1, 1)" "x^3 + 3*x^2 - x - 5"
"325b1" 325 325 5 148 "(a10, -a10^2 + a10 + 4, 0, a10^2 - 2*a10 - 1, -a10 - 1, -1)" "x^3 - 3*x^2 - x + 5"
"978a1" 978 326 5 482689 "(-1, -a3 - 1, -7/13*a3^4 - 38/13*a3^3 - 4/13*a3^2 + 162/13*a3 + 103/13, 4/13*a3^4 + 18/13*a3^3 - 20/13*a3^2 - 100/13*a3 + 34/13, -3/13*a3^4 - 7/13*a3^3 + 28/13*a3^2 + 23/13*a3 - 58/13, 6/13*a3^4 + 27/13*a3^3 - 17/13*a3^2 - 124/13*a3 - 14/13)" "x^5 + 8*x^4 + 14*x^3 - 23*x^2 - 66*x - 19"
"4238b1" 4238 326 5 482689 "(-1, -a3 - 1, -7/13*a3^4 - 38/13*a3^3 - 4/13*a3^2 + 162/13*a3 + 103/13, 4/13*a3^4 + 18/13*a3^3 - 20/13*a3^2 - 100/13*a3 + 34/13, -3/13*a3^4 - 7/13*a3^3 + 28/13*a3^2 + 23/13*a3 - 58/13, 6/13*a3^4 + 27/13*a3^3 - 17/13*a3^2 - 124/13*a3 - 14/13)" "x^5 + 8*x^4 + 14*x^3 - 23*x^2 - 66*x - 19"
"11a1" 11 327 5 367901428451840 "(a3, 1, -1/6*a3^8 - 1/6*a3^7 + 8/3*a3^6 + 7/3*a3^5 - 40/3*a3^4 - 10*a3^3 + 125/6*a3^2 + 85/6*a3 - 1/3, -1/3*a3^8 + 2/3*a3^7 + 13/3*a3^6 - 22/3*a3^5 - 53/3*a3^4 + 22*a3^3 + 68/3*a3^2 - 44/3*a3 + 1/3, 3*a3^8 - 7/2*a3^7 - 79/2*a3^6 + 33*a3^5 + 163*a3^4 - 72*a3^3 - 217*a3^2 - 5/2*a3 + 23/2, -4/3*a3^8 + 5/3*a3^7 + 52/3*a3^6 - 46/3*a3^5 - 212/3*a3^4 + 30*a3^3 + 278/3*a3^2 + 31/3*a3 - 2/3)" "x^9 - 3*x^8 - 11*x^7 + 35*x^6 + 34*x^5 - 122*x^4 - 29*x^3 + 127*x^2 + 9*x - 5"
"4251c1" 4251 327 5 367901428451840 "(a3, 1, -1/6*a3^8 - 1/6*a3^7 + 8/3*a3^6 + 7/3*a3^5 - 40/3*a3^4 - 10*a3^3 + 125/6*a3^2 + 85/6*a3 - 1/3, -1/3*a3^8 + 2/3*a3^7 + 13/3*a3^6 - 22/3*a3^5 - 53/3*a3^4 + 22*a3^3 + 68/3*a3^2 - 44/3*a3 + 1/3, 3*a3^8 - 7/2*a3^7 - 79/2*a3^6 + 33*a3^5 + 163*a3^4 - 72*a3^3 - 217*a3^2 - 5/2*a3 + 23/2, -4/3*a3^8 + 5/3*a3^7 + 52/3*a3^6 - 46/3*a3^5 - 212/3*a3^4 + 30*a3^3 + 278/3*a3^2 + 31/3*a3 - 2/3)" "x^9 - 3*x^8 - 11*x^7 + 35*x^6 + 34*x^5 - 122*x^4 - 29*x^3 + 127*x^2 + 9*x - 5"
"8175c1" 8175 327 5 148 "(a1, -1, -1, -a1^2 - 2*a1 + 1, a1^2 + a1 - 3, -a1^2 - 2*a1 + 1)" "x^3 + 3*x^2 - x - 5"
"984c1" 984 328 5 148 "(0, -a3, -a3^2 + 4*a3 - 2, 2*a3^2 - 5*a3 - 2, -2*a3^2 + 5*a3 - 2, -2*a3 + 2)" "x^3 - 4*x^2 + 2*x + 2"
"1640d1" 1640 328 5 788 "(0, 1/2*a4, -1/4*a4^2 + 6, 1/2*a4 + 2, -1/2*a4 - 2, -a4 - 2)" "x^3 + 4*x^2 - 24*x - 80"
"329a1" 329 329 5 1032140 "(a5, -a5^2 + 5, a5 - 1, -1, -a5^4 + 10*a5^2 + a5 - 20, a5^3 - 2*a5^2 - 6*a5 + 11)" "x^5 - x^4 - 11*x^3 + 12*x^2 + 28*x - 33"
"658a1" 658 329 5 148 "(a4, a4^2 - a4 - 3, 1/2*a4^2 - 2*a4 - 3/2, -1, -1/2*a4^2 - a4 + 5/2, -a4 - 1)" "x^3 - x^2 - 5*x + 1"
"11a1" 11 331 5 1.96E+029 "(a3, -1069/10445*a3^15 + 5881/10445*a3^14 + 17079/10445*a3^13 - 23704/2089*a3^12 - 84578/10445*a3^11 + 923333/10445*a3^10 + 43752/10445*a3^9 - 3472853/10445*a3^8 + 749508/10445*a3^7 + 6394904/10445*a3^6 - 1779062/10445*a3^5 - 5163977/10445*a3^4 + 881194/10445*a3^3 + 1507308/10445*a3^2 - 64022/10445*a3 - 14094/2089, -193/41780*a3^15 + 3141/41780*a3^14 + 8817/41780*a3^13 - 34827/20890*a3^12 - 31464/10445*a3^11 + 604449/41780*a3^10 + 402503/20890*a3^9 - 2602543/41780*a3^8 - 2497031/41780*a3^7 + 1153919/8356*a3^6 + 3522077/41780*a3^5 - 6042977/41780*a3^4 - 85673/2089*a3^3 + 2150027/41780*a3^2 + 44617/10445*a3 - 14807/10445, -5839/10445*a3^15 + 9898/10445*a3^14 + 114836/10445*a3^13 - 191702/10445*a3^12 - 859383/10445*a3^11 + 1427727/10445*a3^10 + 3015533/10445*a3^9 - 5069699/10445*a3^8 - 4853023/10445*a3^7 + 1713921/2089*a3^6 + 2824461/10445*a3^5 - 5994991/10445*a3^4 - 56504/2089*a3^3 + 1607476/10445*a3^2 - 86331/10445*a3 - 91994/10445, -3028/10445*a3^15 + 5627/10445*a3^14 + 58148/10445*a3^13 - 21605/2089*a3^12 - 419726/10445*a3^11 + 793671/10445*a3^10 + 1386534/10445*a3^9 - 2758186/10445*a3^8 - 1983964/10445*a3^7 + 4488793/10445*a3^6 + 864276/10445*a3^5 - 2892759/10445*a3^4 - 153317/10445*a3^3 + 679861/10445*a3^2 + 75441/10445*a3 - 4708/2089, 11711/20890*a3^15 - 26481/20890*a3^14 - 223473/20890*a3^13 + 258476/10445*a3^12 + 798976/10445*a3^11 - 3881061/20890*a3^10 - 2583287/10445*a3^9 + 13914713/20890*a3^8 + 6823439/20890*a3^7 - 23859907/20890*a3^6 - 249959/4178*a3^5 + 17062757/20890*a3^4 - 942881/10445*a3^3 - 884743/4178*a3^2 + 295971/10445*a3 + 126152/10445)" "x^16 - 3*x^15 - 19*x^14 + 60*x^13 + 136*x^12 - 465*x^11 - 448*x^10 + 1747*x^9 + 657*x^8 - 3241*x^7 - 375*x^6 + 2695*x^5 + 230*x^4 - 855*x^3 - 110*x^2 + 56*x + 8"
"333a1" 333 333 5 148 "(a4, 0, a4^2 - 5, -2*a4^2 - 2*a4 + 4, -2*a4^2 - 4*a4 + 2, 2*a4^2 + 4*a4 - 4)" "x^3 + 3*x^2 - x - 5"
"666a1" 666 333 5 27648 "(a5, 0, -a5^3 + 5*a5, 2, 0, 2)" "x^4 - 6*x^2 + 3"
"666d1" 666 333 5 27648 "(a5, 0, -a5^3 + 5*a5, 2, 0, 2)" "x^4 - 6*x^2 + 3"
1.67E+004 1665 333 5 6224 "(a6, 0, -a6^3 + 2*a6^2 + 3*a6 - 4, -2*a6^3 + 2*a6^2 + 8*a6 - 2, -2*a6^2 + 6, 2*a6^3 - 4*a6^2 - 6*a6 + 10)" "x^4 - 6*x^2 - 2*x + 5"
"1670a1" 1670 334 5 5 "(-1, a1 + 1, -1, -2*a1 - 3, -a1 - 4, -2*a1 - 3)" "x^2 + 3*x + 1"
"1670b1" 1670 334 5 733 "(1, 1/2*a5 - 1/2, -1, 1, -1/4*a5^2 - 1/2*a5 + 35/4, -1/4*a5^2 + 25/4)" "x^3 - 5*x^2 - 21*x + 89"
"2338f1" 2338 334 5 5 "(1, -1/2*a3 + 1/2, a3 - 6, -3, -1/2*a3 - 5/2, -2*a3 + 9)" "x^2 - 8*x + 11"
"670c1" 670 335 5 5 "(a2, 2*a2 - 1, -1, 2*a2 - 1, 2*a2 - 4, 6)" "x^2 - x - 1"
"1005a1" 1005 335 5 1.52E+019 "(a4, 43/5261*a4^10 - 84/5261*a4^9 - 1344/5261*a4^8 + 1488/5261*a4^7 + 13496/5261*a4^6 - 9411/5261*a4^5 - 54847/5261*a4^4 + 24218/5261*a4^3 + 84666/5261*a4^2 - 17145/5261*a4 - 28424/5261, 1, 2136/5261*a4^10 + 966/5261*a4^9 - 37154/5261*a4^8 - 11851/5261*a4^7 + 223588/5261*a4^6 + 42464/5261*a4^5 - 550354/5261*a4^4 - 52284/5261*a4^3 + 499421/5261*a4^2 + 31446/5261*a4 - 115048/5261, -1271/5261*a4^10 + 770/5261*a4^9 + 22842/5261*a4^8 - 13640/5261*a4^7 - 141250/5261*a4^6 + 78376/5261*a4^5 + 351072/5261*a4^4 - 160620/5261*a4^3 - 307876/5261*a4^2 + 86139/5261*a4 + 57128/5261, 1936/5261*a4^10 + 1112/5261*a4^9 - 34818/5261*a4^8 - 16692/5261*a4^7 + 219421/5261*a4^6 + 85502/5261*a4^5 - 576654/5261*a4^4 - 176549/5261*a4^3 + 579238/5261*a4^2 + 109722/5261*a4 - 156334/5261)" "x^11 - 18*x^9 + 2*x^8 + 114*x^7 - 24*x^6 - 306*x^5 + 86*x^4 + 332*x^3 - 109*x^2 - 114*x + 46"
"1011a1" 1011 337 5 2.90E+025 "(a1, -1949/1618*a1^14 + 1320/809*a1^13 + 19977/809*a1^12 - 22552/809*a1^11 - 322023/1618*a1^10 + 281379/1618*a1^9 + 1285759/1618*a1^8 - 383962/809*a1^7 - 2607215/1618*a1^6 + 826791/1618*a1^5 + 2373167/1618*a1^4 - 68300/809*a1^3 - 287702/809*a1^2 - 35427/809*a1 + 4591/1618, 971/1618*a1^14 - 954/809*a1^13 - 9264/809*a1^12 + 16549/809*a1^11 + 137225/1618*a1^10 - 212741/1618*a1^9 - 498023/1618*a1^8 + 309926/809*a1^7 + 915105/1618*a1^6 - 797805/1618*a1^5 - 761279/1618*a1^4 + 176743/809*a1^3 + 85396/809*a1^2 - 10937/809*a1 - 3535/1618, 849/1618*a1^14 - 685/809*a1^13 - 8280/809*a1^12 + 11507/809*a1^11 + 125879/1618*a1^10 - 139611/1618*a1^9 - 470549/1618*a1^8 + 180836/809*a1^7 + 890021/1618*a1^6 - 342519/1618*a1^5 - 750325/1618*a1^4 - 655/809*a1^3 + 74829/809*a1^2 + 24406/809*a1 + 7347/1618, 6103/3236*a1^14 - 4299/1618*a1^13 - 30978/809*a1^12 + 36187/809*a1^11 + 989877/3236*a1^10 - 882049/3236*a1^9 - 3925325/3236*a1^8 + 575536/809*a1^7 + 7937621/3236*a1^6 - 2195013/3236*a1^5 - 7252033/3236*a1^4 - 12097/809*a1^3 + 444324/809*a1^2 + 86502/809*a1 + 9625/3236, 797/809*a1^14 - 1207/809*a1^13 - 16066/809*a1^12 + 20440/809*a1^11 + 127515/809*a1^10 - 126146/809*a1^9 - 503042/809*a1^8 + 339199/809*a1^7 + 1014207/809*a1^6 - 356190/809*a1^5 - 927323/809*a1^4 + 52978/809*a1^3 + 229839/809*a1^2 + 28557/809*a1 + 142/809)" "x^15 - 3*x^14 - 18*x^13 + 56*x^12 + 123*x^11 - 402*x^10 - 400*x^9 + 1395*x^8 + 643*x^7 - 2406*x^6 - 496*x^5 + 1843*x^4 + 200*x^3 - 388*x^2 - 69*x + 1"
"2359a1" 2359 337 5 2.36E+017 "(a0, -41/27*a0^11 - 23/3*a0^10 + 148/27*a0^9 + 679/9*a0^8 + 1208/27*a0^7 - 2122/9*a0^6 - 5621/27*a0^5 + 8552/27*a0^4 + 7303/27*a0^3 - 5185/27*a0^2 - 316/3*a0 + 124/3, 76/27*a0^11 + 40/3*a0^10 - 356/27*a0^9 - 1184/9*a0^8 - 1393/27*a0^7 + 3701/9*a0^6 + 7618/27*a0^5 - 14677/27*a0^4 - 9914/27*a0^3 + 8360/27*a0^2 + 422/3*a0 - 182/3, -49/27*a0^11 - 22/3*a0^10 + 356/27*a0^9 + 671/9*a0^8 - 362/27*a0^7 - 2189/9*a0^6 - 976/27*a0^5 + 8845/27*a0^4 + 1571/27*a0^3 - 4607/27*a0^2 - 68/3*a0 + 68/3, 2*a0^11 + 26/3*a0^10 - 13*a0^9 - 268/3*a0^8 - 3*a0^7 + 895/3*a0^6 + 107*a0^5 - 1243/3*a0^4 - 473/3*a0^3 + 683/3*a0^2 + 187/3*a0 - 37, -5/3*a0^11 - 22/3*a0^10 + 31/3*a0^9 + 224/3*a0^8 + 20/3*a0^7 - 731/3*a0^6 - 293/3*a0^5 + 976/3*a0^4 + 401/3*a0^3 - 491/3*a0^2 - 146/3*a0 + 19)" "x^12 + 6*x^11 + x^10 - 54*x^9 - 76*x^8 + 135*x^7 + 289*x^6 - 97*x^5 - 392*x^4 - 28*x^3 + 201*x^2 + 36*x - 27"
"11a1" 11 341 5 5 "(a0, -1, -a0 - 1, -3*a0 + 2, 1, 4*a0 - 3)" "x^2 - x - 1"
"1705a1" 1705 341 5 924424326976 "(a2, 1/4*a2^7 - 1/4*a2^6 - 13/4*a2^5 + 5/2*a2^4 + 51/4*a2^3 - 25/4*a2^2 - 55/4*a2 + 1, -1/2*a2^4 + 1/2*a2^3 + 3*a2^2 - 5/2*a2 - 3/2, -1/4*a2^6 + 1/4*a2^5 + 9/4*a2^4 - 3/2*a2^3 - 19/4*a2^2 + 1/4*a2 + 11/4, -1, 1/2*a2^5 - 1/2*a2^4 - 5*a2^3 + 5/2*a2^2 + 23/2*a2 + 2)" "x^8 - x^7 - 14*x^6 + 11*x^5 + 60*x^4 - 31*x^3 - 74*x^2 + 5*x + 3"
"5848f1" 5848 344 5 7998268 "(0, a3, a3^3 - 7*a3 + 2, -a3^3 - a3^2 + 7*a3 + 4, -1/2*a3^4 + 1/2*a3^3 + 9/2*a3^2 - 4*a3 - 4, 1/2*a3^4 - 1/2*a3^3 - 9/2*a3^2 + 4*a3 + 6)" "x^5 + x^4 - 13*x^3 - 8*x^2 + 42*x + 8"
"345c1" 345 345 5 24 "(a8, 1, -1, -1, -a8, -a8 + 2)" "x^2 - 6"
"345d1" 345 345 5 24 "(a8, 1, -1, -1, -a8, -a8 + 2)" "x^2 - 6"
"1735a1" 1735 347 5 5 "(1, -1/2*a1 + 1/2, a1 - 3, -2, 1/2*a1 + 1/2, -1/2*a1 - 5/2)" "x^2 - 4*x - 1"
"1745c1" 1745 349 5 1.05E+015 "(a0, -3/2*a0^10 - 13/2*a0^9 + 5*a0^8 + 91/2*a0^7 + 7*a0^6 - 205/2*a0^5 - 35/2*a0^4 + 181/2*a0^3 - 11/2*a0^2 - 51/2*a0 + 7, 1/2*a0^9 + 3*a0^8 + 2*a0^7 - 33/2*a0^6 - 49/2*a0^5 + 22*a0^4 + 87/2*a0^3 - 7*a0^2 - 39/2*a0, 5/2*a0^10 + 21/2*a0^9 - 11*a0^8 - 159/2*a0^7 + 2*a0^6 + 401/2*a0^5 + 27/2*a0^4 - 399/2*a0^3 + 27/2*a0^2 + 125/2*a0 - 14, -2*a0^10 - 9*a0^9 + 6*a0^8 + 64*a0^7 + 15*a0^6 - 148*a0^5 - 39*a0^4 + 135*a0^3 + 10*a0^2 - 40*a0 + 2, 1/2*a0^10 + 3*a0^9 + 3*a0^8 - 29/2*a0^7 - 65/2*a0^6 + 10*a0^5 + 133/2*a0^4 + 11*a0^3 - 93/2*a0^2 - 5*a0 + 8)" "x^11 + 5*x^10 - x^9 - 35*x^8 - 24*x^7 + 80*x^6 + 66*x^5 - 77*x^4 - 56*x^3 + 31*x^2 + 15*x - 4"
"11a1" 11 350 5 24 "(1, -1/2*a7 + 1/2, 0, 1, a7 - 1, 1/2*a7 - 5/2)" "x^2 - 2*x - 23"
"50a1" 50 350 5 24 "(-1, 1/2*a6 + 1/2, 0, -1, a6 + 1, -1/2*a6 + 3/2)" "x^2 + 2*x - 23"
"350b1" 350 350 5 24 "(1, -1/2*a7 + 1/2, 0, 1, a7 - 1, 1/2*a7 - 5/2)" "x^2 - 2*x - 23"
"350c1" 350 350 5 24 "(-1, 1/2*a6 + 1/2, 0, -1, a6 + 1, -1/2*a6 + 3/2)" "x^2 + 2*x - 23"
"702a1" 702 351 5 5 "(a1, 0, a1 - 1, -2*a1 - 1, -3*a1 - 4, -1)" "x^2 + x - 1"
"702l1" 702 351 5 5 "(a2, 0, a2 + 1, 2*a2 - 1, -3*a2 + 4, -1)" "x^2 - x - 1"
"706d1" 706 353 5 1.35E+025 "(a3, 1/8*a3^13 - 7/8*a3^12 - 9/8*a3^11 + 65/4*a3^10 - 55/8*a3^9 - 855/8*a3^8 + 405/4*a3^7 + 2405/8*a3^6 - 2763/8*a3^5 - 2871/8*a3^4 + 3453/8*a3^3 + 1145/8*a3^2 - 1245/8*a3 - 75/8, 7/4*a3^13 - 25/4*a3^12 - 103/4*a3^11 + 221/2*a3^10 + 415/4*a3^9 - 2793/4*a3^8 + 89/2*a3^7 + 7619/4*a3^6 - 3777/4*a3^5 - 8801/4*a3^4 + 6115/4*a3^3 + 3263/4*a3^2 - 2347/4*a3 - 121/4, 3/8*a3^13 - 13/8*a3^12 - 39/8*a3^11 + 113/4*a3^10 + 99/8*a3^9 - 1409/8*a3^8 + 253/4*a3^7 + 3815/8*a3^6 - 2637/8*a3^5 - 4409/8*a3^4 + 3663/8*a3^3 + 1667/8*a3^2 - 1371/8*a3 - 53/8, -1/2*a3^13 + 3/2*a3^12 + 15/2*a3^11 - 25*a3^10 - 71/2*a3^9 + 299/2*a3^8 + 41*a3^7 - 777/2*a3^6 + 191/2*a3^5 + 853/2*a3^4 - 443/2*a3^3 - 293/2*a3^2 + 191/2*a3 + 9/2, 5/4*a3^13 - 15/4*a3^12 - 81/4*a3^11 + 135/2*a3^10 + 417/4*a3^9 - 1735/4*a3^8 - 287/2*a3^7 + 4805/4*a3^6 - 927/4*a3^5 - 5623/4*a3^4 + 2489/4*a3^3 + 2093/4*a3^2 - 1073/4*a3 - 59/4)" "x^14 - 4*x^13 - 14*x^12 + 71*x^11 + 47*x^10 - 452*x^9 + 101*x^8 + 1251*x^7 - 740*x^6 - 1488*x^5 + 1096*x^4 + 600*x^3 - 410*x^2 - 42*x - 1"
"8825a1" 8825 353 5 891876122884517 "(a2, -5/2*a2^10 - 21/2*a2^9 + 19/2*a2^8 + 77*a2^7 + 15*a2^6 - 177*a2^5 - 153/2*a2^4 + 259/2*a2^3 + 99/2*a2^2 - 39/2*a2 - 3, 3*a2^10 + 14*a2^9 - 6*a2^8 - 99*a2^7 - 58*a2^6 + 213*a2^5 + 186*a2^4 - 132*a2^3 - 134*a2^2 + 8*a2 + 17, -2*a2^9 - 8*a2^8 + 9*a2^7 + 59*a2^6 + a2^5 - 137*a2^4 - 34*a2^3 + 103*a2^2 + 18*a2 - 19, 5/2*a2^10 + 25/2*a2^9 - 1/2*a2^8 - 83*a2^7 - 80*a2^6 + 156*a2^5 + 445/2*a2^4 - 117/2*a2^3 - 305/2*a2^2 - 29/2*a2 + 19, 5/2*a2^10 + 23/2*a2^9 - 11/2*a2^8 - 82*a2^7 - 46*a2^6 + 178*a2^5 + 303/2*a2^4 - 223/2*a2^3 - 215/2*a2^2 + 17/2*a2 + 12)" "x^11 + 5*x^10 - x^9 - 36*x^8 - 28*x^7 + 82*x^6 + 87*x^5 - 65*x^4 - 71*x^3 + 21*x^2 + 14*x - 4"
"118a1" 118 354 5 44 "(-1, 1, a6 + 2, 4, -2, -a6 - 2)" "x^2 + 2*x - 10"
"354b1" 354 354 5 44 "(-1, 1, a6 + 2, 4, -2, -a6 - 2)" "x^2 + 2*x - 10"
"11a1" 11 358 5 5 "(1, 1/2*a5 - 1/2, 1, -a5 + 2, -a5 + 6, -1/2*a5 + 7/2)" "x^2 - 8*x + 11"
"179a1" 179 358 5 21 "(-1, -a2 - 1, 3, 1, -1, a2)" "x^2 + 3*x - 3"
"1074d1" 1074 358 5 21 "(-1, -a2 - 1, 3, 1, -1, a2)" "x^2 + 3*x - 3"
"1074g1" 1074 358 5 5 "(1, 1/2*a3 - 1/2, -a3 - 4, -3, a3 + 2, 3/2*a3 + 3/2)" "x^2 + 4*x - 1"
"1074h1" 1074 358 5 5 "(1, a4 - 1, -3*a4 + 8, 2, 2*a4 - 6, a4 - 8)" "x^2 - 5*x + 5"
"718a1" 718 359 5 7.50E+050 "(a3, -1602259971281292311414/235747603462801695253721*a3^23 + 2535070199865138113860/235747603462801695253721*a3^22 + 58364780315011524436024/235747603462801695253721*a3^21 - 87316532202790041766744/235747603462801695253721*a3^20 - 914060976817924221583118/235747603462801695253721*a3^19 + 1264665868878600575782134/235747603462801695253721*a3^18 + 8088919438943353164191194/235747603462801695253721*a3^17 - 10018516587867869759577110/235747603462801695253721*a3^16 - 44752146629281025763159134/235747603462801695253721*a3^15 + 47225317260747136454940921/235747603462801695253721*a3^14 + 161849990574404999407680046/235747603462801695253721*a3^13 - 134535096935674829898945662/235747603462801695253721*a3^12 - 388545929698346391432449898/235747603462801695253721*a3^11 + 222408874791265956416071774/235747603462801695253721*a3^10 + 613906725607214891686644074/235747603462801695253721*a3^9 - 183651607254654342889069074/235747603462801695253721*a3^8 - 613267952857175869139934302/235747603462801695253721*a3^7 + 28535102178044191495017546/235747603462801695253721*a3^6 + 351940465805991912886831381/235747603462801695253721*a3^5 + 51026380098522174374104544/235747603462801695253721*a3^4 - 93412339482037596682677712/235747603462801695253721*a3^3 - 21883690704068331298381066/235747603462801695253721*a3^2 + 6227221811979044886354542/235747603462801695253721*a3 + 1026953395498779305597052/235747603462801695253721, 2845845013662546464739/235747603462801695253721*a3^23 - 2447792018482001570617/235747603462801695253721*a3^22 - 101596799773264261973636/235747603462801695253721*a3^21 + 76404212950225242413899/235747603462801695253721*a3^20 + 1547314517788223949714671/235747603462801695253721*a3^19 - 958236983994120443104695/235747603462801695253721*a3^18 - 13158464440448911424043463/235747603462801695253721*a3^17 + 6045500883849570828566849/235747603462801695253721*a3^16 + 68676383557081059207753001/235747603462801695253721*a3^15 - 18699558052070012014843887/235747603462801695253721*a3^14 - 227537807635293992915686339/235747603462801695253721*a3^13 + 14267359498739287105320709/235747603462801695253721*a3^12 + 477170573176822561669772612/235747603462801695253721*a3^11 + 73651738052628121096722953/235747603462801695253721*a3^10 - 607737947281787201499665289/235747603462801695253721*a3^9 - 210728066092986939219944726/235747603462801695253721*a3^8 + 422157970536179111909121713/235747603462801695253721*a3^7 + 191589646943914323560838765/235747603462801695253721*a3^6 - 123363657169095027209115171/235747603462801695253721*a3^5 - 38101634714152134188816408/235747603462801695253721*a3^4 + 10517562601958539988713856/235747603462801695253721*a3^3 - 10255503074075539732514609/235747603462801695253721*a3^2 - 1342706028625085600442226/235747603462801695253721*a3 + 969740879854942598224584/235747603462801695253721, -3140151164664093291007/235747603462801695253721*a3^23 + 458407022175633631052/235747603462801695253721*a3^22 + 119861803682872242733257/235747603462801695253721*a3^21 - 13204876435189221365070/235747603462801695253721*a3^20 - 1971607964340997034402034/235747603462801695253721*a3^19 + 133775356305913808218979/235747603462801695253721*a3^18 + 18310581440368569048285533/235747603462801695253721*a3^17 - 352867661979863664045897/235747603462801695253721*a3^16 - 105662090233093338945990217/235747603462801695253721*a3^15 - 3726267360428420153376431/235747603462801695253721*a3^14 + 392794100154810843180147811/235747603462801695253721*a3^13 + 37512623181767439350164961/235747603462801695253721*a3^12 - 943599597386818461978694935/235747603462801695253721*a3^11 - 152026494955699155837468431/235747603462801695253721*a3^10 + 1430721336441804888988900597/235747603462801695253721*a3^9 + 330558417519231746815222453/235747603462801695253721*a3^8 - 1298840875371663911768671473/235747603462801695253721*a3^7 - 391342160018673505469509525/235747603462801695253721*a3^6 + 644841998130504491198834599/235747603462801695253721*a3^5 + 231650733011752018906928272/235747603462801695253721*a3^4 - 151714295960640239955706559/235747603462801695253721*a3^3 - 57209110453375976111844952/235747603462801695253721*a3^2 + 11761368072815550434303905/235747603462801695253721*a3 + 3282214419272575620760487/235747603462801695253721, -4975284508894749084208/235747603462801695253721*a3^23 - 1885966507969865227747/235747603462801695253721*a3^22 + 202871705177743937677709/235747603462801695253721*a3^21 + 57657250969201435183432/235747603462801695253721*a3^20 - 3572612192677847926059913/235747603462801695253721*a3^19 - 713445715874446701682734/235747603462801695253721*a3^18 + 35574947430300041328981156/235747603462801695253721*a3^17 + 4544314139729983484447578/235747603462801695253721*a3^16 - 220318208812274214800729346/235747603462801695253721*a3^15 - 15580417016815457449090158/235747603462801695253721*a3^14 + 879668055335024691681716618/235747603462801695253721*a3^13 + 27557935985880445312401597/235747603462801695253721*a3^12 - 2272637286075763627424768130/235747603462801695253721*a3^11 - 28381090590019355374659958/235747603462801695253721*a3^10 + 3717217345612673115843299966/235747603462801695253721*a3^9 + 61193565040696548170447242/235747603462801695253721*a3^8 - 3661787458291825325700175535/235747603462801695253721*a3^7 - 154254833078233761269112182/235747603462801695253721*a3^6 + 1977285409091483549444642116/235747603462801695253721*a3^5 + 159607236095480214549743126/235747603462801695253721*a3^4 - 481041123485813689228832701/235747603462801695253721*a3^3 - 56130468072617860810445281/235747603462801695253721*a3^2 + 29473816041248689534163004/235747603462801695253721*a3 + 3991312265997797979503931/235747603462801695253721, 969380424784224618619/235747603462801695253721*a3^23 + 2508674814477409255825/235747603462801695253721*a3^22 - 47373563549591843668231/235747603462801695253721*a3^21 - 76650330316937868506021/235747603462801695253721*a3^20 + 958664243632398123401039/235747603462801695253721*a3^19 + 934340141759355758848092/235747603462801695253721*a3^18 - 10598593469475775120973006/235747603462801695253721*a3^17 - 5634251907961684292013102/235747603462801695253721*a3^16 + 70648362996302155076127230/235747603462801695253721*a3^15 + 15726708240508670322130004/235747603462801695253721*a3^14 - 294320866160295633335209924/235747603462801695253721*a3^13 - 3101983071604815217852166/235747603462801695253721*a3^12 + 766121724422905387651600722/235747603462801695253721*a3^11 - 96123344447668685089673852/235747603462801695253721*a3^10 - 1208216440193682290415559912/235747603462801695253721*a3^9 + 237982646258405001874239702/235747603462801695253721*a3^8 + 1080645208142704411800453810/235747603462801695253721*a3^7 - 229895213862721708873530460/235747603462801695253721*a3^6 - 486411162012764409954826960/235747603462801695253721*a3^5 + 92450869102871749010500757/235747603462801695253721*a3^4 + 86734285593739853642787003/235747603462801695253721*a3^3 - 15179139862623490132348579/235747603462801695253721*a3^2 - 1912808202391911782131331/235747603462801695253721*a3 + 1349430867283171232987307/235747603462801695253721)" "x^24 - x^23 - 39*x^22 + 38*x^21 + 658*x^20 - 619*x^19 - 6300*x^18 + 5654*x^17 + 37740*x^16 - 31780*x^15 - 147096*x^14 + 113400*x^13 + 376092*x^12 - 255412*x^11 - 621508*x^10 + 349080*x^9 + 638532*x^8 - 266744*x^7 - 378124*x^6 + 98609*x^5 + 110695*x^4 - 14509*x^3 - 11972*x^2 + 780*x + 381"
"11a1" 11 361 5 5 "(a5, -a5 + 2, 2*a5, 3, -a5, -1)" "x^2 - x - 1"
"19a1" 19 361 5 5 "(a3, -2, 1/2*a3 + 1/2, a3 - 1, a3 + 3, 3/2*a3 - 3/2)" "x^2 - 5"
"361a1" 361 361 5 2000 "(a8, -a8, -2*a8^2 + 4, 2*a8^2 - 7, a8^2 - 5, -a8^3 + 4*a8)" "x^4 - 5*x^2 + 5"
"361b1" 361 361 5 5 "(a4, 2, -1/2*a4 + 1/2, -a4 - 1, -a4 + 3, 3/2*a4 + 3/2)" "x^2 - 5"
"722c1" 722 361 5 5 "(a2, -a2 - 2, -2*a2, 3, a2, 1)" "x^2 + x - 1"
"362a1" 362 362 5 5 "(-1, 1/2*a2 + 1/2, -1/4*a2 - 5/4, -1/4*a2 - 9/4, -1/2*a2 - 5/2, -1/4*a2 - 17/4)" "x^2 + 6*x - 11"
"2534f1" 2534 362 5 5673845 "(1, -1/2*a5 + 1/2, -1/32*a5^4 + 1/8*a5^3 + 15/16*a5^2 - 19/8*a5 - 117/32, 1/32*a5^4 - 1/8*a5^3 - 15/16*a5^2 + 19/8*a5 + 149/32, -1/4*a5^2 + a5 + 21/4, 1/32*a5^4 - 1/4*a5^3 - 17/16*a5^2 + 15/2*a5 + 313/32)" "x^5 - 5*x^4 - 42*x^3 + 122*x^2 + 505*x + 315"
"11a1" 11 363 5 5 "(a7, 1, a7 - 2, 3, 0, 2*a7 + 3)" "x^2 - x - 1"
"33a1" 33 363 5 5 "(a3, -1, a3 + 2, -1, 0, -2*a3 - 5)" "x^2 + 3*x + 1"
"121b1" 121 363 5 5 "(a6, 1, 2, -2*a6, 0, 0)" "x^2 - 5"
"121d1" 121 363 5 5 "(a4, 1, -a4 - 2, -3, 0, 2*a4 - 3)" "x^2 + x - 1"
"363a1" 363 363 5 5 "(a8, -1, -a8 + 2, 1, 0, -2*a8 + 5)" "x^2 - 3*x + 1"
"1092a1" 1092 364 5 24 "(0, -1/2*a2, -1/2*a2 - 1, -1, 1/2*a2 + 4, -1)" "x^2 - 24"
1.09E+004 1092 364 5 24 "(0, -1/2*a2, -1/2*a2 - 1, -1, 1/2*a2 + 4, -1)" "x^2 - 24"
"219c1" 219 365 5 1771745264 "(a3, -1/2*a3^5 - 1/2*a3^4 + 5/2*a3^3 + 2*a3^2 + 2*a3 + 1/2, 1, a3^5 + 2*a3^4 - 6*a3^3 - 11*a3^2 + 3*a3 + 3, -1/2*a3^5 - 3/2*a3^4 + 5/2*a3^3 + 8*a3^2 + a3 + 3/2, -1/2*a3^6 - 1/2*a3^5 + 13/2*a3^4 + 4*a3^3 - 22*a3^2 - 11/2*a3 + 6)" "x^7 + x^6 - 12*x^5 - 9*x^4 + 39*x^3 + 19*x^2 - 16*x - 3"
"734a1" 734 367 5 1.25E+015 "(a0, -8*a0^10 - 54*a0^9 - 61*a0^8 + 282*a0^7 + 616*a0^6 - 269*a0^5 - 1230*a0^4 - 177*a0^3 + 729*a0^2 + 149*a0 - 83, 24*a0^10 + 162*a0^9 + 181*a0^8 - 852*a0^7 - 1836*a0^6 + 844*a0^5 + 3668*a0^4 + 472*a0^3 - 2173*a0^2 - 426*a0 + 246, -17*a0^10 - 114*a0^9 - 124*a0^8 + 605*a0^7 + 1275*a0^6 - 627*a0^5 - 2555*a0^4 - 279*a0^3 + 1515*a0^2 + 278*a0 - 171, 19*a0^10 + 127*a0^9 + 138*a0^8 - 671*a0^7 - 1419*a0^6 + 680*a0^5 + 2837*a0^4 + 340*a0^3 - 1673*a0^2 - 321*a0 + 184, -11*a0^10 - 75*a0^9 - 86*a0^8 + 393*a0^7 + 861*a0^6 - 383*a0^5 - 1716*a0^4 - 227*a0^3 + 1013*a0^2 + 196*a0 - 114)" "x^11 + 8*x^10 + 16*x^9 - 26*x^8 - 121*x^7 - 61*x^6 + 197*x^5 + 212*x^4 - 66*x^3 - 132*x^2 - 12*x + 13"
"368b1" 368 368 5 5 "(0, -1/2*a7, -1/2*a7 - 1, 1/2*a7 - 1, -1/2*a7 + 3, 3)" "x^2 - 20"
"99d1" 99 369 5 148 "(a5, 0, -a5 + 1, 1/2*a5^2 - a5 + 1/2, -3/2*a5^2 + a5 + 9/2, -a5^2 + 3)" "x^3 - x^2 - 5*x + 1"
"738a1" 738 369 5 148 "(a3, 0, -a3 - 2, -a3^2 - a3 + 2, a3 - 3, -a3^2 - 3*a3)" "x^3 + 2*x^2 - 2*x - 2"
7.38E+003 738 369 5 148 "(a6, 0, -a6 + 2, -a6^2 + a6 + 2, a6 + 3, -a6^2 + 3*a6)" "x^3 - 2*x^2 - 2*x + 2"
"185a1" 185 370 5 892 "(1, 1/2*a6 - 1/2, -1, -1/8*a6^2 + 1/4*a6 + 23/8, -1/8*a6^2 - 1/4*a6 + 59/8, -a6 + 1)" "x^3 - 3*x^2 - 37*x + 71"
"106d1" 106 371 5 5 "(a2, a2, -a2 - 2, 1, -2*a2 - 1, -a2 - 2)" "x^2 + x - 1"
"371b1" 371 371 5 3.08E+018 "(a5, 3/4*a5^10 + 3/8*a5^9 - 121/8*a5^8 - 53/8*a5^7 + 215/2*a5^6 + 313/8*a5^5 - 2513/8*a5^4 - 715/8*a5^3 + 315*a5^2 + 127/2*a5 - 38, -1/2*a5^10 - 1/4*a5^9 + 10*a5^8 + 9/2*a5^7 - 281/4*a5^6 - 109/4*a5^5 + 403/2*a5^4 + 129/2*a5^3 - 779/4*a5^2 - 97/2*a5 + 21, 1, 3*a5^10 + 3/2*a5^9 - 243/4*a5^8 - 107/4*a5^7 + 1733/4*a5^6 + 160*a5^5 - 5065/4*a5^4 - 1487/4*a5^3 + 5027/4*a5^2 + 271*a5 - 144, -13/8*a5^10 - 7/8*a5^9 + 263/8*a5^8 + 31/2*a5^7 - 1875/8*a5^6 - 735/8*a5^5 + 5485/8*a5^4 + 841/4*a5^3 - 1365/2*a5^2 - 148*a5 + 80)" "x^11 + x^10 - 20*x^9 - 19*x^8 + 140*x^7 + 125*x^6 - 396*x^5 - 333*x^4 + 359*x^3 + 298*x^2 - 4*x - 24"
"742g1" 742 371 5 3.08E+018 "(a5, 3/4*a5^10 + 3/8*a5^9 - 121/8*a5^8 - 53/8*a5^7 + 215/2*a5^6 + 313/8*a5^5 - 2513/8*a5^4 - 715/8*a5^3 + 315*a5^2 + 127/2*a5 - 38, -1/2*a5^10 - 1/4*a5^9 + 10*a5^8 + 9/2*a5^7 - 281/4*a5^6 - 109/4*a5^5 + 403/2*a5^4 + 129/2*a5^3 - 779/4*a5^2 - 97/2*a5 + 21, 1, 3*a5^10 + 3/2*a5^9 - 243/4*a5^8 - 107/4*a5^7 + 1733/4*a5^6 + 160*a5^5 - 5065/4*a5^4 - 1487/4*a5^3 + 5027/4*a5^2 + 271*a5 - 144, -13/8*a5^10 - 7/8*a5^9 + 263/8*a5^8 + 31/2*a5^7 - 1875/8*a5^6 - 735/8*a5^5 + 5485/8*a5^4 + 841/4*a5^3 - 1365/2*a5^2 - 148*a5 + 80)" "x^11 + x^10 - 20*x^9 - 19*x^8 + 140*x^7 + 125*x^6 - 396*x^5 - 333*x^4 + 359*x^3 + 298*x^2 - 4*x - 24"
"11a1" 11 374 5 17417 "(1, 1/2*a4 - 1/2, 1/4*a4^3 - a4^2 - 35/4*a4 + 47/2, -1/8*a4^3 + 3/8*a4^2 + 33/8*a4 - 67/8, 1, -3/4*a4^3 + 11/4*a4^2 + 109/4*a4 - 269/4)" "x^4 - 6*x^3 - 28*x^2 + 174*x - 205"
"187b1" 187 374 5 785 "(-1, 1/2*a1 + 1/2, -1/4*a1^2 - 1/2*a1 + 15/4, -1/4*a1^2 + 21/4, -1, 1/2*a1 + 9/2)" "x^3 + 5*x^2 - 17*x - 61"
"1122i1" 1122 374 5 257 "(1, 1/2*a2 - 1/2, -1/4*a2^2 + 1/2*a2 + 15/4, 1/4*a2^2 - a2 - 1/4, -1, -1/2*a2 + 1/2)" "x^3 - 9*x^2 + 7*x + 57"
"1122b1" 1122 374 5 55585 "(-1, -a3 - 1, a3^2 + 2*a3 - 3, a3^3 + a3^2 - 8*a3 + 2, 1, -2*a3^3 - 4*a3^2 + 11*a3 + 3)" "x^4 + 5*x^3 - x^2 - 22*x - 1"
"1870i1" 1870 374 5 17417 "(1, 1/2*a4 - 1/2, 1/4*a4^3 - a4^2 - 35/4*a4 + 47/2, -1/8*a4^3 + 3/8*a4^2 + 33/8*a4 - 67/8, 1, -3/4*a4^3 + 11/4*a4^2 + 109/4*a4 - 269/4)" "x^4 - 6*x^3 - 28*x^2 + 174*x - 205"
"2618c1" 2618 374 5 785 "(-1, 1/2*a1 + 1/2, -1/4*a1^2 - 1/2*a1 + 15/4, -1/4*a1^2 + 21/4, -1, 1/2*a1 + 9/2)" "x^3 + 5*x^2 - 17*x - 61"
"11a1" 11 375 5 5 "(a2, 1, 0, a2, 2*a2 + 1, -2*a2 + 5)" "x^2 - x - 1"
"11a1" 11 375 5 2525 "(a5, 1, 0, -2*a5^3 + 10*a5 + 2, 2*a5^3 - 2*a5^2 - 10*a5 + 6, 4*a5^3 - 2*a5^2 - 18*a5 - 2)" "x^4 - 3*x^3 - 3*x^2 + 11*x - 1"
"15a1" 15 375 5 5 "(a3, -1, 0, -a3 + 4, -2*a3 - 1, 3)" "x^2 - 3*x + 1"
"15a1" 15 375 5 2525 "(a4, -1, 0, -2*a4^3 + 10*a4 - 2, -2*a4^3 - 2*a4^2 + 10*a4 + 6, 4*a4^3 + 2*a4^2 - 18*a4 + 2)" "x^4 + 3*x^3 - 3*x^2 - 11*x - 1"
"50a1" 50 375 5 5 "(a1, -1, 0, a1, -2*a1 + 1, -2*a1 - 5)" "x^2 + x - 1"
"50a1" 50 375 5 2525 "(a4, -1, 0, -2*a4^3 + 10*a4 - 2, -2*a4^3 - 2*a4^2 + 10*a4 + 6, 4*a4^3 + 2*a4^2 - 18*a4 + 2)" "x^4 + 3*x^3 - 3*x^2 - 11*x - 1"
"75b1" 75 375 5 2525 "(a5, 1, 0, -2*a5^3 + 10*a5 + 2, 2*a5^3 - 2*a5^2 - 10*a5 + 6, 4*a5^3 - 2*a5^2 - 18*a5 - 2)" "x^4 - 3*x^3 - 3*x^2 + 11*x - 1"
"75b1" 75 375 5 5 "(a0, 1, 0, -a0 - 4, 2*a0 - 1, -3)" "x^2 + 3*x + 1"
"1128a1" 1128 376 5 13448 "(0, -1/2*a3, -1/16*a3^3 - 3/8*a3^2 + 5/4*a3 + 6, -1/8*a3^3 - 1/2*a3^2 + 7/2*a3 + 10, 3/16*a3^3 + 5/8*a3^2 - 19/4*a3 - 8, 3/16*a3^3 + 5/8*a3^2 - 23/4*a3 - 14)" "x^4 + 6*x^3 - 20*x^2 - 128*x - 128"
"1128b1" 1128 376 5 7625 "(0, 1/2*a2, 1/16*a2^3 + 1/8*a2^2 - 5/4*a2, -1/4*a2^2 + 4, -1/16*a2^3 - 1/8*a2^2 + 5/4*a2 + 2, -1/16*a2^3 - 1/8*a2^2 + 5/4*a2 + 4)" "x^4 + 2*x^3 - 36*x^2 - 32*x + 256"
"1880b1" 1880 376 5 13448 "(0, -1/2*a3, -1/16*a3^3 - 3/8*a3^2 + 5/4*a3 + 6, -1/8*a3^3 - 1/2*a3^2 + 7/2*a3 + 10, 3/16*a3^3 + 5/8*a3^2 - 19/4*a3 - 8, 3/16*a3^3 + 5/8*a3^2 - 23/4*a3 - 14)" "x^4 + 6*x^3 - 20*x^2 - 128*x - 128"
"1880a1" 1880 376 5 5 "(0, -a1, 2*a1 - 2, -a1 - 1, 2*a1 - 4, -2*a1 + 2)" "x^2 - x - 1"
4.14E+004 4136 376 5 5 "(0, -1/2*a0, -2, 3/2*a0 - 1, -2, a0 - 4)" "x^2 - 2*x - 4"
"11a1" 11 377 5 85823052923200 "(a5, 3/4*a5^8 - 37/4*a5^6 + 133/4*a5^4 - 1/4*a5^3 - 31*a5^2 - 17/4*a5 + 7/4, 1/2*a5^8 - 13/2*a5^6 + 51/2*a5^4 - 1/2*a5^3 - 29*a5^2 - 1/2*a5 + 9/2, -1/4*a5^8 - 1/2*a5^7 + 13/4*a5^6 + 6*a5^5 - 51/4*a5^4 - 83/4*a5^3 + 15*a5^2 + 75/4*a5 + 5/4, -1/2*a5^8 + 13/2*a5^6 - a5^5 - 49/2*a5^4 + 15/2*a5^3 + 23*a5^2 - 11/2*a5 - 3/2, 1)" "x^9 - x^8 - 13*x^7 + 13*x^6 + 51*x^5 - 50*x^4 - 59*x^3 + 45*x^2 + 20*x - 3"
"762d1" 762 381 5 246832 "(a3, -1, 1/2*a3^4 - a3^3 - 5/2*a3^2 + 4*a3 + 1, -1/2*a3^3 + 7/2*a3, -1/2*a3^4 + 7/2*a3^2, -1/2*a3^3 + 7/2*a3 - 1)" "x^5 - 2*x^4 - 6*x^3 + 10*x^2 + 5*x - 4"
"762a1" 762 381 5 1.57E+015 "(a4, 1, 1/6*a4^8 + 1/2*a4^7 - 7/3*a4^6 - 20/3*a4^5 + 29/3*a4^4 + 157/6*a4^3 - 59/6*a4^2 - 85/3*a4 - 16/3, -3/4*a4^8 - 5/4*a4^7 + 43/4*a4^6 + 65/4*a4^5 - 95/2*a4^4 - 247/4*a4^3 + 247/4*a4^2 + 251/4*a4 + 31/4, 5/12*a4^8 + 3/4*a4^7 - 73/12*a4^6 - 113/12*a4^5 + 169/6*a4^4 + 401/12*a4^3 - 499/12*a4^2 - 349/12*a4 + 17/12, 1/3*a4^8 + 1/2*a4^7 - 31/6*a4^6 - 19/3*a4^5 + 76/3*a4^4 + 67/3*a4^3 - 235/6*a4^2 - 109/6*a4 + 13/3)" "x^9 + 2*x^8 - 14*x^7 - 26*x^6 + 59*x^5 + 99*x^4 - 66*x^3 - 102*x^2 - 24*x - 1"
"573b1" 573 382 5 169 "(-1, 1/2*a0 + 1/2, -1/4*a0^2 - 3/2*a0 - 1/4, 1/4*a0^2 + a0 - 9/4, 1/4*a0^2 + 1/2*a0 - 15/4, -1)" "x^3 + 5*x^2 - 9*x - 5"
"2674c1" 2674 382 5 169 "(-1, 1/2*a0 + 1/2, -1/4*a0^2 - 3/2*a0 - 1/4, 1/4*a0^2 + a0 - 9/4, 1/4*a0^2 + 1/2*a0 - 15/4, -1)" "x^3 + 5*x^2 - 9*x - 5"
"4966a1" 4966 382 5 169 "(-1, 1/2*a0 + 1/2, -1/4*a0^2 - 3/2*a0 - 1/4, 1/4*a0^2 + a0 - 9/4, 1/4*a0^2 + 1/2*a0 - 15/4, -1)" "x^3 + 5*x^2 - 9*x - 5"
"6494b1" 6494 382 5 6809 "(1, -a2 + 1, -a2^3 + a2^2 + 5*a2 + 1, a2^3 - a2^2 - 4*a2, -a2^2 + 2*a2 + 3, a2^3 - 2*a2^2 - 3*a2 + 2)" "x^4 - x^3 - 5*x^2 + 1"
"2298a1" 2298 383 5 5 "(a0, a0 - 1, a0 + 1, -2*a0 - 3, -a0 + 2, 0)" "x^2 + x - 1"
"11a1" 11 385 5 148 "(a6, a6^2 - a6 - 2, 1, 1, 1, a6^2 - a6 - 2)" "x^3 - x^2 - 3*x + 1"
"35a1" 35 385 5 148 "(a4, a4^2 + a4 - 4, -1, 1, 1, -a4^2 - a4)" "x^3 + 3*x^2 - x - 5"
"77a1" 77 385 5 148 "(a5, -a5^2 - a5 + 2, -1, -1, -1, a5^2 - a5 - 4)" "x^3 + 3*x^2 - x - 5"
"579a1" 579 386 5 154544336 "(-1, -a2 - 1, 1/2*a2^5 + 5/2*a2^4 - 1/2*a2^3 - 19/2*a2^2 + 3/2*a2 + 5/2, a2^4 + 5*a2^3 - 15*a2 + 5, -a2^4 - 5*a2^3 - a2^2 + 12*a2 - 2, -1/2*a2^5 - 3*a2^4 - 5/2*a2^3 + 6*a2^2 + 3/2*a2 + 2)" "x^6 + 7*x^5 + 8*x^4 - 25*x^3 - 28*x^2 + 35*x - 1"
"1158d1" 1158 386 5 5383160528 "(1, -a3 + 1, -3*a3^6 + 27/2*a3^5 + 29/2*a3^4 - 177/2*a3^3 - 43/2*a3^2 + 173/2*a3 + 69/2, 4*a3^6 - 18*a3^5 - 19*a3^4 + 117*a3^3 + 26*a3^2 - 109*a3 - 41, 3*a3^6 - 13*a3^5 - 17*a3^4 + 88*a3^3 + 35*a3^2 - 93*a3 - 41, -7/2*a3^6 + 15*a3^5 + 20*a3^4 - 100*a3^3 - 42*a3^2 + 100*a3 + 93/2)" "x^7 - 4*x^6 - 7*x^5 + 27*x^4 + 21*x^3 - 25*x^2 - 24*x - 5"
"1158g1" 1158 386 5 5383160528 "(1, -a3 + 1, -3*a3^6 + 27/2*a3^5 + 29/2*a3^4 - 177/2*a3^3 - 43/2*a3^2 + 173/2*a3 + 69/2, 4*a3^6 - 18*a3^5 - 19*a3^4 + 117*a3^3 + 26*a3^2 - 109*a3 - 41, 3*a3^6 - 13*a3^5 - 17*a3^4 + 88*a3^3 + 35*a3^2 - 93*a3 - 41, -7/2*a3^6 + 15*a3^5 + 20*a3^4 - 100*a3^3 - 42*a3^2 + 100*a3 + 93/2)" "x^7 - 4*x^6 - 7*x^5 + 27*x^4 + 21*x^3 - 25*x^2 - 24*x - 5"
1.16E+004 1158 386 5 5 "(1, -a1 + 1, a1 - 5, 2*a1 - 6, -2*a1 + 4, -3*a1 + 4)" "x^2 - 5*x + 5"
"4246a1" 4246 386 5 5 "(-1, -1/2*a0 - 1/2, 1/2*a0 + 1/2, -2, -2, 3/2*a0 - 3/2)" "x^2 - 5"
"387d1" 387 387 5 568 "(a8, 0, -a8 + 2, -a8^2 + 6, -a8^2 - a8 + 5, 3)" "x^3 - 2*x^2 - 5*x + 8"
"389a1" 389 389 5 3.28E+039 "(a4, -20146763/1097385680*a4^19 + 20466323/219477136*a4^18 + 119884773/274346420*a4^17 - 753611053/274346420*a4^16 - 381358355/109738568*a4^15 + 3611475535/109738568*a4^14 + 6349339639/1097385680*a4^13 - 56878934241/274346420*a4^12 + 71555185319/1097385680*a4^11 + 163330998525/219477136*a4^10 - 223188336749/548692840*a4^9 - 169878973265/109738568*a4^8 + 265944624817/274346420*a4^7 + 199655892261/109738568*a4^6 - 1167579836501/1097385680*a4^5 - 619178000979/548692840*a4^4 + 261766056911/548692840*a4^3 + 4410485304/13717321*a4^2 - 14646077211/274346420*a4 - 1604641167/68586605, 252247073/1097385680*a4^19 - 89195955/109738568*a4^18 - 6876716517/1097385680*a4^17 + 13248231811/548692840*a4^16 + 3639338697/54869284*a4^15 - 32041245347/109738568*a4^14 - 367946611589/1097385680*a4^13 + 2037515640679/1097385680*a4^12 + 816602908511/1097385680*a4^11 - 368120881159/54869284*a4^10 - 19595857657/1097385680*a4^9 + 763403091515/54869284*a4^8 - 403904463001/137173210*a4^7 - 1743458092745/109738568*a4^6 + 5304122556631/1097385680*a4^5 + 9907751136883/1097385680*a4^4 - 704659646193/274346420*a4^3 - 236814032039/109738568*a4^2 + 88326575941/274346420*a4 + 37821733103/274346420, -39775309/274346420*a4^19 + 6458830/13717321*a4^18 + 564024213/137173210*a4^17 - 3911580261/274346420*a4^16 - 2533437265/54869284*a4^15 + 9687600453/54869284*a4^14 + 17684386693/68586605*a4^13 - 158547430721/137173210*a4^12 - 196249673593/274346420*a4^11 + 237151369759/54869284*a4^10 + 47009341559/68586605*a4^9 - 127672839145/13717321*a4^8 + 263943432849/274346420*a4^7 + 302422095641/27434642*a4^6 - 354882792659/137173210*a4^5 - 1763634812489/274346420*a4^4 + 214619964123/137173210*a4^3 + 42696419019/27434642*a4^2 - 13851314508/68586605*a4 - 6725054004/68586605, 2980761/27434642*a4^19 - 40519427/109738568*a4^18 - 324413157/109738568*a4^17 + 599348931/54869284*a4^16 + 1712230339/54869284*a4^15 - 3604639961/27434642*a4^14 - 2154216098/13717321*a4^13 + 91078987557/109738568*a4^12 + 18913069911/54869284*a4^11 - 326505305885/109738568*a4^10 + 1008925971/109738568*a4^9 + 83920016323/13717321*a4^8 - 77512727581/54869284*a4^7 - 380562335831/54869284*a4^6 + 125733598661/54869284*a4^5 + 432237324953/109738568*a4^4 - 66332195991/54869284*a4^3 - 52749441099/54869284*a4^2 + 2005234461/13717321*a4 + 1799373559/27434642, -439672887/1097385680*a4^19 + 75006137/54869284*a4^18 + 12101299333/1097385680*a4^17 - 22321474039/548692840*a4^16 - 1625891079/13717321*a4^15 + 54100172827/109738568*a4^14 + 676736498991/1097385680*a4^13 - 3448581869471/1097385680*a4^12 - 1621748439689/1097385680*a4^11 + 1249216368921/109738568*a4^10 + 633899235433/1097385680*a4^9 - 1297751833749/54869284*a4^8 + 291323290537/68586605*a4^7 + 2963292254483/109738568*a4^6 - 8441184290969/1097385680*a4^5 - 16753315901627/1097385680*a4^4 + 572725946281/137173210*a4^3 + 396656876947/109738568*a4^2 - 139835925059/274346420*a4 - 62765065187/274346420)" "x^20 - 3*x^19 - 29*x^18 + 91*x^17 + 338*x^16 - 1130*x^15 - 2023*x^14 + 7432*x^13 + 6558*x^12 - 28021*x^11 - 10909*x^10 + 61267*x^9 + 6954*x^8 - 74752*x^7 + 1407*x^6 + 46330*x^5 - 1087*x^4 - 12558*x^3 - 942*x^2 + 960*x + 148"
"4279d1" 4279 389 5 3.28E+039 "(a4, -20146763/1097385680*a4^19 + 20466323/219477136*a4^18 + 119884773/274346420*a4^17 - 753611053/274346420*a4^16 - 381358355/109738568*a4^15 + 3611475535/109738568*a4^14 + 6349339639/1097385680*a4^13 - 56878934241/274346420*a4^12 + 71555185319/1097385680*a4^11 + 163330998525/219477136*a4^10 - 223188336749/548692840*a4^9 - 169878973265/109738568*a4^8 + 265944624817/274346420*a4^7 + 199655892261/109738568*a4^6 - 1167579836501/1097385680*a4^5 - 619178000979/548692840*a4^4 + 261766056911/548692840*a4^3 + 4410485304/13717321*a4^2 - 14646077211/274346420*a4 - 1604641167/68586605, 252247073/1097385680*a4^19 - 89195955/109738568*a4^18 - 6876716517/1097385680*a4^17 + 13248231811/548692840*a4^16 + 3639338697/54869284*a4^15 - 32041245347/109738568*a4^14 - 367946611589/1097385680*a4^13 + 2037515640679/1097385680*a4^12 + 816602908511/1097385680*a4^11 - 368120881159/54869284*a4^10 - 19595857657/1097385680*a4^9 + 763403091515/54869284*a4^8 - 403904463001/137173210*a4^7 - 1743458092745/109738568*a4^6 + 5304122556631/1097385680*a4^5 + 9907751136883/1097385680*a4^4 - 704659646193/274346420*a4^3 - 236814032039/109738568*a4^2 + 88326575941/274346420*a4 + 37821733103/274346420, -39775309/274346420*a4^19 + 6458830/13717321*a4^18 + 564024213/137173210*a4^17 - 3911580261/274346420*a4^16 - 2533437265/54869284*a4^15 + 9687600453/54869284*a4^14 + 17684386693/68586605*a4^13 - 158547430721/137173210*a4^12 - 196249673593/274346420*a4^11 + 237151369759/54869284*a4^10 + 47009341559/68586605*a4^9 - 127672839145/13717321*a4^8 + 263943432849/274346420*a4^7 + 302422095641/27434642*a4^6 - 354882792659/137173210*a4^5 - 1763634812489/274346420*a4^4 + 214619964123/137173210*a4^3 + 42696419019/27434642*a4^2 - 13851314508/68586605*a4 - 6725054004/68586605, 2980761/27434642*a4^19 - 40519427/109738568*a4^18 - 324413157/109738568*a4^17 + 599348931/54869284*a4^16 + 1712230339/54869284*a4^15 - 3604639961/27434642*a4^14 - 2154216098/13717321*a4^13 + 91078987557/109738568*a4^12 + 18913069911/54869284*a4^11 - 326505305885/109738568*a4^10 + 1008925971/109738568*a4^9 + 83920016323/13717321*a4^8 - 77512727581/54869284*a4^7 - 380562335831/54869284*a4^6 + 125733598661/54869284*a4^5 + 432237324953/109738568*a4^4 - 66332195991/54869284*a4^3 - 52749441099/54869284*a4^2 + 2005234461/13717321*a4 + 1799373559/27434642, -439672887/1097385680*a4^19 + 75006137/54869284*a4^18 + 12101299333/1097385680*a4^17 - 22321474039/548692840*a4^16 - 1625891079/13717321*a4^15 + 54100172827/109738568*a4^14 + 676736498991/1097385680*a4^13 - 3448581869471/1097385680*a4^12 - 1621748439689/1097385680*a4^11 + 1249216368921/109738568*a4^10 + 633899235433/1097385680*a4^9 - 1297751833749/54869284*a4^8 + 291323290537/68586605*a4^7 + 2963292254483/109738568*a4^6 - 8441184290969/1097385680*a4^5 - 16753315901627/1097385680*a4^4 + 572725946281/137173210*a4^3 + 396656876947/109738568*a4^2 - 139835925059/274346420*a4 - 62765065187/274346420)" "x^20 - 3*x^19 - 29*x^18 + 91*x^17 + 338*x^16 - 1130*x^15 - 2023*x^14 + 7432*x^13 + 6558*x^12 - 28021*x^11 - 10909*x^10 + 61267*x^9 + 6954*x^8 - 74752*x^7 + 1407*x^6 + 46330*x^5 - 1087*x^4 - 12558*x^3 - 942*x^2 + 960*x + 148"
"12837g1" 12837 389 5 148 "(a2, -a2, -a2^2 + 1, -1, a2^2 - 4, -3)" "x^3 - 4*x - 2"
"17a1" 17 391 5 169 "(a2, 0, -a2^2 - 2*a2 + 2, -a2 - 2, a2^2 + 3*a2 - 3, 2*a2^2 + 3*a2 - 6)" "x^3 + x^2 - 4*x + 1"
"46a1" 46 391 5 169 "(a2, 0, -a2^2 - 2*a2 + 2, -a2 - 2, a2^2 + 3*a2 - 3, 2*a2^2 + 3*a2 - 6)" "x^3 + x^2 - 4*x + 1"
7.82E+003 782 391 5 169 "(a2, 0, -a2^2 - 2*a2 + 2, -a2 - 2, a2^2 + 3*a2 - 3, 2*a2^2 + 3*a2 - 6)" "x^3 + x^2 - 4*x + 1"
"1173f1" 1173 391 5 4.03E+021 "(a4, -9/14*a4^11 + 12/7*a4^10 + 19/2*a4^9 - 181/7*a4^8 - 89/2*a4^7 + 888/7*a4^6 + 460/7*a4^5 - 429/2*a4^4 - 30/7*a4^3 + 867/14*a4^2 + 7*a4 + 9/14, -1/14*a4^11 - 9/14*a4^10 + 3*a4^9 + 141/14*a4^8 - 69/2*a4^7 - 368/7*a4^6 + 1084/7*a4^5 + 205/2*a4^4 - 3677/14*a4^3 - 443/7*a4^2 + 201/2*a4 + 379/14, 3/14*a4^11 - 1/14*a4^10 - 9/2*a4^9 + 9/7*a4^8 + 35*a4^7 - 58/7*a4^6 - 851/7*a4^5 + 43/2*a4^4 + 2435/14*a4^3 - 191/14*a4^2 - 60*a4 - 82/7, 13/7*a4^11 - 39/14*a4^10 - 33*a4^9 + 295/7*a4^8 + 425/2*a4^7 - 1464/7*a4^6 - 4230/7*a4^5 + 366*a4^4 + 10195/14*a4^3 - 795/7*a4^2 - 256*a4 - 635/14, 15/7*a4^11 - 40/7*a4^10 - 32*a4^9 + 608/7*a4^8 + 153*a4^7 - 3030/7*a4^6 - 1678/7*a4^5 + 764*a4^4 + 303/7*a4^3 - 2012/7*a4^2 - 22*a4 + 97/7)" "x^12 - 4*x^11 - 12*x^10 + 62*x^9 + 27*x^8 - 321*x^7 + 108*x^6 + 625*x^5 - 362*x^4 - 372*x^3 + 116*x^2 + 97*x + 13"
"1955b1" 1955 391 5 257 "(a1, -2, -a1^2 + 2, -a1, -a1^2 - a1 + 3, 2*a1^2 - a1 - 6)" "x^3 + x^2 - 4*x - 3"
"2346b1" 2346 391 5 5 "(a0, 1, -2*a0 - 2, 2*a0, -4, -1)" "x^2 + x - 1"
"131a1" 131 393 5 12062776 "(a4, 1, -a4^4 + 5*a4^2 - 2, a4^5 - a4^4 - 5*a4^3 + 4*a4^2 + 4*a4 - 1, a4^4 - a4^3 - 5*a4^2 + 3*a4 + 5, -a4^5 + 2*a4^4 + 5*a4^3 - 10*a4^2 - 4*a4 + 7)" "x^6 - x^5 - 7*x^4 + 5*x^3 + 13*x^2 - 4*x - 5"
"197a1" 197 394 5 5 "(1, a3 - 1, -1/2*a3 + 3, -3, -3/2*a3 + 3, 3)" "x^2 - 2*x - 4"
"197a1" 197 394 5 29 "(1, 0, 1/2*a2 - 1/2, 2, -a2 + 5, -1/2*a2 + 7/2)" "x^2 - 8*x - 13"
"197a1" 197 394 5 21 "(1, -1/2*a1 + 1/2, 0, 2, -1/2*a1 - 1/2, a1 - 3)" "x^2 - 4*x - 17"
"2758d1" 2758 394 5 29 "(1, 0, 1/2*a2 - 1/2, 2, -a2 + 5, -1/2*a2 + 7/2)" "x^2 - 8*x - 13"
2.76E+004 2758 394 5 21 "(1, -1/2*a1 + 1/2, 0, 2, -1/2*a1 - 1/2, a1 - 3)" "x^2 - 4*x - 17"
"8274q1" 8274 394 5 5 "(1, -1, -a0 - 1, 2*a0 - 5, -a0 - 1, 4*a0 - 7)" "x^2 - 3*x + 1"
"794c1" 794 397 5 245992 "(a2, a2 + 1, -a2^3 + 4*a2 - 1, -a2^3 - a2^2 + 3*a2 + 2, a2^4 + a2^3 - 5*a2^2 - 4*a2 + 5, a2^4 - 6*a2^2 + a2 + 6)" "x^5 - 6*x^3 + x^2 + 7*x - 1"
"11a1" 11 398 5 52067024 "(1, -a4 + 1, -a4^5 + 4*a4^4 + a4^3 - 12*a4^2 + 3*a4 + 8, a4^5 - 4*a4^4 - a4^3 + 11*a4^2 - a4 - 4, -a4^4 + 3*a4^3 + 4*a4^2 - 6*a4 - 5, 2*a4^5 - 7*a4^4 - 6*a4^3 + 23*a4^2 + 4*a4 - 15)" "x^6 - 3*x^5 - 6*x^4 + 13*x^3 + 14*x^2 - 13*x - 11"
"1990a1" 1990 398 5 82926416 "(-1, a3 + 1, 1/3*a3^5 + 2/3*a3^4 - 11/3*a3^3 - 14/3*a3^2 + 31/3*a3 + 6, 1/9*a3^5 + 4/9*a3^4 + 1/9*a3^3 - 5/3*a3^2 - 31/9*a3 + 2, -1/3*a3^4 - a3^3 + 2/3*a3^2 + 10/3*a3 + 3, 1/3*a3^4 - 11/3*a3^2 + 2/3*a3 + 5)" "x^6 + 5*x^5 - 4*x^4 - 41*x^3 - 10*x^2 + 77*x + 27"
"4378a1" 4378 398 5 5 "(-1, -a1 - 1, 0, a1 - 1, 3*a1 + 2, 2*a1 - 2)" "x^2 + x - 1"
5.97E+004 5970 398 5 5 "(1, -a2 + 1, 2*a2 - 6, -a2 - 1, a2 - 6, -2)" "x^2 - 5*x + 5"
"9950i1" 9950 398 5 52067024 "(1, -a4 + 1, -a4^5 + 4*a4^4 + a4^3 - 12*a4^2 + 3*a4 + 8, a4^5 - 4*a4^4 - a4^3 + 11*a4^2 - a4 - 4, -a4^4 + 3*a4^3 + 4*a4^2 - 6*a4 - 5, 2*a4^5 - 7*a4^4 - 6*a4^3 + 23*a4^2 + 4*a4 - 15)" "x^6 - 3*x^5 - 6*x^4 + 13*x^3 + 14*x^2 - 13*x - 11"
"798g1" 798 399 5 148 "(a3, -1, a3^2 - 1, -1, -2*a3^2 + 2*a3 + 4, -2*a3^2 + 2*a3 + 6)" "x^3 - x^2 - 3*x + 1"
"201a1" 201 402 5 41 "(1, -1, -1/2*a5, 1/2*a5, 4, 4)" "x^2 + 2*x - 40"
"2010f1" 2010 402 5 41 "(1, -1, -1/2*a5, 1/2*a5, 4, 4)" "x^2 + 2*x - 40"
"806c1" 806 403 5 206371677133 "(a4, -a4^5 - a4^4 + 7*a4^3 + 5*a4^2 - 10*a4 - 4, -a4^7 + 10*a4^5 - a4^4 - 29*a4^3 + 25*a4 + 8, 2*a4^6 + 2*a4^5 - 15*a4^4 - 10*a4^3 + 25*a4^2 + 10*a4 - 2, a4^6 + a4^5 - 7*a4^4 - 4*a4^3 + 11*a4^2 + a4 - 3, 1)" "x^8 + x^7 - 11*x^6 - 10*x^5 + 37*x^4 + 33*x^3 - 36*x^2 - 33*x - 4"
"806a1" 806 403 5 52709256921 "(a3, -a3^7 - 3*a3^6 + 6*a3^5 + 19*a3^4 - 12*a3^3 - 36*a3^2 + 8*a3 + 19, -a3^5 - 2*a3^4 + 5*a3^3 + 7*a3^2 - 6*a3 - 6, a3^4 + 2*a3^3 - 3*a3^2 - 4*a3, 2*a3^7 + 7*a3^6 - 9*a3^5 - 43*a3^4 + 8*a3^3 + 77*a3^2 + a3 - 37, -1)" "x^8 + 5*x^7 - 30*x^5 - 24*x^4 + 54*x^3 + 54*x^2 - 28*x - 29"
"6851a1" 6851 403 5 5 "(a0, -2, 2*a0 - 3, 1, -4*a0 + 6, 1)" "x^2 - 3*x + 1"
"11687b1" 11687 403 5 1571281045 "(a2, a2^5 - 3*a2^4 - 3*a2^3 + 13*a2^2 - 6*a2, -a2^5 + 2*a2^4 + 5*a2^3 - 9*a2^2 - 2*a2 + 4, a2^4 - 2*a2^3 - 5*a2^2 + 8*a2 + 2, -a2^6 + 3*a2^5 + 3*a2^4 - 14*a2^3 + 7*a2^2 + 5*a2 - 1, -1)" "x^7 - 2*x^6 - 9*x^5 + 17*x^4 + 20*x^3 - 37*x^2 + x + 4"
"2828a1" 2828 404 5 34707928896 "(0, a2, 8*a2^6 + 8*a2^5 - 113*a2^4 - 52*a2^3 + 368*a2^2 - 72*a2 - 154, -18*a2^6 - 17*a2^5 + 256*a2^4 + 105*a2^3 - 844*a2^2 + 189*a2 + 360, -2*a2^6 - 2*a2^5 + 28*a2^4 + 13*a2^3 - 90*a2^2 + 17*a2 + 40, 20*a2^6 + 18*a2^5 - 286*a2^4 - 106*a2^3 + 951*a2^2 - 232*a2 - 406)" "x^7 - 2*x^6 - 17*x^5 + 36*x^4 + 64*x^3 - 148*x^2 + 11*x + 58"
"1218c1" 1218 406 5 568 "(-1, -1/2*a5 - 1/2, 1/8*a5^2 + 1/2*a5 - 5/8, -1, -1/4*a5^2 - 1/2*a5 + 23/4, -1/8*a5^2 - 1/2*a5 + 37/8)" "x^3 + 5*x^2 - 25*x - 61"
"37b1" 37 407 5 1.30E+019 "(a2, 10/59*a2^10 - 1/59*a2^9 - 156/59*a2^8 + 831/59*a2^6 + 78/59*a2^5 - 1732/59*a2^4 - 330/59*a2^3 + 1171/59*a2^2 + 305/59*a2 - 196/59, -83/59*a2^10 + 26/59*a2^9 + 1342/59*a2^8 - 6*a2^7 - 7564/59*a2^6 + 1630/59*a2^5 + 17420/59*a2^4 - 2512/59*a2^3 - 14457/59*a2^2 + 448/59*a2 + 3090/59, 61/59*a2^10 - 12/59*a2^9 - 987/59*a2^8 + 3*a2^7 + 5547/59*a2^6 - 893/59*a2^5 - 12701/59*a2^4 + 1409/59*a2^3 + 10512/59*a2^2 - 57/59*a2 - 2234/59, -1, 100/59*a2^10 - 10/59*a2^9 - 1619/59*a2^8 + 2*a2^7 + 9136/59*a2^6 - 459/59*a2^5 - 21096/59*a2^4 + 181/59*a2^3 + 17610/59*a2^2 + 1044/59*a2 - 3671/59)" "x^11 - 2*x^10 - 16*x^9 + 32*x^8 + 89*x^7 - 179*x^6 - 201*x^5 + 407*x^4 + 168*x^3 - 333*x^2 - 51*x + 75"
"814b1" 814 407 5 1.30E+019 "(a2, 10/59*a2^10 - 1/59*a2^9 - 156/59*a2^8 + 831/59*a2^6 + 78/59*a2^5 - 1732/59*a2^4 - 330/59*a2^3 + 1171/59*a2^2 + 305/59*a2 - 196/59, -83/59*a2^10 + 26/59*a2^9 + 1342/59*a2^8 - 6*a2^7 - 7564/59*a2^6 + 1630/59*a2^5 + 17420/59*a2^4 - 2512/59*a2^3 - 14457/59*a2^2 + 448/59*a2 + 3090/59, 61/59*a2^10 - 12/59*a2^9 - 987/59*a2^8 + 3*a2^7 + 5547/59*a2^6 - 893/59*a2^5 - 12701/59*a2^4 + 1409/59*a2^3 + 10512/59*a2^2 - 57/59*a2 - 2234/59, -1, 100/59*a2^10 - 10/59*a2^9 - 1619/59*a2^8 + 2*a2^7 + 9136/59*a2^6 - 459/59*a2^5 - 21096/59*a2^4 + 181/59*a2^3 + 17610/59*a2^2 + 1044/59*a2 - 3671/59)" "x^11 - 2*x^10 - 16*x^9 + 32*x^8 + 89*x^7 - 179*x^6 - 201*x^5 + 407*x^4 + 168*x^3 - 333*x^2 - 51*x + 75"
"1221b1" 1221 407 5 1.30E+019 "(a2, 10/59*a2^10 - 1/59*a2^9 - 156/59*a2^8 + 831/59*a2^6 + 78/59*a2^5 - 1732/59*a2^4 - 330/59*a2^3 + 1171/59*a2^2 + 305/59*a2 - 196/59, -83/59*a2^10 + 26/59*a2^9 + 1342/59*a2^8 - 6*a2^7 - 7564/59*a2^6 + 1630/59*a2^5 + 17420/59*a2^4 - 2512/59*a2^3 - 14457/59*a2^2 + 448/59*a2 + 3090/59, 61/59*a2^10 - 12/59*a2^9 - 987/59*a2^8 + 3*a2^7 + 5547/59*a2^6 - 893/59*a2^5 - 12701/59*a2^4 + 1409/59*a2^3 + 10512/59*a2^2 - 57/59*a2 - 2234/59, -1, 100/59*a2^10 - 10/59*a2^9 - 1619/59*a2^8 + 2*a2^7 + 9136/59*a2^6 - 459/59*a2^5 - 21096/59*a2^4 + 181/59*a2^3 + 17610/59*a2^2 + 1044/59*a2 - 3671/59)" "x^11 - 2*x^10 - 16*x^9 + 32*x^8 + 89*x^7 - 179*x^6 - 201*x^5 + 407*x^4 + 168*x^3 - 333*x^2 - 51*x + 75"
"2035a1" 2035 407 5 1.30E+019 "(a2, 10/59*a2^10 - 1/59*a2^9 - 156/59*a2^8 + 831/59*a2^6 + 78/59*a2^5 - 1732/59*a2^4 - 330/59*a2^3 + 1171/59*a2^2 + 305/59*a2 - 196/59, -83/59*a2^10 + 26/59*a2^9 + 1342/59*a2^8 - 6*a2^7 - 7564/59*a2^6 + 1630/59*a2^5 + 17420/59*a2^4 - 2512/59*a2^3 - 14457/59*a2^2 + 448/59*a2 + 3090/59, 61/59*a2^10 - 12/59*a2^9 - 987/59*a2^8 + 3*a2^7 + 5547/59*a2^6 - 893/59*a2^5 - 12701/59*a2^4 + 1409/59*a2^3 + 10512/59*a2^2 - 57/59*a2 - 2234/59, -1, 100/59*a2^10 - 10/59*a2^9 - 1619/59*a2^8 + 2*a2^7 + 9136/59*a2^6 - 459/59*a2^5 - 21096/59*a2^4 + 181/59*a2^3 + 17610/59*a2^2 + 1044/59*a2 - 3671/59)" "x^11 - 2*x^10 - 16*x^9 + 32*x^8 + 89*x^7 - 179*x^6 - 201*x^5 + 407*x^4 + 168*x^3 - 333*x^2 - 51*x + 75"
"11a1" 11 410 5 24 "(1, a7 - 1, 1, -2, -2*a7 + 2, 4)" "x^2 - 2*x - 5"
"1230b1" 1230 410 5 5 "(-1, -a4 - 1, -1, a4 - 1, a4 + 1, -4)" "x^2 - 5"
"1230g1" 1230 410 5 24 "(1, a7 - 1, 1, -2, -2*a7 + 2, 4)" "x^2 - 2*x - 5"
"822b1" 822 411 5 169 "(2, 1, 1/2*a2 - 2, -1/4*a2^2 + 3/2*a2 + 2, 1/2*a2^2 - 5*a2 + 8, 1/2*a2^2 - 4*a2 + 2)" "x^3 - 16*x^2 + 68*x - 40"
"822c1" 822 411 5 169 "(2, 1, 1/2*a2 - 2, -1/4*a2^2 + 3/2*a2 + 2, 1/2*a2^2 - 5*a2 + 8, 1/2*a2^2 - 4*a2 + 2)" "x^3 - 16*x^2 + 68*x - 40"
"2055b1" 2055 411 5 676151079439660 "(a4, -1, -1/8*a4^8 + 2*a4^6 - 5/8*a4^5 - 43/4*a4^4 + 45/8*a4^3 + 165/8*a4^2 - 41/4*a4 - 6, 3/16*a4^8 - 1/8*a4^7 - 11/4*a4^6 + 35/16*a4^5 + 51/4*a4^4 - 179/16*a4^3 - 309/16*a4^2 + 63/4*a4 + 21/4, 1/8*a4^8 + 1/4*a4^7 - 3/2*a4^6 - 23/8*a4^5 + 11/2*a4^4 + 71/8*a4^3 - 55/8*a4^2 - 9/2*a4 + 3/2, -3/8*a4^8 - 1/4*a4^7 + 11/2*a4^6 + 21/8*a4^5 - 25*a4^4 - 53/8*a4^3 + 273/8*a4^2 - 7/2)" "x^9 - 16*x^7 + x^6 + 82*x^5 - 9*x^4 - 141*x^3 + 18*x^2 + 52*x + 8"
4.11E+004 4110 411 5 169 "(2, 1, 1/2*a2 - 2, -1/4*a2^2 + 3/2*a2 + 2, 1/2*a2^2 - 5*a2 + 8, 1/2*a2^2 - 4*a2 + 2)" "x^3 - 16*x^2 + 68*x - 40"
"1236c1" 1236 412 5 21 "(0, -1, -a1 - 2, 2*a1 + 3, -a1 - 3, a1 - 2)" "x^2 + 3*x - 3"
"4532a1" 4532 412 5 21 "(0, -1, -a1 - 2, 2*a1 + 3, -a1 - 3, a1 - 2)" "x^2 + 3*x - 3"
"4532a1" 4532 412 5 5 "(0, 1/2*a0, -1/2*a0 - 2, -1/4*a0 - 2, -2, -1/4*a0 - 1)" "x^2 + 4*x - 16"
"11a1" 11 413 5 9112541594957 "(a5, -3/8*a5^8 + 1/8*a5^7 + 5*a5^6 - 11/8*a5^5 - 169/8*a5^4 + 7/2*a5^3 + 229/8*a5^2 + 3/4*a5 - 25/8, -1/4*a5^8 - 1/4*a5^7 + 3*a5^6 + 11/4*a5^5 - 47/4*a5^4 - 9*a5^3 + 67/4*a5^2 + 17/2*a5 - 15/4, 1, 1/8*a5^8 + 1/8*a5^7 - 2*a5^6 - 15/8*a5^5 + 79/8*a5^4 + 17/2*a5^3 - 119/8*a5^2 - 47/4*a5 + 15/8, -3/8*a5^8 - 3/8*a5^7 + 4*a5^6 + 29/8*a5^5 - 93/8*a5^4 - 19/2*a5^3 + 53/8*a5^2 + 25/4*a5 + 19/8)" "x^9 - 13*x^7 + x^6 + 54*x^5 - 7*x^4 - 75*x^3 + 9*x^2 + 17*x - 3"
"826b1" 826 413 5 9112541594957 "(a5, -3/8*a5^8 + 1/8*a5^7 + 5*a5^6 - 11/8*a5^5 - 169/8*a5^4 + 7/2*a5^3 + 229/8*a5^2 + 3/4*a5 - 25/8, -1/4*a5^8 - 1/4*a5^7 + 3*a5^6 + 11/4*a5^5 - 47/4*a5^4 - 9*a5^3 + 67/4*a5^2 + 17/2*a5 - 15/4, 1, 1/8*a5^8 + 1/8*a5^7 - 2*a5^6 - 15/8*a5^5 + 79/8*a5^4 + 17/2*a5^3 - 119/8*a5^2 - 47/4*a5 + 15/8, -3/8*a5^8 - 3/8*a5^7 + 4*a5^6 + 29/8*a5^5 - 93/8*a5^4 - 19/2*a5^3 + 53/8*a5^2 + 25/4*a5 + 19/8)" "x^9 - 13*x^7 + x^6 + 54*x^5 - 7*x^4 - 75*x^3 + 9*x^2 + 17*x - 3"
"2065a1" 2065 413 5 5 "(a0, 1/2*a0 - 1/2, a0 + 1, -1, 1/2*a0 - 5/2, -3/2*a0 + 1/2)" "x^2 - 5"
"2478h1" 2478 413 5 24217 "(a3, a3^3 - a3^2 - 3*a3, -a3^4 + 3*a3^2 + a3 - 1, 1, 3*a3^4 - 3*a3^3 - 10*a3^2 + 5*a3 + 4, -a3^4 + a3^3 + 4*a3^2 - 4*a3 - 6)" "x^5 - 5*x^3 - x^2 + 5*x + 1"
9.09E+004 9086 413 5 516553 "(a4, -a4^3 + a4^2 + 7*a4 - 6, a4^4 - 2*a4^3 - 7*a4^2 + 15*a4 - 5, -1, a4^4 - a4^3 - 8*a4^2 + 9*a4 + 4, a4^4 - 3*a4^3 - 6*a4^2 + 22*a4 - 12)" "x^5 - 4*x^4 - 3*x^3 + 29*x^2 - 35*x + 11"
"2070g1" 2070 414 5 5 "(-1, 0, 1/2*a5 + 1/2, a5 - 1, -1/2*a5 + 7/2, -a5 + 1)" "x^2 - 2*x - 19"
"830c1" 830 415 5 5.84E+019 "(a4, -a4^10 - 7/4*a4^9 + 65/4*a4^8 + 119/4*a4^7 - 83*a4^6 - 164*a4^5 + 483/4*a4^4 + 1195/4*a4^3 + 213/4*a4^2 - 93/2*a4 - 6, 1, 1/4*a4^9 - 1/4*a4^8 - 15/4*a4^7 + 7/2*a4^6 + 18*a4^5 - 61/4*a4^4 - 115/4*a4^3 + 83/4*a4^2 + 7*a4 - 4, 3/4*a4^10 + 9/4*a4^9 - 51/4*a4^8 - 37*a4^7 + 137/2*a4^6 + 789/4*a4^5 - 425/4*a4^4 - 1401/4*a4^3 - 91/2*a4^2 + 133/2*a4 + 6, -a4^3 - a4^2 + 6*a4 + 4)" "x^11 - 20*x^9 - x^8 + 146*x^7 + 15*x^6 - 464*x^5 - 76*x^4 + 567*x^3 + 136*x^2 - 100*x - 8"
"9130c1" 9130 415 5 5 "(a1, -a1 - 1, 1, 2*a1 + 1, -2, -a1 - 2)" "x^2 + x - 1"
"32a1" 32 416 5 5 "(0, -1/2*a3, 3, -1/2*a3, a3, -1)" "x^2 - 20"
"1248b1" 1248 416 5 13448 "(0, -1/2*a5, -1/4*a5^2 + 6, -1/16*a5^3 + 7/4*a5, 1/16*a5^3 - 9/4*a5, 1)" "x^4 - 52*x^2 + 512"
"1248d1" 1248 416 5 13448 "(0, -1/2*a5, -1/4*a5^2 + 6, -1/16*a5^3 + 7/4*a5, 1/16*a5^3 - 9/4*a5, 1)" "x^4 - 52*x^2 + 512"
"11a1" 11 417 5 4493904352 "(a5, 1, -1/2*a5^3 + 7/2*a5 - 1, 1/4*a5^6 - 5/2*a5^4 + 21/4*a5^2 + 1, -1/4*a5^6 - 1/2*a5^5 + 3*a5^4 + 4*a5^3 - 39/4*a5^2 - 11/2*a5 + 4, -1/4*a5^6 + 5/2*a5^4 - 1/2*a5^3 - 25/4*a5^2 + 3/2*a5 + 4)" "x^7 - 14*x^5 + 2*x^4 + 57*x^3 - 14*x^2 - 56*x + 8"
"2919a1" 2919 417 5 782167196 "(a4, -1, 1/2*a4^6 + a4^5 - 7/2*a4^4 - 11/2*a4^3 + 6*a4^2 + 11/2*a4 - 1, -3/4*a4^6 - 7/4*a4^5 + 5*a4^4 + 37/4*a4^3 - 41/4*a4^2 - 10*a4 + 3, -1/4*a4^6 + 1/4*a4^5 + 7/2*a4^4 - 1/4*a4^3 - 37/4*a4^2 - 3/2*a4 + 2, 1/4*a4^6 - 1/4*a4^5 - 9/2*a4^4 + 1/4*a4^3 + 65/4*a4^2 - 1/2*a4 - 10)" "x^7 + 3*x^6 - 6*x^5 - 19*x^4 + 9*x^3 + 30*x^2 - 8"
"4170d1" 4170 417 5 5 "(a1, 1, -1, -a1 - 4, -2*a1 - 1, 2*a1 - 2)" "x^2 + x - 1"
"11a1" 11 418 5 21 "(1, -1/2*a5 + 1/2, -1/2*a5 + 5/2, 1/2*a5 - 7/2, 1, 1/2*a5 + 5/2)" "x^2 - 4*x - 17"
"418a1" 418 418 5 21 "(1, -1/2*a5 + 1/2, -1/2*a5 + 5/2, 1/2*a5 - 7/2, 1, 1/2*a5 + 5/2)" "x^2 - 4*x - 17"
"11a1" 11 421 5 2.51E+036 "(a1, 1430551/9117529*a1^18 - 2454755/9117529*a1^17 - 38550465/9117529*a1^16 + 61521646/9117529*a1^15 + 433188182/9117529*a1^14 - 634476014/9117529*a1^13 - 2625122576/9117529*a1^12 + 3471841595/9117529*a1^11 + 9256149754/9117529*a1^10 - 10815766925/9117529*a1^9 - 19082230913/9117529*a1^8 + 19034855015/9117529*a1^7 + 21961332366/9117529*a1^6 - 17464171573/9117529*a1^5 - 12883617829/9117529*a1^4 + 6876539232/9117529*a1^3 + 3602610333/9117529*a1^2 - 873971523/9117529*a1 - 365040381/9117529, 878109/9117529*a1^18 - 3976489/18235058*a1^17 - 21432487/9117529*a1^16 + 93225979/18235058*a1^15 + 430254627/18235058*a1^14 - 443104396/9117529*a1^13 - 2297447469/18235058*a1^12 + 2196150081/9117529*a1^11 + 3529600990/9117529*a1^10 - 12170815053/18235058*a1^9 - 12628043807/18235058*a1^8 + 9426980563/9117529*a1^7 + 6363626036/9117529*a1^6 - 15616138215/18235058*a1^5 - 3338288148/9117529*a1^4 + 6319228471/18235058*a1^3 + 808920540/9117529*a1^2 - 881163033/18235058*a1 - 131854079/18235058, -3123478/9117529*a1^18 + 10913861/9117529*a1^17 + 62919987/9117529*a1^16 - 243654208/9117529*a1^15 - 465583763/9117529*a1^14 + 2157201832/9117529*a1^13 + 1401909094/9117529*a1^12 - 9590529875/9117529*a1^11 - 392497374/9117529*a1^10 + 22254628727/9117529*a1^9 - 6746201733/9117529*a1^8 - 25130945901/9117529*a1^7 + 12798978544/9117529*a1^6 + 11178019495/9117529*a1^5 - 7155824038/9117529*a1^4 - 1582051080/9117529*a1^3 + 1443353266/9117529*a1^2 + 25568693/9117529*a1 - 93458019/9117529, -2511386/9117529*a1^18 + 11518462/9117529*a1^17 + 43831365/9117529*a1^16 - 259192754/9117529*a1^15 - 222042511/9117529*a1^14 + 2323024199/9117529*a1^13 - 240681170/9117529*a1^12 - 10539230756/9117529*a1^11 + 5909574641/9117529*a1^10 + 25384240468/9117529*a1^9 - 20487342529/9117529*a1^8 - 31070335861/9117529*a1^7 + 28829195477/9117529*a1^6 + 17231982875/9117529*a1^5 - 15964886849/9117529*a1^4 - 4333558975/9117529*a1^3 + 3475081261/9117529*a1^2 + 391178212/9117529*a1 - 233236203/9117529, -3069490/9117529*a1^18 + 11917235/9117529*a1^17 + 58364913/9117529*a1^16 - 267836413/9117529*a1^15 - 373504203/9117529*a1^14 + 2394578183/9117529*a1^13 + 544241389/9117529*a1^12 - 10808158877/9117529*a1^11 + 3973912107/9117529*a1^10 + 25728350239/9117529*a1^9 - 19534553843/9117529*a1^8 - 30517753704/9117529*a1^7 + 34046371348/9117529*a1^6 + 15211847262/9117529*a1^5 - 25581601586/9117529*a1^4 - 2596994859/9117529*a1^3 + 8234394600/9117529*a1^2 + 32311354/9117529*a1 - 879264013/9117529)" "x^19 - 4*x^18 - 20*x^17 + 93*x^16 + 145*x^15 - 874*x^14 - 402*x^13 + 4263*x^12 - 159*x^11 - 11551*x^10 + 3133*x^9 + 17375*x^8 - 5935*x^7 - 14018*x^6 + 4016*x^5 + 5896*x^4 - 1088*x^3 - 1185*x^2 + 101*x + 89"
"1266c1" 1266 422 5 257 "(-1, a2 + 1, -1/3*a2^2 - 4/3*a2 - 1, -a2 - 3, 1/3*a2^2 + 1/3*a2 + 1, -2/3*a2^2 - 5/3*a2 - 1)" "x^3 + 4*x^2 - 3*x - 9"
"2110c1" 2110 422 5 5 "(-1, -1/2*a1 - 1/2, a1 + 5, 4, a1 + 5, 0)" "x^2 + 8*x + 11"
"2954a1" 2954 422 5 785 "(-1, 1/2*a3 + 1/2, 1/4*a3^2 + 1/2*a3 - 15/4, -1/2*a3 - 1/2, -1/4*a3^2 + 13/4, 1/2*a3 + 9/2)" "x^3 + 5*x^2 - 17*x - 61"
"4642a1" 4642 422 5 785 "(-1, 1/2*a3 + 1/2, 1/4*a3^2 + 1/2*a3 - 15/4, -1/2*a3 - 1/2, -1/4*a3^2 + 13/4, 1/2*a3 + 9/2)" "x^3 + 5*x^2 - 17*x - 61"
"7208b1" 7208 424 5 148 "(0, -1/2*a1, -1/4*a1^2 + a1 + 1, 1/4*a1^2 - 5, 1/4*a1^2 - a1 - 3, 1/2*a1^2 - 5)" "x^3 - 2*x^2 - 12*x + 8"
"11a1" 11 425 5 1893456 "(a8, -1/2*a8^3 + 1/2*a8^2 + 7/2*a8 - 5/2, 0, -1/2*a8^4 - 1/2*a8^3 + 7/2*a8^2 + 5/2*a8 - 2, 1/2*a8^4 - 4*a8^2 + a8 + 9/2, -a8^3 + 6*a8 - 2)" "x^5 + x^4 - 10*x^3 - 6*x^2 + 21*x - 3"
"17a1" 17 425 5 1893456 "(a8, -1/2*a8^3 + 1/2*a8^2 + 7/2*a8 - 5/2, 0, -1/2*a8^4 - 1/2*a8^3 + 7/2*a8^2 + 5/2*a8 - 2, 1/2*a8^4 - 4*a8^2 + a8 + 9/2, -a8^3 + 6*a8 - 2)" "x^5 + x^4 - 10*x^3 - 6*x^2 + 21*x - 3"
"50a1" 50 425 5 1893456 "(a9, -1/2*a9^3 - 1/2*a9^2 + 7/2*a9 + 5/2, 0, 1/2*a9^4 - 1/2*a9^3 - 7/2*a9^2 + 5/2*a9 + 2, 1/2*a9^4 - 4*a9^2 - a9 + 9/2, -a9^3 + 6*a9 + 2)" "x^5 - x^4 - 10*x^3 + 6*x^2 + 21*x + 3"
"425b1" 425 425 5 6224 "(a6, -a6^3 - a6^2 + 4*a6 + 2, 0, -a6 - 3, a6^2 - a6 - 4, 3*a6^3 + 2*a6^2 - 13*a6 - 8)" "x^4 + 2*x^3 - 4*x^2 - 8*x - 1"
"425a1" 425 425 5 1893456 "(a9, -1/2*a9^3 - 1/2*a9^2 + 7/2*a9 + 5/2, 0, 1/2*a9^4 - 1/2*a9^3 - 7/2*a9^2 + 5/2*a9 + 2, 1/2*a9^4 - 4*a9^2 - a9 + 9/2, -a9^3 + 6*a9 + 2)" "x^5 - x^4 - 10*x^3 + 6*x^2 + 21*x + 3"
"425c1" 425 425 5 6224 "(a7, -a7^3 + a7^2 + 4*a7 - 2, 0, -a7 + 3, a7^2 + a7 - 4, 3*a7^3 - 2*a7^2 - 13*a7 + 8)" "x^4 - 2*x^3 - 4*x^2 + 8*x - 1"
"142d1" 142 426 5 568 "(1, -1, -1/2*a5 - 1/2, 1/8*a5^2 + a5 - 1/8, -1/8*a5^2 + 41/8, -1/4*a5^2 - 2*a5 + 9/4)" "x^3 + 11*x^2 + 7*x - 83"
"854a1" 854 427 5 7735165 "(a4, a4^5 + 3*a4^4 - 3*a4^3 - 9*a4^2 + 4*a4 + 3, -a4^5 - 3*a4^4 + 2*a4^3 + 7*a4^2 - 2*a4 - 2, -1, -a4^5 - 3*a4^4 + 3*a4^3 + 9*a4^2 - 4*a4 - 4, -a4^5 - 2*a4^4 + 8*a4^3 + 12*a4^2 - 14*a4 - 10)" "x^6 + 5*x^5 + 2*x^4 - 18*x^3 - 12*x^2 + 18*x + 5"
1.28E+004 1281 427 5 4733829 "(a3, -1/3*a3^5 - 5/3*a3^4 + 1/3*a3^3 + 25/3*a3^2 + 4*a3 - 5, a3^5 + 3*a3^4 - 4*a3^3 - 15*a3^2 - 2*a3 + 6, 1, -5/3*a3^5 - 13/3*a3^4 + 23/3*a3^3 + 59/3*a3^2 - 2*a3 - 6, -a3^5 - 4*a3^4 + 2*a3^3 + 20*a3^2 + 10*a3 - 10)" "x^6 + 5*x^5 + 2*x^4 - 22*x^3 - 30*x^2 + 9"
"2135g1" 2135 427 5 121243842238125 "(a6, -5/16*a6^8 + 9/8*a6^7 + 37/16*a6^6 - 85/8*a6^5 - 15/8*a6^4 + 217/8*a6^3 - 161/16*a6^2 - 161/16*a6 + 7/4, 1/8*a6^8 - 1/4*a6^7 - 9/8*a6^6 + 5/4*a6^5 + 15/4*a6^4 + 3/4*a6^3 - 43/8*a6^2 - 43/8*a6 + 5/2, -1, -1/16*a6^8 + 5/8*a6^7 - 15/16*a6^6 - 41/8*a6^5 + 93/8*a6^4 + 85/8*a6^3 - 461/16*a6^2 - 13/16*a6 + 27/4, 1/8*a6^8 - 1/4*a6^7 - 9/8*a6^6 + 5/4*a6^5 + 19/4*a6^4 - 5/4*a6^3 - 83/8*a6^2 + 21/8*a6 + 9/2)" "x^9 - 5*x^8 - 3*x^7 + 45*x^6 - 32*x^5 - 108*x^4 + 123*x^3 + 30*x^2 - 43*x + 4"
"13237b1" 13237 427 5 7735165 "(a4, a4^5 + 3*a4^4 - 3*a4^3 - 9*a4^2 + 4*a4 + 3, -a4^5 - 3*a4^4 + 2*a4^3 + 7*a4^2 - 2*a4 - 2, -1, -a4^5 - 3*a4^4 + 3*a4^3 + 9*a4^2 - 4*a4 - 4, -a4^5 - 2*a4^4 + 8*a4^3 + 12*a4^2 - 14*a4 - 10)" "x^6 + 5*x^5 + 2*x^4 - 18*x^3 - 12*x^2 + 18*x + 5"
"1284c1" 1284 428 5 1752165 "(0, -1/2*a3, -1/24*a3^4 - 5/24*a3^3 + a3^2 + 19/6*a3 - 17/3, 1/48*a3^4 + 1/24*a3^3 - 3/4*a3^2 - 1/3*a3 + 19/3, -1/4*a3^2 - 1/2*a3 + 6, 1/16*a3^4 + 3/8*a3^3 - 3/2*a3^2 - 13/2*a3 + 9)" "x^5 + 10*x^4 - 8*x^3 - 256*x^2 - 160*x + 1376"
"11a1" 11 429 5 148 "(a5, 1, -a5^2 + a5 + 2, -a5^2 + 2*a5 + 1, 1, 1)" "x^3 - x^2 - 3*x + 1"
"143a1" 143 429 5 148 "(a6, 1, -a6^2 + a6 + 4, -a6^2 + 3, -1, -1)" "x^3 - 3*x^2 - x + 5"
"1290k1" 1290 430 5 24 "(1, 1/2*a5 - 1/2, -1, 1, -1/2*a5 + 5/2, -1)" "x^2 - 2*x - 23"
"1290m1" 1290 430 5 24 "(1, 1/2*a5 - 1/2, -1, 1, -1/2*a5 + 5/2, -1)" "x^2 - 2*x - 23"
"11a1" 11 431 5 2.78E+048 "(a5, 7935096512256799/3739222839496792400*a5^23 + 810620141708163/3739222839496792400*a5^22 - 173528413706803033/1869611419748396200*a5^21 - 23895258075624573/3739222839496792400*a5^20 + 3321529293701165417/1869611419748396200*a5^19 + 252660572416622679/3739222839496792400*a5^18 - 73061583647644979333/3739222839496792400*a5^17 - 75898348765588621/373922283949679240*a5^16 + 509534382412117002413/3739222839496792400*a5^15 - 3325298853080540599/1869611419748396200*a5^14 - 1172645596977846012287/1869611419748396200*a5^13 + 903232533678644389/46740285493709905*a5^12 + 3592287897607973222257/1869611419748396200*a5^11 - 146985643477082908299/1869611419748396200*a5^10 - 14402977230229462788321/3739222839496792400*a5^9 + 590485552799907048989/3739222839496792400*a5^8 + 9016487276459122122203/1869611419748396200*a5^7 - 20629371559270104601/149568913579871696*a5^6 - 6400831287872758553179/1869611419748396200*a5^5 + 27385716846365639607/3739222839496792400*a5^4 + 4165925951152361601299/3739222839496792400*a5^3 + 1735042892911132546/46740285493709905*a5^2 - 321943156993297734389/3739222839496792400*a5 + 5458880528184681463/1869611419748396200, -3001918608458321/1869611419748396200*a5^23 - 12759708706795807/1869611419748396200*a5^22 + 287562107923492403/3739222839496792400*a5^21 + 501204055954295587/1869611419748396200*a5^20 - 1502875401940431783/934805709874198100*a5^19 - 16932298038253081847/3739222839496792400*a5^18 + 71928844431916175609/3739222839496792400*a5^17 + 16082743684625791651/373922283949679240*a5^16 - 543060246362583052439/3739222839496792400*a5^15 - 942558898465922137941/3739222839496792400*a5^14 + 672495179452626345253/934805709874198100*a5^13 + 43971863404446227282/46740285493709905*a5^12 - 4402363403637250822151/1869611419748396200*a5^11 - 4160062215272089935323/1869611419748396200*a5^10 + 9344614349012167227349/1869611419748396200*a5^9 + 749898640478464070373/233701427468549525*a5^8 - 24465019598760262751343/3739222839496792400*a5^7 - 194198287645854433175/74784456789935848*a5^6 + 4449007914580759656591/934805709874198100*a5^5 + 3820952747901107923889/3739222839496792400*a5^4 - 5722288875361777878787/3739222839496792400*a5^3 - 65155149072801915771/373922283949679240*a5^2 + 432741984388948972677/3739222839496792400*a5 + 13141980820492227997/3739222839496792400, -35787630121593423/934805709874198100*a5^23 + 60838198471411969/934805709874198100*a5^22 + 2762862931361266489/1869611419748396200*a5^21 - 1199874237164921817/467402854937099050*a5^20 - 5701355671340015062/233701427468549525*a5^19 + 81164032958702374919/1869611419748396200*a5^18 + 420267533363728485827/1869611419748396200*a5^17 - 76932407036315675173/186961141974839620*a5^16 - 2364107843674217645287/1869611419748396200*a5^15 + 4484158474116657032417/1869611419748396200*a5^14 + 2082273536237051378129/467402854937099050*a5^13 - 414568701735154291454/46740285493709905*a5^12 - 9027675086674334802323/934805709874198100*a5^11 + 19344563224878302703031/934805709874198100*a5^10 + 11193625240884537479557/934805709874198100*a5^9 - 6827092791113231079522/233701427468549525*a5^8 - 12859267713092377364969/1869611419748396200*a5^7 + 423349137133297982245/18696114197483962*a5^6 + 78779879839721496879/233701427468549525*a5^5 - 14513082675683417024733/1869611419748396200*a5^4 + 1380624963049885371359/1869611419748396200*a5^3 + 127841944903195665451/186961141974839620*a5^2 - 199872708878746885179/1869611419748396200*a5 + 2536591119424755451/1869611419748396200, 67451628528872241/934805709874198100*a5^23 - 178381295431168471/1869611419748396200*a5^22 - 5263676873162652613/1869611419748396200*a5^21 + 883990536502760732/233701427468549525*a5^20 + 88165023682539439007/1869611419748396200*a5^19 - 60082273243396943499/934805709874198100*a5^18 - 828758988874183178759/1869611419748396200*a5^17 + 228817619540220105807/373922283949679240*a5^16 + 1199086738530658518801/467402854937099050*a5^15 - 6695788342786408228039/1869611419748396200*a5^14 - 2203960559996380512259/233701427468549525*a5^13 + 2484792598180848632307/186961141974839620*a5^12 + 5117534687443172292929/233701427468549525*a5^11 - 29055452393678218321127/934805709874198100*a5^10 - 7204941516849953122536/233701427468549525*a5^9 + 82034651111372343981617/1869611419748396200*a5^8 + 44915454252547421150973/1869611419748396200*a5^7 - 631979535643729838637/18696114197483962*a5^6 - 16212915484088264656369/1869611419748396200*a5^5 + 10536673360327159360893/934805709874198100*a5^4 + 2137673101958312288797/1869611419748396200*a5^3 - 314055386251067002129/373922283949679240*a5^2 + 10488029403829973459/934805709874198100*a5 - 8195451031441757417/1869611419748396200, -3965788332294317/93480570987419810*a5^23 + 3634312478198232/46740285493709905*a5^22 + 611279236173504637/373922283949679240*a5^21 - 573916898969329491/186961141974839620*a5^20 - 5028730118744766573/186961141974839620*a5^19 + 3887258035684495681/74784456789935848*a5^18 + 92094632736615785917/373922283949679240*a5^17 - 92280444266947515073/186961141974839620*a5^16 - 512090653399603532709/373922283949679240*a5^15 + 1078291414505118846211/373922283949679240*a5^14 + 441096077126211234921/93480570987419810*a5^13 - 999910732526446038811/93480570987419810*a5^12 - 364938383406133393559/37392228394967924*a5^11 + 4683768668335092704381/186961141974839620*a5^10 + 1003342404512496038719/93480570987419810*a5^9 - 6646727273593904524437/186961141974839620*a5^8 - 1327357990671847060093/373922283949679240*a5^7 + 1039734140656992144775/37392228394967924*a5^6 - 587746046558773202937/186961141974839620*a5^5 - 3658445731262792228403/373922283949679240*a5^4 + 790005540385847834561/373922283949679240*a5^3 + 189052398495358553097/186961141974839620*a5^2 - 16741947394844237877/74784456789935848*a5 - 1614440688059823903/373922283949679240)" "x^24 - x^23 - 40*x^22 + 40*x^21 + 692*x^20 - 687*x^19 - 6790*x^18 + 6631*x^17 + 41657*x^16 - 39533*x^15 - 166175*x^14 + 150668*x^13 + 434546*x^12 - 367120*x^11 - 733353*x^10 + 555013*x^9 + 766426*x^8 - 486022*x^7 - 458392*x^6 + 216189*x^5 + 133642*x^4 - 39443*x^3 - 11021*x^2 + 2767*x + 13"
"431b1" 431 431 5 473 "(a2, a2^2 - 3, a2^2 + a2 - 3, -2*a2, -4, 2*a2^2 - 4)" "x^3 - 5*x + 1"
"431a1" 431 431 5 257 "(a3, -a3, -a3^2 + 2, -2, 0, -2)" "x^3 - x^2 - 4*x + 3"
"11a1" 11 434 5 568 "(1, a8 - 1, -a8 + 1, 1, -a8^2 + 3*a8 + 2, 4)" "x^3 - 4*x^2 - 3*x + 10"
"1302a1" 1302 434 5 568 "(-1, 1/2*a7 + 1/2, -1/4*a7^2 - 1/2*a7 + 15/4, -1, -1/2*a7^2 - a7 + 19/2, a7 + 3)" "x^3 + 7*x^2 - 9*x - 79"
"435d1" 435 435 5 21 "(a5, 1, 1, 1, 5, -2*a5 - 1)" "x^2 + x - 5"
"435a1" 435 435 5 5 "(a6, 1, -1, 2, -2, 2)" "x^2 - 5"
"870b1" 870 435 5 5 "(a4, 1, -1, -3, -4*a4 - 3, -2*a4 - 5)" "x^2 + x - 1"
"5655f1" 5655 435 5 21 "(a5, 1, 1, 1, 5, -2*a5 - 1)" "x^2 + x - 5"
"11a1" 11 437 5 645835460800 "(a6, -3/10*a6^7 + 1/10*a6^6 + 37/10*a6^5 - 9/10*a6^4 - 64/5*a6^3 + 11/5*a6^2 + 51/5*a6 + 6/5, 1/10*a6^7 + 3/10*a6^6 - 7/5*a6^5 - 16/5*a6^4 + 51/10*a6^3 + 81/10*a6^2 - 17/5*a6 - 12/5, -1/2*a6^7 + 13/2*a6^5 - 1/2*a6^4 - 23*a6^3 + 9/2*a6^2 + 16*a6, -1/5*a6^7 - 1/10*a6^6 + 23/10*a6^5 + 19/10*a6^4 - 67/10*a6^3 - 41/5*a6^2 + 14/5*a6 + 29/5, 3/10*a6^7 - 1/10*a6^6 - 21/5*a6^5 + 7/5*a6^4 + 163/10*a6^3 - 47/10*a6^2 - 66/5*a6 - 1/5)" "x^8 - 13*x^6 + 47*x^4 - 2*x^3 - 37*x^2 - 2*x + 2"
"437b1" 437 437 5 645835460800 "(a6, -3/10*a6^7 + 1/10*a6^6 + 37/10*a6^5 - 9/10*a6^4 - 64/5*a6^3 + 11/5*a6^2 + 51/5*a6 + 6/5, 1/10*a6^7 + 3/10*a6^6 - 7/5*a6^5 - 16/5*a6^4 + 51/10*a6^3 + 81/10*a6^2 - 17/5*a6 - 12/5, -1/2*a6^7 + 13/2*a6^5 - 1/2*a6^4 - 23*a6^3 + 9/2*a6^2 + 16*a6, -1/5*a6^7 - 1/10*a6^6 + 23/10*a6^5 + 19/10*a6^4 - 67/10*a6^3 - 41/5*a6^2 + 14/5*a6 + 29/5, 3/10*a6^7 - 1/10*a6^6 - 21/5*a6^5 + 7/5*a6^4 + 163/10*a6^3 - 47/10*a6^2 - 66/5*a6 - 1/5)" "x^8 - 13*x^6 + 47*x^4 - 2*x^3 - 37*x^2 - 2*x + 2"
"437a1" 437 437 5 5 "(a4, -1/2*a4 - 1/2, -a4 - 1, -1/2*a4 - 5/2, -1/2*a4 - 7/2, 2*a4)" "x^2 - 5"
"874d1" 874 437 5 645835460800 "(a6, -3/10*a6^7 + 1/10*a6^6 + 37/10*a6^5 - 9/10*a6^4 - 64/5*a6^3 + 11/5*a6^2 + 51/5*a6 + 6/5, 1/10*a6^7 + 3/10*a6^6 - 7/5*a6^5 - 16/5*a6^4 + 51/10*a6^3 + 81/10*a6^2 - 17/5*a6 - 12/5, -1/2*a6^7 + 13/2*a6^5 - 1/2*a6^4 - 23*a6^3 + 9/2*a6^2 + 16*a6, -1/5*a6^7 - 1/10*a6^6 + 23/10*a6^5 + 19/10*a6^4 - 67/10*a6^3 - 41/5*a6^2 + 14/5*a6 + 29/5, 3/10*a6^7 - 1/10*a6^6 - 21/5*a6^5 + 7/5*a6^4 + 163/10*a6^3 - 47/10*a6^2 - 66/5*a6 - 1/5)" "x^8 - 13*x^6 + 47*x^4 - 2*x^3 - 37*x^2 - 2*x + 2"
"6555h1" 6555 437 5 5 "(-1, a2 + 1, 2*a2 + 6, -3*a2 - 7, -3*a2 - 10, 4*a2 + 10)" "x^2 + 5*x + 5"
"219a1" 219 438 5 5 "(1, -1, -a8, 2, a8, a8 + 2)" "x^2 - 2*x - 4"
"3073b1" 3073 439 5 5 "(-1, -1/2*a0 - 1/2, 1/2*a0 + 3/2, -2, a0 + 3, 3/2*a0 + 3/2)" "x^2 + 4*x - 1"
"12731a1" 12731 439 5 6.41E+053 "(a2, -4701618266782388979/28439477794057307596*a2^24 + 11170291270990503687/28439477794057307596*a2^23 + 80691352900513829125/14219738897028653798*a2^22 - 95756906909083668938/7109869448514326899*a2^21 - 2360014104287415004231/28439477794057307596*a2^20 + 5603526973553122914217/28439477794057307596*a2^19 + 9606353419503600675959/14219738897028653798*a2^18 - 11443242660642603218230/7109869448514326899*a2^17 - 47657446939209209379161/14219738897028653798*a2^16 + 229252186441017254442939/28439477794057307596*a2^15 + 147814175331208886241791/14219738897028653798*a2^14 - 181746471101382290275787/7109869448514326899*a2^13 - 281339988371005892185739/14219738897028653798*a2^12 + 726870045488517750893127/14219738897028653798*a2^11 + 305723654765418162524595/14219738897028653798*a2^10 - 1768345960680669148360317/28439477794057307596*a2^9 - 315741691603864767432427/28439477794057307596*a2^8 + 608059283868001121353591/14219738897028653798*a2^7 + 9358948221177614751930/7109869448514326899*a2^6 - 419149212373168286417085/28439477794057307596*a2^5 + 11708709882927074613999/28439477794057307596*a2^4 + 29556806794776585249309/14219738897028653798*a2^3 - 137000895117974247488/7109869448514326899*a2^2 - 540274369868061400757/7109869448514326899*a2 + 76528473298370282193/28439477794057307596, 1647367022276221005/28439477794057307596*a2^24 + 52969329716665563/28439477794057307596*a2^23 - 31872281549317535945/14219738897028653798*a2^22 - 1642972826875068120/7109869448514326899*a2^21 + 1072871156604689252509/28439477794057307596*a2^20 + 183875091502160176397/28439477794057307596*a2^19 - 5155563190781254517255/14219738897028653798*a2^18 - 604373366542309006201/7109869448514326899*a2^17 + 31201776691348939943627/14219738897028653798*a2^16 + 18077597347358541178579/28439477794057307596*a2^15 - 123554336497637077062051/14219738897028653798*a2^14 - 20667802391969160715848/7109869448514326899*a2^13 + 321832665686801890019843/14219738897028653798*a2^12 + 118077274906464419327349/14219738897028653798*a2^11 - 539702315085517771538619/14219738897028653798*a2^10 - 416229740572805534350269/28439477794057307596*a2^9 + 1105702149650154520677205/28439477794057307596*a2^8 + 216973001423995103443715/14219738897028653798*a2^7 - 156181140411469097098958/7109869448514326899*a2^6 - 246739270965029172348165/28439477794057307596*a2^5 + 156220049353768141791119/28439477794057307596*a2^4 + 31071838535063740568881/14219738897028653798*a2^3 - 2021446512334916558334/7109869448514326899*a2^2 - 625462724675585184804/7109869448514326899*a2 + 208500022795250045061/28439477794057307596, 760866391961395702/7109869448514326899*a2^24 - 352947250668737963/7109869448514326899*a2^23 - 28911603799610402491/7109869448514326899*a2^22 + 10718205292913323729/7109869448514326899*a2^21 + 477014484506977132871/7109869448514326899*a2^20 - 131199993891360344735/7109869448514326899*a2^19 - 4486054275057122572442/7109869448514326899*a2^18 + 805170713552169373211/7109869448514326899*a2^17 + 26516169424210896070583/7109869448514326899*a2^16 - 2312555926413511583715/7109869448514326899*a2^15 - 102331510399834199995606/7109869448514326899*a2^14 + 196576008060484108694/7109869448514326899*a2^13 + 259143820675389522123340/7109869448514326899*a2^12 + 18748155772308558490129/7109869448514326899*a2^11 - 421333352861918615161012/7109869448514326899*a2^10 - 55490566740836759100524/7109869448514326899*a2^9 + 417334664371244123502005/7109869448514326899*a2^8 + 72629202470138982951061/7109869448514326899*a2^7 - 227656793838545820646001/7109869448514326899*a2^6 - 46079118638285359685507/7109869448514326899*a2^5 + 54716583394085341357436/7109869448514326899*a2^4 + 11925384749079586124000/7109869448514326899*a2^3 - 2504671078478899488351/7109869448514326899*a2^2 - 290182666330441546285/7109869448514326899*a2 + 27543920540087016679/7109869448514326899, -5363965716272303177/42659216691085961394*a2^24 + 8362916483887599729/14219738897028653798*a2^23 + 81748757523398717794/21329608345542980697*a2^22 - 435835051599899278496/21329608345542980697*a2^21 - 2000599468066668784445/42659216691085961394*a2^20 + 12956295889723099186417/42659216691085961394*a2^19 + 6034729371051101100070/21329608345542980697*a2^18 - 53936227689685691545243/21329608345542980697*a2^17 - 15507685734981108378935/21329608345542980697*a2^16 + 184218068452856337363945/14219738897028653798*a2^15 - 17555249143191892565851/21329608345542980697*a2^14 - 299904365681798076441792/7109869448514326899*a2^13 + 236105536692116579700907/21329608345542980697*a2^12 + 1853525264223744210576209/21329608345542980697*a2^11 - 681188847885915118289719/21329608345542980697*a2^10 - 1551579332027340548981117/14219738897028653798*a2^9 + 1882255392142895617760359/42659216691085961394*a2^8 + 1651410310945964679198761/21329608345542980697*a2^7 - 626708241731951246677726/21329608345542980697*a2^6 - 392000575123645713296741/14219738897028653798*a2^5 + 330147732666917122472443/42659216691085961394*a2^4 + 28701110130063012328168/7109869448514326899*a2^3 - 2554082151194212341587/7109869448514326899*a2^2 - 2529139964115426826100/21329608345542980697*a2 + 271668394370923929241/42659216691085961394, 6613357520299680839/28439477794057307596*a2^24 - 9833442203461204495/28439477794057307596*a2^23 - 117724620440653710961/14219738897028653798*a2^22 + 81677913144810050904/7109869448514326899*a2^21 + 3605600648398840021523/28439477794057307596*a2^20 - 4588604515291107442053/28439477794057307596*a2^19 - 15567967436961357261281/14219738897028653798*a2^18 + 8879652626901733178740/7109869448514326899*a2^17 + 83422143063537676010267/14219738897028653798*a2^16 - 165338046129390363918831/28439477794057307596*a2^15 - 287221865668277214026127/14219738897028653798*a2^14 + 118096010348039284701203/7109869448514326899*a2^13 + 635206950910049520286659/14219738897028653798*a2^12 - 402309916886326694754431/14219738897028653798*a2^11 - 875767943170837703868969/14219738897028653798*a2^10 + 736337225586306308313841/28439477794057307596*a2^9 + 1414777578604531766824739/28439477794057307596*a2^8 - 123575013100995224756511/14219738897028653798*a2^7 - 150688435350637604164938/7109869448514326899*a2^6 - 71569823462051688820691/28439477794057307596*a2^5 + 103916136653166581564709/28439477794057307596*a2^4 + 24902518212364000960745/14219738897028653798*a2^3 + 356843772345627785988/7109869448514326899*a2^2 - 448726188893907291986/7109869448514326899*a2 - 8209749510389125421/28439477794057307596)" "x^25 - 4*x^24 - 31*x^23 + 138*x^22 + 389*x^21 - 2034*x^20 - 2453*x^19 + 16766*x^18 + 7126*x^17 - 84887*x^16 + 1717*x^15 + 272618*x^14 - 79978*x^13 - 552928*x^12 + 255108*x^11 + 682589*x^10 - 376568*x^9 - 476301*x^8 + 270078*x^7 + 167567*x^6 - 81530*x^5 - 24739*x^4 + 6834*x^3 + 740*x^2 - 187*x + 5"
"26a1" 26 442 5 5 "(-1, -1/2*a6 - 1/2, 2, 1/2*a6 + 1/2, 1/2*a6 + 5/2, 1)" "x^2 + 6*x - 11"
"1326a1" 1326 442 5 148 "(-1, a7 + 1, -a7^2 - 3*a7, a7^2 + 2*a7 - 3, -2*a7 - 4, -1)" "x^3 + 5*x^2 + 3*x - 5"
"886c1" 886 443 5 9.93E+045 "(a4, 24331639715/276511903884*a4^21 - 8125806695/122894179504*a4^20 - 3412458404095/1106047615536*a4^19 + 2389711908563/1106047615536*a4^18 + 51138378435019/1106047615536*a4^17 - 32431419686159/1106047615536*a4^16 - 214033136471141/553023807768*a4^15 + 4926713915392/23042658657*a4^14 + 548510219486683/276511903884*a4^13 - 166235001605939/184341269256*a4^12 - 7092131576110951/1106047615536*a4^11 + 2420044653883823/1106047615536*a4^10 + 14322072309976415/1106047615536*a4^9 - 771797422040513/276511903884*a4^8 - 2861400783481183/184341269256*a4^7 + 748307574118151/553023807768*a4^6 + 2701481312105405/276511903884*a4^5 + 88077002352901/553023807768*a4^4 - 221305411235065/92170634628*a4^3 + 2558974223989/553023807768*a4^2 + 15160229436083/92170634628*a4 - 2044922361293/138255951942, -4487692457/553023807768*a4^21 + 464915797/92170634628*a4^20 + 17265814817/69127975971*a4^19 - 58814741377/276511903884*a4^18 - 447258475993/138255951942*a4^17 + 1990589437673/553023807768*a4^16 + 6368715278051/276511903884*a4^15 - 497959835343/15361772438*a4^14 - 27419742322367/276511903884*a4^13 + 10498224082397/61447089752*a4^12 + 18621638832281/69127975971*a4^11 - 149378130661807/276511903884*a4^10 - 260756674651403/553023807768*a4^9 + 277082845647397/276511903884*a4^8 + 24477554211125/46085317314*a4^7 - 280269013911485/276511903884*a4^6 - 98494826092843/276511903884*a4^5 + 134782019264321/276511903884*a4^4 + 3280809564745/30723544876*a4^3 - 27800586430795/276511903884*a4^2 - 684082799419/46085317314*a4 + 369225624443/69127975971, -77378520413/1106047615536*a4^21 + 11248192515/122894179504*a4^20 + 2786326409257/1106047615536*a4^19 - 3235313679647/1106047615536*a4^18 - 42837539306137/1106047615536*a4^17 + 21602664606733/553023807768*a4^16 + 22968487627630/69127975971*a4^15 - 26030166998233/92170634628*a4^14 - 964027086846113/553023807768*a4^13 + 440416402259833/368682538512*a4^12 + 6368731241805277/1106047615536*a4^11 - 3284291651518895/1106047615536*a4^10 - 3277415486212031/276511903884*a4^9 + 2261376132136177/553023807768*a4^8 + 2659389515200819/184341269256*a4^7 - 729926036929771/276511903884*a4^6 - 5065503313809637/553023807768*a4^5 + 144727804023313/276511903884*a4^4 + 412422490650353/184341269256*a4^3 - 40909468337813/276511903884*a4^2 - 6718151258917/46085317314*a4 + 1360277665744/69127975971, 22030898407/276511903884*a4^21 - 22355967073/184341269256*a4^20 - 1602149670475/553023807768*a4^19 + 2133015121595/553023807768*a4^18 + 24838378447063/553023807768*a4^17 - 28390101913589/553023807768*a4^16 - 107299333802765/276511903884*a4^15 + 8542868734255/23042658657*a4^14 + 141583156365272/69127975971*a4^13 - 72468197810867/46085317314*a4^12 - 3761550886522039/553023807768*a4^11 + 2183765319954767/553023807768*a4^10 + 7787958126000041/553023807768*a4^9 - 772557788684753/138255951942*a4^8 - 1593947275306051/92170634628*a4^7 + 1077979190630885/276511903884*a4^6 + 774143588048455/69127975971*a4^5 - 286253750311157/276511903884*a4^4 - 67097718790501/23042658657*a4^3 + 68665841942827/276511903884*a4^2 + 3442866847655/15361772438*a4 - 1993849215107/69127975971, -28106337295/737365077024*a4^21 + 1790239187/245788359008*a4^20 + 952185112427/737365077024*a4^19 - 190843830589/737365077024*a4^18 - 13706797493867/737365077024*a4^17 + 1392565355075/368682538512*a4^16 + 13664759825365/92170634628*a4^15 - 1838677236247/61447089752*a4^14 - 263987050082995/368682538512*a4^13 + 35189455123363/245788359008*a4^12 + 1585535871843647/737365077024*a4^11 - 322273338485437/737365077024*a4^10 - 732378231481303/184341269256*a4^9 + 323065131836135/368682538512*a4^8 + 532566927912329/122894179504*a4^7 - 209230094037173/184341269256*a4^6 - 961664330793791/368682538512*a4^5 + 153056014419467/184341269256*a4^4 + 97746233271315/122894179504*a4^3 - 40755672026287/184341269256*a4^2 - 2256745894127/30723544876*a4 + 376488821731/23042658657)" "x^22 - x^21 - 35*x^20 + 33*x^19 + 523*x^18 - 456*x^17 - 4360*x^16 + 3428*x^15 + 22226*x^14 - 15227*x^13 - 71363*x^12 + 40569*x^11 + 143034*x^10 - 62774*x^9 - 170342*x^8 + 51992*x^7 + 107186*x^6 - 20952*x^5 - 26926*x^4 + 5536*x^3 + 1736*x^2 - 512*x + 32"
8.86E+003 886 443 5 9.93E+045 "(a4, 24331639715/276511903884*a4^21 - 8125806695/122894179504*a4^20 - 3412458404095/1106047615536*a4^19 + 2389711908563/1106047615536*a4^18 + 51138378435019/1106047615536*a4^17 - 32431419686159/1106047615536*a4^16 - 214033136471141/553023807768*a4^15 + 4926713915392/23042658657*a4^14 + 548510219486683/276511903884*a4^13 - 166235001605939/184341269256*a4^12 - 7092131576110951/1106047615536*a4^11 + 2420044653883823/1106047615536*a4^10 + 14322072309976415/1106047615536*a4^9 - 771797422040513/276511903884*a4^8 - 2861400783481183/184341269256*a4^7 + 748307574118151/553023807768*a4^6 + 2701481312105405/276511903884*a4^5 + 88077002352901/553023807768*a4^4 - 221305411235065/92170634628*a4^3 + 2558974223989/553023807768*a4^2 + 15160229436083/92170634628*a4 - 2044922361293/138255951942, -4487692457/553023807768*a4^21 + 464915797/92170634628*a4^20 + 17265814817/69127975971*a4^19 - 58814741377/276511903884*a4^18 - 447258475993/138255951942*a4^17 + 1990589437673/553023807768*a4^16 + 6368715278051/276511903884*a4^15 - 497959835343/15361772438*a4^14 - 27419742322367/276511903884*a4^13 + 10498224082397/61447089752*a4^12 + 18621638832281/69127975971*a4^11 - 149378130661807/276511903884*a4^10 - 260756674651403/553023807768*a4^9 + 277082845647397/276511903884*a4^8 + 24477554211125/46085317314*a4^7 - 280269013911485/276511903884*a4^6 - 98494826092843/276511903884*a4^5 + 134782019264321/276511903884*a4^4 + 3280809564745/30723544876*a4^3 - 27800586430795/276511903884*a4^2 - 684082799419/46085317314*a4 + 369225624443/69127975971, -77378520413/1106047615536*a4^21 + 11248192515/122894179504*a4^20 + 2786326409257/1106047615536*a4^19 - 3235313679647/1106047615536*a4^18 - 42837539306137/1106047615536*a4^17 + 21602664606733/553023807768*a4^16 + 22968487627630/69127975971*a4^15 - 26030166998233/92170634628*a4^14 - 964027086846113/553023807768*a4^13 + 440416402259833/368682538512*a4^12 + 6368731241805277/1106047615536*a4^11 - 3284291651518895/1106047615536*a4^10 - 3277415486212031/276511903884*a4^9 + 2261376132136177/553023807768*a4^8 + 2659389515200819/184341269256*a4^7 - 729926036929771/276511903884*a4^6 - 5065503313809637/553023807768*a4^5 + 144727804023313/276511903884*a4^4 + 412422490650353/184341269256*a4^3 - 40909468337813/276511903884*a4^2 - 6718151258917/46085317314*a4 + 1360277665744/69127975971, 22030898407/276511903884*a4^21 - 22355967073/184341269256*a4^20 - 1602149670475/553023807768*a4^19 + 2133015121595/553023807768*a4^18 + 24838378447063/553023807768*a4^17 - 28390101913589/553023807768*a4^16 - 107299333802765/276511903884*a4^15 + 8542868734255/23042658657*a4^14 + 141583156365272/69127975971*a4^13 - 72468197810867/46085317314*a4^12 - 3761550886522039/553023807768*a4^11 + 2183765319954767/553023807768*a4^10 + 7787958126000041/553023807768*a4^9 - 772557788684753/138255951942*a4^8 - 1593947275306051/92170634628*a4^7 + 1077979190630885/276511903884*a4^6 + 774143588048455/69127975971*a4^5 - 286253750311157/276511903884*a4^4 - 67097718790501/23042658657*a4^3 + 68665841942827/276511903884*a4^2 + 3442866847655/15361772438*a4 - 1993849215107/69127975971, -28106337295/737365077024*a4^21 + 1790239187/245788359008*a4^20 + 952185112427/737365077024*a4^19 - 190843830589/737365077024*a4^18 - 13706797493867/737365077024*a4^17 + 1392565355075/368682538512*a4^16 + 13664759825365/92170634628*a4^15 - 1838677236247/61447089752*a4^14 - 263987050082995/368682538512*a4^13 + 35189455123363/245788359008*a4^12 + 1585535871843647/737365077024*a4^11 - 322273338485437/737365077024*a4^10 - 732378231481303/184341269256*a4^9 + 323065131836135/368682538512*a4^8 + 532566927912329/122894179504*a4^7 - 209230094037173/184341269256*a4^6 - 961664330793791/368682538512*a4^5 + 153056014419467/184341269256*a4^4 + 97746233271315/122894179504*a4^3 - 40755672026287/184341269256*a4^2 - 2256745894127/30723544876*a4 + 376488821731/23042658657)" "x^22 - x^21 - 35*x^20 + 33*x^19 + 523*x^18 - 456*x^17 - 4360*x^16 + 3428*x^15 + 22226*x^14 - 15227*x^13 - 71363*x^12 + 40569*x^11 + 143034*x^10 - 62774*x^9 - 170342*x^8 + 51992*x^7 + 107186*x^6 - 20952*x^5 - 26926*x^4 + 5536*x^3 + 1736*x^2 - 512*x + 32"
"148a1" 148 444 5 24 "(0, 1, -1/2*a3 + 1/2, 2, 0, a3 + 1)" "x^2 - 2*x - 23"
"2220c1" 2220 444 5 24 "(0, 1, -1/2*a3 + 1/2, 2, 0, a3 + 1)" "x^2 - 2*x - 23"
"11a1" 11 445 5 8069 "(a4, a4^3 - 5*a4 + 2, 1, 3, -a4^3 + 3*a4, -a4^3 - a4^2 + 5*a4)" "x^4 - x^3 - 5*x^2 + 5*x + 1"
"89a1" 89 445 5 5 "(-1, a0 + 1, -1, -a0 - 1, 2*a0 + 2, -2*a0 - 2)" "x^2 + 4*x - 1"
"11a1" 11 447 5 25422298296832 "(a2, 1, 2*a2^8 - 4*a2^7 - 21*a2^6 + 35*a2^5 + 71*a2^4 - 83*a2^3 - 79*a2^2 + 31*a2 + 19, -4*a2^8 + 9*a2^7 + 39*a2^6 - 77*a2^5 - 120*a2^4 + 178*a2^3 + 117*a2^2 - 63*a2 - 26, -2*a2^8 + 4*a2^7 + 21*a2^6 - 34*a2^5 - 73*a2^4 + 77*a2^3 + 88*a2^2 - 25*a2 - 19, 6*a2^8 - 13*a2^7 - 60*a2^6 + 112*a2^5 + 192*a2^4 - 262*a2^3 - 202*a2^2 + 98*a2 + 49)" "x^9 - 4*x^8 - 6*x^7 + 37*x^6 - 3*x^5 - 101*x^4 + 49*x^3 + 72*x^2 - 21*x - 13"
"894f1" 894 447 5 2.52E+016 "(a3, -1, -135/647*a3^9 + 358/647*a3^8 + 1898/647*a3^7 - 4732/647*a3^6 - 8776/647*a3^5 + 19642/647*a3^4 + 14058/647*a3^3 - 26097/647*a3^2 - 2602/647*a3 + 2962/647, 29/647*a3^9 - 144/647*a3^8 - 355/647*a3^7 + 1860/647*a3^6 + 1636/647*a3^5 - 7579/647*a3^4 - 4357/647*a3^3 + 10667/647*a3^2 + 5572/647*a3 - 1983/647, -51/647*a3^9 + 164/647*a3^8 + 602/647*a3^7 - 2334/647*a3^6 - 2007/647*a3^5 + 10986/647*a3^4 + 1170/647*a3^3 - 17666/647*a3^2 + 2784/647*a3 + 2528/647, 270/647*a3^9 - 716/647*a3^8 - 3149/647*a3^7 + 8170/647*a3^6 + 11082/647*a3^5 - 27638/647*a3^4 - 12588/647*a3^3 + 28902/647*a3^2 + 1322/647*a3 - 1395/647)" "x^10 - 3*x^9 - 12*x^8 + 37*x^7 + 44*x^6 - 142*x^5 - 50*x^4 + 181*x^3 - 5*x^2 - 30*x + 1"
"1344h1" 1344 448 5 5 "(0, a8, -a8 - 2, -1, -2*a8 - 4, a8 - 2)" "x^2 + 2*x - 4"
1.34E+004 1344 448 5 5 "(0, -1/2*a9, -1/2*a9 - 2, 1, a9 + 4, 1/2*a9 - 2)" "x^2 + 4*x - 16"
"11a1" 11 451 5 24217 "(a2, -a2^4 - a2^3 + 4*a2^2 + a2 - 2, -a2^3 - 3*a2^2 + a2 + 2, 2*a2^4 + 3*a2^3 - 6*a2^2 - 4*a2 + 1, 1, a2^4 + 3*a2^3 - 5*a2 - 3)" "x^5 + 2*x^4 - 3*x^3 - 4*x^2 + 2*x + 1"
"1353b1" 1353 451 5 4.80E+015 "(a3, 7/2*a3^9 - 12*a3^8 - 28*a3^7 + 117*a3^6 + 89/2*a3^5 - 685/2*a3^4 + 54*a3^3 + 605/2*a3^2 - 74*a3 - 44, 1/4*a3^9 - a3^8 - 3/2*a3^7 + 19/2*a3^6 - 7/4*a3^5 - 105/4*a3^4 + 35/2*a3^3 + 81/4*a3^2 - 27/2*a3 - 2, 5/2*a3^9 - 17/2*a3^8 - 20*a3^7 + 83*a3^6 + 63/2*a3^5 - 244*a3^4 + 79/2*a3^3 + 437/2*a3^2 - 105/2*a3 - 33, 1, 5/2*a3^9 - 8*a3^8 - 21*a3^7 + 77*a3^6 + 81/2*a3^5 - 439/2*a3^4 + 18*a3^3 + 365/2*a3^2 - 40*a3 - 23)" "x^10 - 4*x^9 - 6*x^8 + 38*x^7 - 7*x^6 - 105*x^5 + 74*x^4 + 77*x^3 - 74*x^2 + 8"
"4972a1" 4972 452 5 68931919168 "(0, a1, a1^6 - 2*a1^5 - 13*a1^4 + 16*a1^3 + 52*a1^2 - 22*a1 - 44, -3*a1^6 + 5*a1^5 + 44*a1^4 - 46*a1^3 - 188*a1^2 + 82*a1 + 156, 4*a1^6 - 7*a1^5 - 58*a1^4 + 64*a1^3 + 246*a1^2 - 112*a1 - 200, -2*a1^6 + 4*a1^5 + 27*a1^4 - 34*a1^3 - 111*a1^2 + 52*a1 + 96)" "x^7 - 3*x^6 - 12*x^5 + 33*x^4 + 40*x^3 - 98*x^2 - 16*x + 58"
"906b1" 906 453 5 1190005 "(a5, -1, -a5^4 - a5^3 + 6*a5^2 + 2*a5 - 6, a5^4 + a5^3 - 7*a5^2 - 4*a5 + 7, a5^4 - 7*a5^2 + 2*a5 + 3, -a5^4 + a5^3 + 9*a5^2 - 6*a5 - 11)" "x^5 + 3*x^4 - 6*x^3 - 18*x^2 + 8*x + 19"
"906d1" 906 453 5 5 "(a1, 1, -a1 - 1, -3, 2*a1 - 2, -1)" "x^2 + x - 1"
9.06E+003 906 453 5 1190005 "(a5, -1, -a5^4 - a5^3 + 6*a5^2 + 2*a5 - 6, a5^4 + a5^3 - 7*a5^2 - 4*a5 + 7, a5^4 - 7*a5^2 + 2*a5 + 3, -a5^4 + a5^3 + 9*a5^2 - 6*a5 - 11)" "x^5 + 3*x^4 - 6*x^3 - 18*x^2 + 8*x + 19"
"2265d1" 2265 453 5 5 "(a3, -1, a3 - 3, 1, -2*a3 + 6, -1)" "x^2 - 3*x + 1"
"2265h1" 2265 453 5 5 "(a0, 1, a0 + 3, -2*a0 - 5, 2*a0 + 6, -2*a0 + 1)" "x^2 + 3*x + 1"
"7718b1" 7718 454 5 5 "(1, 1/2*a0 - 1/2, -a0 - 3, 1/2*a0 - 3/2, 1/2*a0 - 7/2, -a0 - 1)" "x^2 + 4*x - 1"
"910a1" 910 455 5 8908883364 "(a5, -1/14*a5^6 - 5/14*a5^5 + 9/7*a5^4 + 23/7*a5^3 - 44/7*a5^2 - 73/14*a5 + 71/14, -1, 1, 3/14*a5^6 + 1/14*a5^5 - 13/7*a5^4 - 6/7*a5^3 + 13/7*a5^2 + 51/14*a5 + 53/14, -1)" "x^7 - 15*x^5 + 2*x^4 + 66*x^3 - 17*x^2 - 72*x + 19"
"910g1" 910 455 5 12197 "(a2, a2^3 + a2^2 - 4*a2 - 2, -1, -1, 2*a2^3 + 2*a2^2 - 10*a2 - 4, 1)" "x^4 + x^3 - 5*x^2 - 3*x + 1"
"1365a1" 1365 455 5 12197 "(a2, a2^3 + a2^2 - 4*a2 - 2, -1, -1, 2*a2^3 + 2*a2^2 - 10*a2 - 4, 1)" "x^4 + x^3 - 5*x^2 - 3*x + 1"
"152b1" 152 456 5 41 "(0, -1, 1/2*a4 + 1/2, -1/2*a4 - 5/2, 1/2*a4 + 5/2, 6)" "x^2 + 4*x - 37"
"456a1" 456 456 5 41 "(0, -1, 1/2*a4 + 1/2, -1/2*a4 - 5/2, 1/2*a4 + 5/2, 6)" "x^2 + 4*x - 37"
"8683a1" 8683 457 5 5 "(a0, -a0 + 1, -2, -a0, -5, a0 + 4)" "x^2 - x - 1"
"11425b1" 11425 457 5 5.65E+024 "(a1, -22/3*a1^14 - 176/3*a1^13 - 248/3*a1^12 + 1409/3*a1^11 + 4334/3*a1^10 - 488*a1^9 - 17000/3*a1^8 - 9601/3*a1^7 + 24824/3*a1^6 + 23065/3*a1^5 - 14540/3*a1^4 - 15932/3*a1^3 + 4537/3*a1^2 + 1170*a1 - 1043/3, -8/3*a1^14 - 79/3*a1^13 - 184/3*a1^12 + 502/3*a1^11 + 2524/3*a1^10 + 255*a1^9 - 9145/3*a1^8 - 9500/3*a1^7 + 12118/3*a1^6 + 18116/3*a1^5 - 5953/3*a1^4 - 11923/3*a1^3 + 1877/3*a1^2 + 878*a1 - 661/3, 5*a1^14 + 51*a1^13 + 123*a1^12 - 326*a1^11 - 1682*a1^10 - 488*a1^9 + 6221*a1^8 + 6214*a1^7 - 8724*a1^6 - 12108*a1^5 + 5002*a1^4 + 8277*a1^3 - 1832*a1^2 - 1925*a1 + 546, -7/3*a1^14 - 77/3*a1^13 - 206/3*a1^12 + 455/3*a1^11 + 2684/3*a1^10 + 373*a1^9 - 9638/3*a1^8 - 10615/3*a1^7 + 12791/3*a1^6 + 19645/3*a1^5 - 6359/3*a1^4 - 12755/3*a1^3 + 1999/3*a1^2 + 921*a1 - 680/3, 11*a1^14 + 85*a1^13 + 105*a1^12 - 706*a1^11 - 1967*a1^10 + 997*a1^9 + 7813*a1^8 + 3498*a1^7 - 11471*a1^6 - 9202*a1^5 + 6665*a1^4 + 6226*a1^3 - 1917*a1^2 - 1275*a1 + 375)" "x^15 + 10*x^14 + 27*x^13 - 43*x^12 - 324*x^11 - 310*x^10 + 917*x^9 + 1910*x^8 - 330*x^7 - 3170*x^6 - 1281*x^5 + 1917*x^4 + 1110*x^3 - 506*x^2 - 232*x + 79"
"11a1" 11 458 5 373579942325233 "(1, 1/2*a4 - 1/2, -737/37213184*a4^8 - 2839/9303296*a4^7 + 2235/581456*a4^6 + 182471/9303296*a4^5 - 3058201/18606592*a4^4 - 2930137/9303296*a4^3 + 9564613/4651648*a4^2 + 6141289/9303296*a4 - 100562645/37213184, 9607/37213184*a4^8 - 17529/9303296*a4^7 - 69413/4651648*a4^6 + 978717/9303296*a4^5 + 4591147/18606592*a4^4 - 15220991/9303296*a4^3 - 3417829/2325824*a4^2 + 60757659/9303296*a4 + 231759003/37213184, 3537/18606592*a4^8 - 5803/4651648*a4^7 - 25011/2325824*a4^6 + 269547/4651648*a4^5 + 1677941/9303296*a4^4 - 2465733/4651648*a4^3 - 1437725/1162912*a4^2 - 5250555/4651648*a4 + 69758637/18606592, -951/1162912*a4^8 + 4261/581456*a4^7 + 87345/2325824*a4^6 - 463647/1162912*a4^5 - 697761/2325824*a4^4 + 416083/72682*a4^3 - 3640185/2325824*a4^2 - 20503355/1162912*a4 + 659735/2325824)" "x^9 - 13*x^8 - 12*x^7 + 692*x^6 - 1506*x^5 - 9358*x^4 + 29476*x^3 + 22260*x^2 - 84791*x - 14093"
"459b1" 459 459 5 5 "(a10, 0, -a10 - 1, -3*a10, 2*a10 - 5, 2*a10)" "x^2 - x - 1"
4.59E+003 459 459 5 5 "(a9, 0, -a9 + 1, 3*a9, 2*a9 + 5, -2*a9)" "x^2 + x - 1"
"11a1" 11 461 5 1.75E+055 "(a3, -18411620439/79452970167808*a3^25 + 126031151319/19863242541952*a3^24 - 470141107935/79452970167808*a3^23 - 20612532444589/79452970167808*a3^22 + 36754184162415/79452970167808*a3^21 + 22764870934587/4965810635488*a3^20 - 376755454739613/39726485083904*a3^19 - 227622383281801/4965810635488*a3^18 + 2018423496755725/19863242541952*a3^17 + 11326187917526589/39726485083904*a3^16 - 26228962700185675/39726485083904*a3^15 - 45346845828395343/39726485083904*a3^14 + 217656635876641153/79452970167808*a3^13 + 233496124711315187/79452970167808*a3^12 - 291123266455105609/39726485083904*a3^11 - 186910251706688363/39726485083904*a3^10 + 491677426961778207/39726485083904*a3^9 + 343467078638191121/79452970167808*a3^8 - 992645198412472247/79452970167808*a3^7 - 150194664903861945/79452970167808*a3^6 + 33623281419871289/4965810635488*a3^5 + 13620998787985797/79452970167808*a3^4 - 15604395470821721/9931621270976*a3^3 + 2882108350923733/39726485083904*a3^2 + 4325996849510437/79452970167808*a3 - 48453363884879/79452970167808, -66708447915/9931621270976*a3^25 + 1070948233227/79452970167808*a3^24 + 22722271687947/79452970167808*a3^23 - 5520329320915/9931621270976*a3^22 - 422227565561867/79452970167808*a3^21 + 394820114143867/39726485083904*a3^20 + 1124752237877955/19863242541952*a3^19 - 2006819824054707/19863242541952*a3^18 - 15190685955581691/39726485083904*a3^17 + 3195486240749447/4965810635488*a3^16 + 33922841696430085/19863242541952*a3^15 - 53002421103439993/19863242541952*a3^14 - 101545454520251913/19863242541952*a3^13 + 576100090591804269/79452970167808*a3^12 + 101105735051602811/9931621270976*a3^11 - 503425332035968073/39726485083904*a3^10 - 130315349099232313/9931621270976*a3^9 + 539895927632019101/39726485083904*a3^8 + 823928140449728253/79452970167808*a3^7 - 81202495763665461/9931621270976*a3^6 - 358732742406467765/79452970167808*a3^5 + 183920627873384021/79452970167808*a3^4 + 127308678222668/155181582359*a3^3 - 7698956149363327/39726485083904*a3^2 - 88440564889987/39726485083904*a3 + 94898764459539/79452970167808, 134986310209/39726485083904*a3^25 - 225519826069/39726485083904*a3^24 - 369877425839/2482905317744*a3^23 + 9407163275881/39726485083904*a3^22 + 57043913829535/19863242541952*a3^21 - 21390306431563/4965810635488*a3^20 - 636385462338977/19863242541952*a3^19 + 891413207208671/19863242541952*a3^18 + 4549950049989865/19863242541952*a3^17 - 367128514188453/1241452658872*a3^16 - 21811234967951493/19863242541952*a3^15 + 3188720575098113/2482905317744*a3^14 + 142502138509697805/39726485083904*a3^13 - 73744083555671587/19863242541952*a3^12 - 157944985051604145/19863242541952*a3^11 + 69929455528581719/9931621270976*a3^10 + 231857784944446415/19863242541952*a3^9 - 333506203840142317/39726485083904*a3^8 - 213927999988339131/19863242541952*a3^7 + 229261867508367987/39726485083904*a3^6 + 223507617872364169/39726485083904*a3^5 - 38233185025212671/19863242541952*a3^4 - 12957876382463147/9931621270976*a3^3 + 4327660884127357/19863242541952*a3^2 + 1957652666438971/39726485083904*a3 - 67557870131361/19863242541952, -654486464095/79452970167808*a3^25 + 2148325256257/79452970167808*a3^24 + 6496572109073/19863242541952*a3^23 - 88816208595081/79452970167808*a3^22 - 220320799354331/39726485083904*a3^21 + 99425645318785/4965810635488*a3^20 + 518644303261825/9931621270976*a3^19 - 8090481763598131/39726485083904*a3^18 - 5883528544434441/19863242541952*a3^17 + 12867741258759761/9931621270976*a3^16 + 10094087718921487/9931621270976*a3^15 - 26578370375021325/4965810635488*a3^14 - 153557123852975485/79452970167808*a3^13 + 286616405147251015/19863242541952*a3^12 + 48565206237547849/39726485083904*a3^11 - 246876899706545611/9931621270976*a3^10 + 90448954185759211/39726485083904*a3^9 + 2066518903949019575/79452970167808*a3^8 - 3069536255204099/620726329436*a3^7 - 1194265712543343851/79452970167808*a3^6 + 264312392250545123/79452970167808*a3^5 + 39697453469731843/9931621270976*a3^4 - 31432328321029291/39726485083904*a3^3 - 11618431809321535/39726485083904*a3^2 + 1892099576957565/79452970167808*a3 + 104525183946031/19863242541952, 255589912167/19863242541952*a3^25 - 1475482310713/39726485083904*a3^24 - 20761175829129/39726485083904*a3^23 + 30491050325005/19863242541952*a3^22 + 363366019136511/39726485083904*a3^21 - 272988162097069/9931621270976*a3^20 - 1792107785174111/19863242541952*a3^19 + 5551313599531537/19863242541952*a3^18 + 1366728673015023/2482905317744*a3^17 - 35293777849825571/19863242541952*a3^16 - 42589410541860253/19863242541952*a3^15 + 145601539668576133/19863242541952*a3^14 + 52711935399555833/9931621270976*a3^13 - 782702040196782319/39726485083904*a3^12 - 39933939419955829/4965810635488*a3^11 + 669385327624253147/19863242541952*a3^10 + 68705267787917029/9931621270976*a3^9 - 85971741876398599/2482905317744*a3^8 - 122684280458123357/39726485083904*a3^7 + 188567793908914639/9931621270976*a3^6 + 35108008136135037/39726485083904*a3^5 - 165241435990433233/39726485083904*a3^4 - 5182356150084189/19863242541952*a3^3 - 46910812983423/4965810635488*a3^2 + 733271797518791/19863242541952*a3 + 170585471510307/39726485083904)" "x^26 - 3*x^25 - 41*x^24 + 126*x^23 + 726*x^22 - 2303*x^21 - 7266*x^20 + 24054*x^19 + 45144*x^18 - 158550*x^17 - 179824*x^16 + 687620*x^15 + 456511*x^14 - 1985932*x^13 - 703693*x^12 + 3785104*x^11 + 571532*x^10 - 4624305*x^9 - 111938*x^8 + 3430214*x^7 - 156745*x^6 - 1399829*x^5 + 108715*x^4 + 249906*x^3 - 21297*x^2 - 6102*x + 223"
"2766a1" 2766 461 5 5 "(a0, a0 - 1, 2*a0 + 1, -2*a0 - 2, -2*a0 - 1, -1)" "x^2 + x - 1"
"6019a1" 6019 463 5 9.67E+044 "(a1, 88081079557/2192028849037*a1^21 - 14422074891/115369939423*a1^20 - 2628417572230/2192028849037*a1^19 + 8497220344229/2192028849037*a1^18 + 32189971934528/2192028849037*a1^17 - 109880752912386/2192028849037*a1^16 - 208266773801349/2192028849037*a1^15 + 771496154587641/2192028849037*a1^14 + 755393757720071/2192028849037*a1^13 - 3202984347030693/2192028849037*a1^12 - 1452100823408494/2192028849037*a1^11 + 8005041723954874/2192028849037*a1^10 + 999239360848340/2192028849037*a1^9 - 11686683734002023/2192028849037*a1^8 + 993848469210485/2192028849037*a1^7 + 9112869445104238/2192028849037*a1^6 - 1892870464522139/2192028849037*a1^5 - 162616003952727/115369939423*a1^4 + 771221864284476/2192028849037*a1^3 + 13552403923130/115369939423*a1^2 - 57299624398580/2192028849037*a1 - 4959079589235/2192028849037, -97598814399/2192028849037*a1^21 - 12060154791/115369939423*a1^20 + 6158276837549/2192028849037*a1^19 - 2974529732687/2192028849037*a1^18 - 107461690992292/2192028849037*a1^17 + 138090235403933/2192028849037*a1^16 + 872349945365154/2192028849037*a1^15 - 1503806189886096/2192028849037*a1^14 - 3795322820045360/2192028849037*a1^13 + 7940622433385189/2192028849037*a1^12 + 8965478486377590/2192028849037*a1^11 - 23099866942251974/2192028849037*a1^10 - 10123163282652780/2192028849037*a1^9 + 37400061934068795/2192028849037*a1^8 + 1939259022320828/2192028849037*a1^7 - 31536458444330130/2192028849037*a1^6 + 5092393651938517/2192028849037*a1^5 + 616389647891872/115369939423*a1^4 - 2812510092495637/2192028849037*a1^3 - 71953936327624/115369939423*a1^2 + 225193380521624/2192028849037*a1 + 56904893671196/2192028849037, -222625289944/2192028849037*a1^21 + 104367160850/115369939423*a1^20 - 901430985342/2192028849037*a1^19 - 38899721488001/2192028849037*a1^18 + 88315032444433/2192028849037*a1^17 + 278295627293925/2192028849037*a1^16 - 1026555612083387/2192028849037*a1^15 - 739309575040831/2192028849037*a1^14 + 5523724445972888/2192028849037*a1^13 - 823645537379160/2192028849037*a1^12 - 16093317475926696/2192028849037*a1^11 + 9581679579189143/2192028849037*a1^10 + 25700475951367957/2192028849037*a1^9 - 22473039772819819/2192028849037*a1^8 - 20833485990737514/2192028849037*a1^7 + 22689966688318300/2192028849037*a1^6 + 6991023755631008/2192028849037*a1^5 - 490147675928233/115369939423*a1^4 - 617237644097082/2192028849037*a1^3 + 58642933476640/115369939423*a1^2 + 21782425702458/2192028849037*a1 - 26555072225671/2192028849037, -377503382094/2192028849037*a1^21 + 161920021237/115369939423*a1^20 + 264598916261/2192028849037*a1^19 - 62513375389721/2192028849037*a1^18 + 109084437083606/2192028849037*a1^17 + 482375572081841/2192028849037*a1^16 - 1363387321551088/2192028849037*a1^15 - 1635812937585184/2192028849037*a1^14 + 7518281570385921/2192028849037*a1^13 + 1244080279270289/2192028849037*a1^12 - 22160897233422553/2192028849037*a1^11 + 7367200619029801/2192028849037*a1^10 + 35571494323123671/2192028849037*a1^9 - 21980826006363710/2192028849037*a1^8 - 28767100539855269/2192028849037*a1^7 + 23077657560880722/2192028849037*a1^6 + 9419865419517220/2192028849037*a1^5 - 470749222297896/115369939423*a1^4 - 713138500460331/2192028849037*a1^3 + 42194862635974/115369939423*a1^2 + 44460554853556/2192028849037*a1 - 5346927633707/2192028849037, -185526721264/2192028849037*a1^21 + 46321696138/115369939423*a1^20 + 3478976124052/2192028849037*a1^19 - 20528968497307/2192028849037*a1^18 - 23280988978840/2192028849037*a1^17 + 198754862672365/2192028849037*a1^16 + 53710403893317/2192028849037*a1^15 - 1039476970694517/2192028849037*a1^14 + 90359649147676/2192028849037*a1^13 + 3199445832292557/2192028849037*a1^12 - 704435592600010/2192028849037*a1^11 - 5940627969286164/2192028849037*a1^10 + 1288720310058817/2192028849037*a1^9 + 6649399195956646/2192028849037*a1^8 - 761357837048641/2192028849037*a1^7 - 4500790243338669/2192028849037*a1^6 - 143120577976740/2192028849037*a1^5 + 96904157671244/115369939423*a1^4 + 161930939692913/2192028849037*a1^3 - 19386056764491/115369939423*a1^2 + 4468507737272/2192028849037*a1 + 18152844079943/2192028849037)" "x^22 - 8*x^21 - x^20 + 161*x^19 - 281*x^18 - 1216*x^17 + 3523*x^16 + 3859*x^15 - 19383*x^14 - 1030*x^13 + 56835*x^12 - 26406*x^11 - 90387*x^10 + 71356*x^9 + 71796*x^8 - 76057*x^7 - 22452*x^6 + 32959*x^5 + 1404*x^4 - 4772*x^3 - 174*x^2 + 237*x + 25"
"1392c1" 1392 464 5 568 "(0, a9, -a9^2 + 6, 0, -2*a9^2 - a9 + 8, a9^2 + 2*a9 - 2)" "x^3 + 2*x^2 - 5*x - 8"
"11a1" 11 465 5 148 "(a5, 1, 1, -a5 + 1, 2, -2*a5^2 + 3*a5 + 3)" "x^3 - x^2 - 3*x + 1"
"155c1" 155 465 5 148 "(a6, 1, -1, -2*a6^2 + 3*a6 + 5, -2*a6^2 + 2*a6 + 6, -a6 - 1)" "x^3 - 3*x^2 - x + 5"
"466a1" 466 466 5 169 "(-1, a2 + 1, a2^2 + 3*a2 + 1, 2*a2^2 + 5*a2 - 2, -a2^2 - 2*a2 + 5, -2*a2^2 - 4*a2 + 3)" "x^3 + 5*x^2 + 4*x - 5"
"2330a1" 2330 466 5 169 "(-1, a2 + 1, a2^2 + 3*a2 + 1, 2*a2^2 + 5*a2 - 2, -a2^2 - 2*a2 + 5, -2*a2^2 - 4*a2 + 3)" "x^3 + 5*x^2 + 4*x - 5"
6.99E+004 6990 466 5 169 "(-1, a2 + 1, a2^2 + 3*a2 + 1, 2*a2^2 + 5*a2 - 2, -a2^2 - 2*a2 + 5, -2*a2^2 - 4*a2 + 3)" "x^3 + 5*x^2 + 4*x - 5"
"934b1" 934 467 5 3.24E+016 "(a1, -3/7*a1^11 - 10/7*a1^10 + 4*a1^9 + 103/7*a1^8 - 97/7*a1^7 - 387/7*a1^6 + 155/7*a1^5 + 633/7*a1^4 - 114/7*a1^3 - 417/7*a1^2 + 40/7*a1 + 81/7, a1^6 + 3*a1^5 - 3*a1^4 - 13*a1^3 - 3*a1^2 + 8*a1 + 2, 1/7*a1^11 + 1/7*a1^10 - 3*a1^9 - 25/7*a1^8 + 149/7*a1^7 + 192/7*a1^6 - 425/7*a1^5 - 554/7*a1^4 + 458/7*a1^3 + 545/7*a1^2 - 172/7*a1 - 146/7, 4/7*a1^11 + 11/7*a1^10 - 7*a1^9 - 135/7*a1^8 + 204/7*a1^7 + 544/7*a1^6 - 377/7*a1^5 - 858/7*a1^4 + 355/7*a1^3 + 528/7*a1^2 - 128/7*a1 - 108/7, -2/7*a1^11 - 16/7*a1^10 - 3*a1^9 + 113/7*a1^8 + 276/7*a1^7 - 188/7*a1^6 - 830/7*a1^5 - 103/7*a1^4 + 792/7*a1^3 + 247/7*a1^2 - 237/7*a1 - 93/7)" "x^12 + 5*x^11 - 3*x^10 - 46*x^9 - 28*x^8 + 144*x^7 + 140*x^6 - 182*x^5 - 197*x^4 + 102*x^3 + 104*x^2 - 22*x - 17"
"67a1" 67 469 5 148 "(a5, -a5^2 + 2, -3, 1, -4, -2*a5 + 1)" "x^3 + x^2 - 3*x - 1"
"235c1" 235 470 5 837 "(-1, -1/2*a7 - 1/2, -1, -1/4*a7^2 - a7 + 17/4, -1/4*a7^2 - 1/2*a7 + 15/4, 1/4*a7^2 - 13/4)" "x^3 + 3*x^2 - 21*x - 15"
"470b1" 470 470 5 21 "(-1, -1/2*a6 - 1/2, 1, 4, -1/2*a6 - 7/2, a6 + 3)" "x^2 + 4*x - 17"
"470d1" 470 470 5 1373 "(1, 1/2*a9 - 1/2, -1, 0, -1/4*a9^2 + 1/2*a9 + 31/4, -a9 + 3)" "x^3 - 9*x^2 - 5*x + 109"
"8930g1" 8930 470 5 21 "(-1, -1/2*a6 - 1/2, 1, 4, -1/2*a6 - 7/2, a6 + 3)" "x^2 + 4*x - 17"
"4710i1" 4710 471 5 5 "(a1, 1, -1, -3, -3*a1 - 2, -a1 - 2)" "x^2 + x - 1"
"6123c1" 6123 471 5 5.66E+020 "(a4, 1, a4^11 - 21*a4^9 + a4^8 + 162*a4^7 - 14*a4^6 - 553*a4^5 + 64*a4^4 + 776*a4^3 - 100*a4^2 - 285*a4 - 25, 1/2*a4^11 + 1/2*a4^10 - 19/2*a4^9 - 7*a4^8 + 68*a4^7 + 32*a4^6 - 222*a4^5 - 49*a4^4 + 615/2*a4^3 + 19/2*a4^2 - 219/2*a4 - 16, a4^10 + 3*a4^9 - 14*a4^8 - 42*a4^7 + 66*a4^6 + 194*a4^5 - 120*a4^4 - 322*a4^3 + 75*a4^2 + 137*a4 + 18, -a4^11 - 3/2*a4^10 + 35/2*a4^9 + 41/2*a4^8 - 115*a4^7 - 90*a4^6 + 348*a4^5 + 128*a4^4 - 462*a4^3 - 33/2*a4^2 + 317/2*a4 + 37/2)" "x^12 + x^11 - 20*x^10 - 17*x^9 + 149*x^8 + 106*x^7 - 500*x^6 - 294*x^5 + 711*x^4 + 349*x^3 - 290*x^2 - 173*x - 15"
"472a1" 472 472 5 6809 "(0, -1/2*a5, -1/8*a5^3 + 1/4*a5^2 + 3*a5 - 1, 1/4*a5^3 - 3/4*a5^2 - 4*a5, 1/2*a5^2 - a5 - 6, -1/4*a5^3 + 1/2*a5^2 + 4*a5 - 2)" "x^4 - 2*x^3 - 20*x^2 + 16"
"11a1" 11 473 5 5 "(a2, -2*a2, 2*a2, -2*a2 - 1, 1, -6)" "x^2 - x - 1"
"43a1" 43 473 5 5 "(a1, -2, -2*a1 + 2, 2*a1 - 1, -1, -4*a1 + 2)" "x^2 - x - 1"
"158b1" 158 474 5 5 "(-1, 1, -1/2*a3 - 1, -3/2*a3 - 8, 4, 2*a3 + 8)" "x^2 + 10*x + 20"
"158d1" 158 474 5 29 "(-1, -1, a2 - 1, a2, 0, 0)" "x^2 - x - 7"
"3318b1" 3318 474 5 29 "(-1, -1, a2 - 1, a2, 0, 0)" "x^2 - x - 7"
"11a1" 11 475 5 169 "(a6, a6^2 - a6 - 2, 0, -a6^2 + a6 + 4, -a6^2 + a6 + 3, -3*a6^2 + 11)" "x^3 - 2*x^2 - 3*x + 5"
"19a1" 19 475 5 169 "(a6, a6^2 - a6 - 2, 0, -a6^2 + a6 + 4, -a6^2 + a6 + 3, -3*a6^2 + 11)" "x^3 - 2*x^2 - 3*x + 5"
"50a1" 50 475 5 148 "(a5, a5^2 - 3, 0, -2*a5^2 - 2*a5 + 4, 2*a5 - 2, -a5^2 - 2*a5 - 1)" "x^3 + x^2 - 3*x - 1"
"50a1" 50 475 5 169 "(a4, -a4^2 - a4 + 2, 0, a4^2 + a4 - 4, -a4^2 - a4 + 3, 3*a4^2 - 11)" "x^3 + 2*x^2 - 3*x - 5"
"475c1" 475 475 5 169 "(a6, a6^2 - a6 - 2, 0, -a6^2 + a6 + 4, -a6^2 + a6 + 3, -3*a6^2 + 11)" "x^3 - 2*x^2 - 3*x + 5"
"475b1" 475 475 5 169 "(a4, -a4^2 - a4 + 2, 0, a4^2 + a4 - 4, -a4^2 - a4 + 3, 3*a4^2 - 11)" "x^3 + 2*x^2 - 3*x - 5"
"475a1" 475 475 5 169 "(a4, -a4^2 - a4 + 2, 0, a4^2 + a4 - 4, -a4^2 - a4 + 3, 3*a4^2 - 11)" "x^3 + 2*x^2 - 3*x - 5"
"1425c1" 1425 475 5 11344 "(a8, -a8^3 + 5*a8 + 2, 0, 2*a8^2 - 2*a8 - 8, 2*a8^2 - 2*a8 - 6, a8^3 - 2*a8^2 - 3*a8 + 4)" "x^4 - 2*x^3 - 6*x^2 + 8*x + 9"
"5236b1" 5236 476 5 5 "(0, -a1, a1 - 1, -1, 2*a1 - 4, 2*a1 - 2)" "x^2 - x - 1"
"954i1" 954 477 5 148 "(a1, 0, -a1^2 + 3, a1^2 - 1, -a1^2 + 2*a1 + 3, 1)" "x^3 - x^2 - 3*x + 1"
2.39E+004 2385 477 5 1054013 "(a5, 0, -a5^3 + a5^2 + 6*a5 - 4, 1/3*a5^4 - 4/3*a5^3 - 2*a5^2 + 7*a5 + 4/3, 2/3*a5^4 - 2/3*a5^3 - 4*a5^2 + 2*a5 + 2/3, 2/3*a5^4 + 1/3*a5^3 - 5*a5^2 - 2*a5 + 20/3)" "x^5 - 10*x^3 + 22*x - 5"
"11a1" 11 478 5 398885 "(1, a2 - 1, -a2^4 + 5*a2^3 - 3*a2^2 - 8*a2 + 1, -a2^2 + 2*a2 + 3, a2^4 - 5*a2^3 + 3*a2^2 + 7*a2 + 2, 2*a2^4 - 9*a2^3 + 2*a2^2 + 17*a2 + 4)" "x^5 - 7*x^4 + 12*x^3 + 7*x^2 - 20*x - 5"
"3346a1" 3346 478 5 4205 "(-1, -1/2*a0 - 1/2, 1/8*a0^3 - 1/8*a0^2 - 21/8*a0 + 5/8, -1/4*a0^3 + 23/4*a0 - 1/2, 3/8*a0^3 + 1/8*a0^2 - 59/8*a0 - 17/8, -3/8*a0^3 + 1/8*a0^2 + 67/8*a0 - 17/8)" "x^4 - 22*x^2 + 5"
"2874d1" 2874 479 5 2.04E+075 "(a1, 198216323844251155370812651657245291351085/43299557505812608642127324159129260658424597*a1^31 - 527262018744456168734627495094057571874963/43299557505812608642127324159129260658424597*a1^30 - 3269267463167206600310449986015992717825570/14433185835270869547375774719709753552808199*a1^29 + 8783363560610536742028210191722332009985185/14433185835270869547375774719709753552808199*a1^28 + 72091107727010571986545768059200666397634880/14433185835270869547375774719709753552808199*a1^27 - 587966872710785340988011333191219676859029709/43299557505812608642127324159129260658424597*a1^26 - 2805844440959715393074370919286238285532116680/43299557505812608642127324159129260658424597*a1^25 + 2579161786528929541900780471924131834172738430/14433185835270869547375774719709753552808199*a1^24 + 23816987858008910674483034048442953850952305932/43299557505812608642127324159129260658424597*a1^23 - 22277273870417024894032348722193938899166420864/14433185835270869547375774719709753552808199*a1^22 - 139162963789461877968722828140235278673826868144/43299557505812608642127324159129260658424597*a1^21 + 133022822400443175458594516614799155555698262280/14433185835270869547375774719709753552808199*a1^20 + 191084057474817690746269884408910209228491025073/14433185835270869547375774719709753552808199*a1^19 - 1690313821945986202060056563943062654527136325272/43299557505812608642127324159129260658424597*a1^18 - 1675300167317306554031680458394364544234093411554/43299557505812608642127324159129260658424597*a1^17 + 1709188455820593808968118936859115191095190090116/14433185835270869547375774719709753552808199*a1^16 + 3440530934571211254091178069316038711273289730436/43299557505812608642127324159129260658424597*a1^15 - 11105287494581330555545676102793083259906831689048/43299557505812608642127324159129260658424597*a1^14 - 1606276840782546886349081037491926237454170640060/14433185835270869547375774719709753552808199*a1^13 + 5633528406338676725097678437464862622002145479428/14433185835270869547375774719709753552808199*a1^12 + 1433520523110252466932311539165352519320479879712/14433185835270869547375774719709753552808199*a1^11 - 17499814484748394560573090960305859169015160955176/43299557505812608642127324159129260658424597*a1^10 - 2042688125548113564476827378759912830779328433100/43299557505812608642127324159129260658424597*a1^9 + 11642930998220421297062796634836397882117642129352/43299557505812608642127324159129260658424597*a1^8 + 135346740834226068352835548425273242516987412332/43299557505812608642127324159129260658424597*a1^7 - 4492019503107973902340901087088674074117118754464/43299557505812608642127324159129260658424597*a1^6 + 281321144041777488669154718220283360147485155431/43299557505812608642127324159129260658424597*a1^5 + 825033826195771971670948843231884699322885943804/43299557505812608642127324159129260658424597*a1^4 - 79976725089771314707963267668186607363236517181/43299557505812608642127324159129260658424597*a1^3 - 49044793817257638525726055325200131097551387488/43299557505812608642127324159129260658424597*a1^2 + 2225578265922128883854147518353009301514501341/14433185835270869547375774719709753552808199*a1 - 34279945836513634598474685534464542183271984/43299557505812608642127324159129260658424597, 1030105604896516974940885442342379089765492/129898672517437825926381972477387781975273791*a1^31 - 3338000639463150696895674393852488296302298/129898672517437825926381972477387781975273791*a1^30 - 16809773598447233039514689841995334797159890/43299557505812608642127324159129260658424597*a1^29 + 18601988336250323542018533520937409372944528/14433185835270869547375774719709753552808199*a1^28 + 366016755552045253656234456644351984829577258/43299557505812608642127324159129260658424597*a1^27 - 3750686606524400969987598660826590583610644712/129898672517437825926381972477387781975273791*a1^26 - 14032365504015299710711177186834310656280776876/129898672517437825926381972477387781975273791*a1^25 + 16525545283604625610798580201763170349750942127/43299557505812608642127324159129260658424597*a1^24 + 116973049242727452048649425619293532752323463715/129898672517437825926381972477387781975273791*a1^23 - 143427041451667884702759290449416787851104673731/43299557505812608642127324159129260658424597*a1^22 - 668641510061650817104793525941426808819109264827/129898672517437825926381972477387781975273791*a1^21 + 286953501328688630584887835055266442917999699183/14433185835270869547375774719709753552808199*a1^20 + 893726182228643947546956659346157689341743137455/43299557505812608642127324159129260658424597*a1^19 - 10997779365948658490927696482207501028395154681617/129898672517437825926381972477387781975273791*a1^18 - 7575360009401530379828330698820606453620559620879/129898672517437825926381972477387781975273791*a1^17 + 11180624055833616018859413367516208414426907762434/43299557505812608642127324159129260658424597*a1^16 + 14883032656579732150049775217028269497541680049933/129898672517437825926381972477387781975273791*a1^15 - 73017443321641907979369233529520666070507300508769/129898672517437825926381972477387781975273791*a1^14 - 6519775656747916934640235041114948744499123300301/43299557505812608642127324159129260658424597*a1^13 + 37206215526891906348146795529043566203451820514101/43299557505812608642127324159129260658424597*a1^12 + 1735172592377708019501731657505782679094080082709/14433185835270869547375774719709753552808199*a1^11 - 115964646863067456762011068730668892524304436220009/129898672517437825926381972477387781975273791*a1^10 - 5371010664578784005059237228169897864834237463640/129898672517437825926381972477387781975273791*a1^9 + 77286029066713307088989388520670730962035104264283/129898672517437825926381972477387781975273791*a1^8 - 1601787848097641684775938620818224565657311285681/129898672517437825926381972477387781975273791*a1^7 - 29795466629630781985081882843302958989415910209093/129898672517437825926381972477387781975273791*a1^6 + 1869294067690646598011248460941001048571044983943/129898672517437825926381972477387781975273791*a1^5 + 5432979658478713378478506089123610568263759019401/129898672517437825926381972477387781975273791*a1^4 - 396715575562450542816245018067676245145734487975/129898672517437825926381972477387781975273791*a1^3 - 305141344630307815215516650185743233364727682527/129898672517437825926381972477387781975273791*a1^2 + 12150931128699949156204049238578990519021388799/43299557505812608642127324159129260658424597*a1 - 123662975306465908677471551590750265568588037/129898672517437825926381972477387781975273791, 801259027329361249903787877108751888497997/129898672517437825926381972477387781975273791*a1^31 - 2212110193254191442802527666239733105916901/129898672517437825926381972477387781975273791*a1^30 - 12970720045678394069453118949143911515328065/43299557505812608642127324159129260658424597*a1^29 + 36436134352636601764594543534131482634829438/43299557505812608642127324159129260658424597*a1^28 + 93213621451489031359251406517446828205245966/14433185835270869547375774719709753552808199*a1^27 - 2407400330763162442595579841868396639326211612/129898672517437825926381972477387781975273791*a1^26 - 10588805793362244253541032310976507625896290234/129898672517437825926381972477387781975273791*a1^25 + 3467273086349245247737001332225491763864296239/14433185835270869547375774719709753552808199*a1^24 + 86886880376627200447687605316234650040507671377/129898672517437825926381972477387781975273791*a1^23 - 88289543788536278370398409674981041046796577937/43299557505812608642127324159129260658424597*a1^22 - 486608425792975444768795347514913448373766793757/129898672517437825926381972477387781975273791*a1^21 + 172233252284257683204843714963789444678332952137/14433185835270869547375774719709753552808199*a1^20 + 632958165862484390606455465330416477128849529745/43299557505812608642127324159129260658424597*a1^19 - 6415984060960419007288556905381262029055561200499/129898672517437825926381972477387781975273791*a1^18 - 5167404468041688881062643019244196132953086213461/129898672517437825926381972477387781975273791*a1^17 + 6319283769260186857951894765755212052506984806379/43299557505812608642127324159129260658424597*a1^16 + 9608999515095219701688777193349392605176163258875/129898672517437825926381972477387781975273791*a1^15 - 39854561477787729525402137329919501863095510200240/129898672517437825926381972477387781975273791*a1^14 - 1281722024160728080772415144573358230080849634649/14433185835270869547375774719709753552808199*a1^13 + 6517383581282194152177549224826182894317221981421/14433185835270869547375774719709753552808199*a1^12 + 2522247986302207801615315837860852594899899523116/43299557505812608642127324159129260658424597*a1^11 - 58514850555939360596044895634248498542612755411623/129898672517437825926381972477387781975273791*a1^10 - 600388715741708152656566734762718212390091573291/129898672517437825926381972477387781975273791*a1^9 + 37377480309128049725261550637212223571623128260045/129898672517437825926381972477387781975273791*a1^8 - 2848576115404549775316459164417928949081019662081/129898672517437825926381972477387781975273791*a1^7 - 13823819526421297117043941059239772280333274608604/129898672517437825926381972477387781975273791*a1^6 + 1852473852914895531094578031397640531934689841552/129898672517437825926381972477387781975273791*a1^5 + 2448147884104325259927377151077273906620910937614/129898672517437825926381972477387781975273791*a1^4 - 386656205343345219491166592482106050304815697577/129898672517437825926381972477387781975273791*a1^3 - 142586949470931281851176912019996895122419404519/129898672517437825926381972477387781975273791*a1^2 + 2918284631757737480939637442532637846869816863/14433185835270869547375774719709753552808199*a1 - 299607432643559930105134127554890294037485245/129898672517437825926381972477387781975273791, -956304044143028931596094345135445327497241/129898672517437825926381972477387781975273791*a1^31 + 2331245075463355755349987836841899595729424/129898672517437825926381972477387781975273791*a1^30 + 15783904153743931751979743048426645713226024/43299557505812608642127324159129260658424597*a1^29 - 12840751038658628924677979616252887323231924/14433185835270869547375774719709753552808199*a1^28 - 348502502605368386150788414321920950598539285/43299557505812608642127324159129260658424597*a1^27 + 2554655298488908201998720926277036795601511323/129898672517437825926381972477387781975273791*a1^26 + 13593740407953540162903028911140577880439566280/129898672517437825926381972477387781975273791*a1^25 - 11084877246860114266907637902307737554619695244/43299557505812608642127324159129260658424597*a1^24 - 115803750482275172926833809732753748328886711678/129898672517437825926381972477387781975273791*a1^23 + 94542255602979062205188919382723953480980764978/43299557505812608642127324159129260658424597*a1^22 + 680584373506038024065652701047650214609979398267/129898672517437825926381972477387781975273791*a1^21 - 185441016238982431782770655318555989460341356770/14433185835270869547375774719709753552808199*a1^20 - 943319410583361409299238237603846936028576422696/43299557505812608642127324159129260658424597*a1^19 + 6950449995215933843532581719371999561173425210130/129898672517437825926381972477387781975273791*a1^18 + 8398555939473694993943996038473372118602195963746/129898672517437825926381972477387781975273791*a1^17 - 6892396298667906542658572587778835517449665695174/43299557505812608642127324159129260658424597*a1^16 - 17702657815135331176778451207749223519228495391622/129898672517437825926381972477387781975273791*a1^15 + 43794751692383590285004897380157632521457878214238/129898672517437825926381972477387781975273791*a1^14 + 8661117880802518176998870831802426775979191194730/43299557505812608642127324159129260658424597*a1^13 - 21660212372907714525276051255480968643402224129510/43299557505812608642127324159129260658424597*a1^12 - 2831866952733104339882188419297498882923906967794/14433185835270869547375774719709753552808199*a1^11 + 65390351803930844379326723769330215262387361009142/129898672517437825926381972477387781975273791*a1^10 + 15414212021849981067117240232980653967790576555262/129898672517437825926381972477387781975273791*a1^9 - 42142292571114409038888888882275745996808608513398/129898672517437825926381972477387781975273791*a1^8 - 4797467941599280614177966052784425261466944289918/129898672517437825926381972477387781975273791*a1^7 + 15693912695705604401177461098407058257445146404211/129898672517437825926381972477387781975273791*a1^6 + 370164994518558540680057428906624526954488574798/129898672517437825926381972477387781975273791*a1^5 - 2762836233555288364550385371199489076196913354521/129898672517437825926381972477387781975273791*a1^4 + 84569877836460012207836518908116591195347822094/129898672517437825926381972477387781975273791*a1^3 + 151104398651229620543507538484533030872331879641/129898672517437825926381972477387781975273791*a1^2 - 5905156480330247194829941304881007224613313923/43299557505812608642127324159129260658424597*a1 + 194899180751749453867592062818400877172578636/129898672517437825926381972477387781975273791, 58188618545571803783568491802535971743794/14433185835270869547375774719709753552808199*a1^31 - 150809030163387102949436486303774817396025/14433185835270869547375774719709753552808199*a1^30 - 2908743622461582132032533875465966966120625/14433185835270869547375774719709753552808199*a1^29 + 7613734808747537463392476405332110771558146/14433185835270869547375774719709753552808199*a1^28 + 64851079040538263827567893739560431457158595/14433185835270869547375774719709753552808199*a1^27 - 171838941486615470119502826220417341753592642/14433185835270869547375774719709753552808199*a1^26 - 851180043391102972994609872056410377704186891/14433185835270869547375774719709753552808199*a1^25 + 2290372998908861355121467466046288358446241804/14433185835270869547375774719709753552808199*a1^24 + 7311031362595295424241943141393792456599531406/14433185835270869547375774719709753552808199*a1^23 - 20065379690898365985934403198790264858586308062/14433185835270869547375774719709753552808199*a1^22 - 43203191871830338376693319163187216412161779692/14433185835270869547375774719709753552808199*a1^21 + 121704917726230363950622481468631547942685859752/14433185835270869547375774719709753552808199*a1^20 + 179647732494511621902914609036789045428094436940/14433185835270869547375774719709753552808199*a1^19 - 524399006187229759319431415215463719076801354258/14433185835270869547375774719709753552808199*a1^18 - 527688864027386414753167496884947708054642896440/14433185835270869547375774719709753552808199*a1^17 + 1620526261587613183106183638818071402666516942418/14433185835270869547375774719709753552808199*a1^16 + 1079406501742729187622691485077880419931530606368/14433185835270869547375774719709753552808199*a1^15 - 3580248531144014149610377382226252730463795151834/14433185835270869547375774719709753552808199*a1^14 - 1476206044355491328161360300084324333594534045700/14433185835270869547375774719709753552808199*a1^13 + 5565424551719405882015105807876250550787729328864/14433185835270869547375774719709753552808199*a1^12 + 1220042714484278306911238280154010372743464151178/14433185835270869547375774719709753552808199*a1^11 - 5894641641658527574359458860919696782426810797298/14433185835270869547375774719709753552808199*a1^10 - 419068879191790244310347655996918440632703574954/14433185835270869547375774719709753552808199*a1^9 + 4018689891601996028050918497952786187834313619574/14433185835270869547375774719709753552808199*a1^8 - 163230945483384383105899067833994552576836712638/14433185835270869547375774719709753552808199*a1^7 - 1593001355939197687045579211433602912113388771652/14433185835270869547375774719709753552808199*a1^6 + 186798245694394889422014678832781536591135889121/14433185835270869547375774719709753552808199*a1^5 + 301945186373200029474626170062396086904616833265/14433185835270869547375774719709753552808199*a1^4 - 45686249262088033908799832792839381045905611754/14433185835270869547375774719709753552808199*a1^3 - 18649648269447185709368819151428703485947561747/14433185835270869547375774719709753552808199*a1^2 + 3618204397832418418978272388912261486034041752/14433185835270869547375774719709753552808199*a1 - 30062768838039479865214492062959417627446229/14433185835270869547375774719709753552808199)" "x^32 - 3*x^31 - 49*x^30 + 150*x^29 + 1068*x^28 - 3349*x^27 - 13663*x^26 + 44102*x^25 + 114017*x^24 - 381227*x^23 - 652363*x^22 + 2278423*x^21 + 2617329*x^20 - 9659993*x^19 - 7391907*x^18 + 29333039*x^17 + 14485613*x^16 - 63589225*x^15 - 18892591*x^14 + 96842403*x^13 + 14744217*x^12 - 100301909*x^11 - 4507611*x^10 + 66698107*x^9 - 2210691*x^8 - 25684834*x^7 + 2153748*x^6 + 4689118*x^5 - 470371*x^4 - 268239*x^3 + 38414*x^2 - 242*x - 7"
"35925d1" 35925 479 5 2.04E+075 "(a1, 198216323844251155370812651657245291351085/43299557505812608642127324159129260658424597*a1^31 - 527262018744456168734627495094057571874963/43299557505812608642127324159129260658424597*a1^30 - 3269267463167206600310449986015992717825570/14433185835270869547375774719709753552808199*a1^29 + 8783363560610536742028210191722332009985185/14433185835270869547375774719709753552808199*a1^28 + 72091107727010571986545768059200666397634880/14433185835270869547375774719709753552808199*a1^27 - 587966872710785340988011333191219676859029709/43299557505812608642127324159129260658424597*a1^26 - 2805844440959715393074370919286238285532116680/43299557505812608642127324159129260658424597*a1^25 + 2579161786528929541900780471924131834172738430/14433185835270869547375774719709753552808199*a1^24 + 23816987858008910674483034048442953850952305932/43299557505812608642127324159129260658424597*a1^23 - 22277273870417024894032348722193938899166420864/14433185835270869547375774719709753552808199*a1^22 - 139162963789461877968722828140235278673826868144/43299557505812608642127324159129260658424597*a1^21 + 133022822400443175458594516614799155555698262280/14433185835270869547375774719709753552808199*a1^20 + 191084057474817690746269884408910209228491025073/14433185835270869547375774719709753552808199*a1^19 - 1690313821945986202060056563943062654527136325272/43299557505812608642127324159129260658424597*a1^18 - 1675300167317306554031680458394364544234093411554/43299557505812608642127324159129260658424597*a1^17 + 1709188455820593808968118936859115191095190090116/14433185835270869547375774719709753552808199*a1^16 + 3440530934571211254091178069316038711273289730436/43299557505812608642127324159129260658424597*a1^15 - 11105287494581330555545676102793083259906831689048/43299557505812608642127324159129260658424597*a1^14 - 1606276840782546886349081037491926237454170640060/14433185835270869547375774719709753552808199*a1^13 + 5633528406338676725097678437464862622002145479428/14433185835270869547375774719709753552808199*a1^12 + 1433520523110252466932311539165352519320479879712/14433185835270869547375774719709753552808199*a1^11 - 17499814484748394560573090960305859169015160955176/43299557505812608642127324159129260658424597*a1^10 - 2042688125548113564476827378759912830779328433100/43299557505812608642127324159129260658424597*a1^9 + 11642930998220421297062796634836397882117642129352/43299557505812608642127324159129260658424597*a1^8 + 135346740834226068352835548425273242516987412332/43299557505812608642127324159129260658424597*a1^7 - 4492019503107973902340901087088674074117118754464/43299557505812608642127324159129260658424597*a1^6 + 281321144041777488669154718220283360147485155431/43299557505812608642127324159129260658424597*a1^5 + 825033826195771971670948843231884699322885943804/43299557505812608642127324159129260658424597*a1^4 - 79976725089771314707963267668186607363236517181/43299557505812608642127324159129260658424597*a1^3 - 49044793817257638525726055325200131097551387488/43299557505812608642127324159129260658424597*a1^2 + 2225578265922128883854147518353009301514501341/14433185835270869547375774719709753552808199*a1 - 34279945836513634598474685534464542183271984/43299557505812608642127324159129260658424597, 1030105604896516974940885442342379089765492/129898672517437825926381972477387781975273791*a1^31 - 3338000639463150696895674393852488296302298/129898672517437825926381972477387781975273791*a1^30 - 16809773598447233039514689841995334797159890/43299557505812608642127324159129260658424597*a1^29 + 18601988336250323542018533520937409372944528/14433185835270869547375774719709753552808199*a1^28 + 366016755552045253656234456644351984829577258/43299557505812608642127324159129260658424597*a1^27 - 3750686606524400969987598660826590583610644712/129898672517437825926381972477387781975273791*a1^26 - 14032365504015299710711177186834310656280776876/129898672517437825926381972477387781975273791*a1^25 + 16525545283604625610798580201763170349750942127/43299557505812608642127324159129260658424597*a1^24 + 116973049242727452048649425619293532752323463715/129898672517437825926381972477387781975273791*a1^23 - 143427041451667884702759290449416787851104673731/43299557505812608642127324159129260658424597*a1^22 - 668641510061650817104793525941426808819109264827/129898672517437825926381972477387781975273791*a1^21 + 286953501328688630584887835055266442917999699183/14433185835270869547375774719709753552808199*a1^20 + 893726182228643947546956659346157689341743137455/43299557505812608642127324159129260658424597*a1^19 - 10997779365948658490927696482207501028395154681617/129898672517437825926381972477387781975273791*a1^18 - 7575360009401530379828330698820606453620559620879/129898672517437825926381972477387781975273791*a1^17 + 11180624055833616018859413367516208414426907762434/43299557505812608642127324159129260658424597*a1^16 + 14883032656579732150049775217028269497541680049933/129898672517437825926381972477387781975273791*a1^15 - 73017443321641907979369233529520666070507300508769/129898672517437825926381972477387781975273791*a1^14 - 6519775656747916934640235041114948744499123300301/43299557505812608642127324159129260658424597*a1^13 + 37206215526891906348146795529043566203451820514101/43299557505812608642127324159129260658424597*a1^12 + 1735172592377708019501731657505782679094080082709/14433185835270869547375774719709753552808199*a1^11 - 115964646863067456762011068730668892524304436220009/129898672517437825926381972477387781975273791*a1^10 - 5371010664578784005059237228169897864834237463640/129898672517437825926381972477387781975273791*a1^9 + 77286029066713307088989388520670730962035104264283/129898672517437825926381972477387781975273791*a1^8 - 1601787848097641684775938620818224565657311285681/129898672517437825926381972477387781975273791*a1^7 - 29795466629630781985081882843302958989415910209093/129898672517437825926381972477387781975273791*a1^6 + 1869294067690646598011248460941001048571044983943/129898672517437825926381972477387781975273791*a1^5 + 5432979658478713378478506089123610568263759019401/129898672517437825926381972477387781975273791*a1^4 - 396715575562450542816245018067676245145734487975/129898672517437825926381972477387781975273791*a1^3 - 305141344630307815215516650185743233364727682527/129898672517437825926381972477387781975273791*a1^2 + 12150931128699949156204049238578990519021388799/43299557505812608642127324159129260658424597*a1 - 123662975306465908677471551590750265568588037/129898672517437825926381972477387781975273791, 801259027329361249903787877108751888497997/129898672517437825926381972477387781975273791*a1^31 - 2212110193254191442802527666239733105916901/129898672517437825926381972477387781975273791*a1^30 - 12970720045678394069453118949143911515328065/43299557505812608642127324159129260658424597*a1^29 + 36436134352636601764594543534131482634829438/43299557505812608642127324159129260658424597*a1^28 + 93213621451489031359251406517446828205245966/14433185835270869547375774719709753552808199*a1^27 - 2407400330763162442595579841868396639326211612/129898672517437825926381972477387781975273791*a1^26 - 10588805793362244253541032310976507625896290234/129898672517437825926381972477387781975273791*a1^25 + 3467273086349245247737001332225491763864296239/14433185835270869547375774719709753552808199*a1^24 + 86886880376627200447687605316234650040507671377/129898672517437825926381972477387781975273791*a1^23 - 88289543788536278370398409674981041046796577937/43299557505812608642127324159129260658424597*a1^22 - 486608425792975444768795347514913448373766793757/129898672517437825926381972477387781975273791*a1^21 + 172233252284257683204843714963789444678332952137/14433185835270869547375774719709753552808199*a1^20 + 632958165862484390606455465330416477128849529745/43299557505812608642127324159129260658424597*a1^19 - 6415984060960419007288556905381262029055561200499/129898672517437825926381972477387781975273791*a1^18 - 5167404468041688881062643019244196132953086213461/129898672517437825926381972477387781975273791*a1^17 + 6319283769260186857951894765755212052506984806379/43299557505812608642127324159129260658424597*a1^16 + 9608999515095219701688777193349392605176163258875/129898672517437825926381972477387781975273791*a1^15 - 39854561477787729525402137329919501863095510200240/129898672517437825926381972477387781975273791*a1^14 - 1281722024160728080772415144573358230080849634649/14433185835270869547375774719709753552808199*a1^13 + 6517383581282194152177549224826182894317221981421/14433185835270869547375774719709753552808199*a1^12 + 2522247986302207801615315837860852594899899523116/43299557505812608642127324159129260658424597*a1^11 - 58514850555939360596044895634248498542612755411623/129898672517437825926381972477387781975273791*a1^10 - 600388715741708152656566734762718212390091573291/129898672517437825926381972477387781975273791*a1^9 + 37377480309128049725261550637212223571623128260045/129898672517437825926381972477387781975273791*a1^8 - 2848576115404549775316459164417928949081019662081/129898672517437825926381972477387781975273791*a1^7 - 13823819526421297117043941059239772280333274608604/129898672517437825926381972477387781975273791*a1^6 + 1852473852914895531094578031397640531934689841552/129898672517437825926381972477387781975273791*a1^5 + 2448147884104325259927377151077273906620910937614/129898672517437825926381972477387781975273791*a1^4 - 386656205343345219491166592482106050304815697577/129898672517437825926381972477387781975273791*a1^3 - 142586949470931281851176912019996895122419404519/129898672517437825926381972477387781975273791*a1^2 + 2918284631757737480939637442532637846869816863/14433185835270869547375774719709753552808199*a1 - 299607432643559930105134127554890294037485245/129898672517437825926381972477387781975273791, -956304044143028931596094345135445327497241/129898672517437825926381972477387781975273791*a1^31 + 2331245075463355755349987836841899595729424/129898672517437825926381972477387781975273791*a1^30 + 15783904153743931751979743048426645713226024/43299557505812608642127324159129260658424597*a1^29 - 12840751038658628924677979616252887323231924/14433185835270869547375774719709753552808199*a1^28 - 348502502605368386150788414321920950598539285/43299557505812608642127324159129260658424597*a1^27 + 2554655298488908201998720926277036795601511323/129898672517437825926381972477387781975273791*a1^26 + 13593740407953540162903028911140577880439566280/129898672517437825926381972477387781975273791*a1^25 - 11084877246860114266907637902307737554619695244/43299557505812608642127324159129260658424597*a1^24 - 115803750482275172926833809732753748328886711678/129898672517437825926381972477387781975273791*a1^23 + 94542255602979062205188919382723953480980764978/43299557505812608642127324159129260658424597*a1^22 + 680584373506038024065652701047650214609979398267/129898672517437825926381972477387781975273791*a1^21 - 185441016238982431782770655318555989460341356770/14433185835270869547375774719709753552808199*a1^20 - 943319410583361409299238237603846936028576422696/43299557505812608642127324159129260658424597*a1^19 + 6950449995215933843532581719371999561173425210130/129898672517437825926381972477387781975273791*a1^18 + 8398555939473694993943996038473372118602195963746/129898672517437825926381972477387781975273791*a1^17 - 6892396298667906542658572587778835517449665695174/43299557505812608642127324159129260658424597*a1^16 - 17702657815135331176778451207749223519228495391622/129898672517437825926381972477387781975273791*a1^15 + 43794751692383590285004897380157632521457878214238/129898672517437825926381972477387781975273791*a1^14 + 8661117880802518176998870831802426775979191194730/43299557505812608642127324159129260658424597*a1^13 - 21660212372907714525276051255480968643402224129510/43299557505812608642127324159129260658424597*a1^12 - 2831866952733104339882188419297498882923906967794/14433185835270869547375774719709753552808199*a1^11 + 65390351803930844379326723769330215262387361009142/129898672517437825926381972477387781975273791*a1^10 + 15414212021849981067117240232980653967790576555262/129898672517437825926381972477387781975273791*a1^9 - 42142292571114409038888888882275745996808608513398/129898672517437825926381972477387781975273791*a1^8 - 4797467941599280614177966052784425261466944289918/129898672517437825926381972477387781975273791*a1^7 + 15693912695705604401177461098407058257445146404211/129898672517437825926381972477387781975273791*a1^6 + 370164994518558540680057428906624526954488574798/129898672517437825926381972477387781975273791*a1^5 - 2762836233555288364550385371199489076196913354521/129898672517437825926381972477387781975273791*a1^4 + 84569877836460012207836518908116591195347822094/129898672517437825926381972477387781975273791*a1^3 + 151104398651229620543507538484533030872331879641/129898672517437825926381972477387781975273791*a1^2 - 5905156480330247194829941304881007224613313923/43299557505812608642127324159129260658424597*a1 + 194899180751749453867592062818400877172578636/129898672517437825926381972477387781975273791, 58188618545571803783568491802535971743794/14433185835270869547375774719709753552808199*a1^31 - 150809030163387102949436486303774817396025/14433185835270869547375774719709753552808199*a1^30 - 2908743622461582132032533875465966966120625/14433185835270869547375774719709753552808199*a1^29 + 7613734808747537463392476405332110771558146/14433185835270869547375774719709753552808199*a1^28 + 64851079040538263827567893739560431457158595/14433185835270869547375774719709753552808199*a1^27 - 171838941486615470119502826220417341753592642/14433185835270869547375774719709753552808199*a1^26 - 851180043391102972994609872056410377704186891/14433185835270869547375774719709753552808199*a1^25 + 2290372998908861355121467466046288358446241804/14433185835270869547375774719709753552808199*a1^24 + 7311031362595295424241943141393792456599531406/14433185835270869547375774719709753552808199*a1^23 - 20065379690898365985934403198790264858586308062/14433185835270869547375774719709753552808199*a1^22 - 43203191871830338376693319163187216412161779692/14433185835270869547375774719709753552808199*a1^21 + 121704917726230363950622481468631547942685859752/14433185835270869547375774719709753552808199*a1^20 + 179647732494511621902914609036789045428094436940/14433185835270869547375774719709753552808199*a1^19 - 524399006187229759319431415215463719076801354258/14433185835270869547375774719709753552808199*a1^18 - 527688864027386414753167496884947708054642896440/14433185835270869547375774719709753552808199*a1^17 + 1620526261587613183106183638818071402666516942418/14433185835270869547375774719709753552808199*a1^16 + 1079406501742729187622691485077880419931530606368/14433185835270869547375774719709753552808199*a1^15 - 3580248531144014149610377382226252730463795151834/14433185835270869547375774719709753552808199*a1^14 - 1476206044355491328161360300084324333594534045700/14433185835270869547375774719709753552808199*a1^13 + 5565424551719405882015105807876250550787729328864/14433185835270869547375774719709753552808199*a1^12 + 1220042714484278306911238280154010372743464151178/14433185835270869547375774719709753552808199*a1^11 - 5894641641658527574359458860919696782426810797298/14433185835270869547375774719709753552808199*a1^10 - 419068879191790244310347655996918440632703574954/14433185835270869547375774719709753552808199*a1^9 + 4018689891601996028050918497952786187834313619574/14433185835270869547375774719709753552808199*a1^8 - 163230945483384383105899067833994552576836712638/14433185835270869547375774719709753552808199*a1^7 - 1593001355939197687045579211433602912113388771652/14433185835270869547375774719709753552808199*a1^6 + 186798245694394889422014678832781536591135889121/14433185835270869547375774719709753552808199*a1^5 + 301945186373200029474626170062396086904616833265/14433185835270869547375774719709753552808199*a1^4 - 45686249262088033908799832792839381045905611754/14433185835270869547375774719709753552808199*a1^3 - 18649648269447185709368819151428703485947561747/14433185835270869547375774719709753552808199*a1^2 + 3618204397832418418978272388912261486034041752/14433185835270869547375774719709753552808199*a1 - 30062768838039479865214492062959417627446229/14433185835270869547375774719709753552808199)" "x^32 - 3*x^31 - 49*x^30 + 150*x^29 + 1068*x^28 - 3349*x^27 - 13663*x^26 + 44102*x^25 + 114017*x^24 - 381227*x^23 - 652363*x^22 + 2278423*x^21 + 2617329*x^20 - 9659993*x^19 - 7391907*x^18 + 29333039*x^17 + 14485613*x^16 - 63589225*x^15 - 18892591*x^14 + 96842403*x^13 + 14744217*x^12 - 100301909*x^11 - 4507611*x^10 + 66698107*x^9 - 2210691*x^8 - 25684834*x^7 + 2153748*x^6 + 4689118*x^5 - 470371*x^4 - 268239*x^3 + 38414*x^2 - 242*x - 7"
"37b1" 37 481 5 2.46E+018 "(a3, -13/86*a3^10 + 17/43*a3^9 + 81/43*a3^8 - 397/86*a3^7 - 687/86*a3^6 + 684/43*a3^5 + 1403/86*a3^4 - 721/43*a3^3 - 1575/86*a3^2 + 287/86*a3 + 268/43, -2/43*a3^10 + 27/86*a3^9 - 13/86*a3^8 - 271/86*a3^7 + 278/43*a3^6 + 583/86*a3^5 - 2489/86*a3^4 + 228/43*a3^3 + 1739/43*a3^2 - 1119/86*a3 - 675/43, 23/172*a3^10 + 3/86*a3^9 - 269/86*a3^8 + 107/172*a3^7 + 4113/172*a3^6 - 843/86*a3^5 - 12273/172*a3^4 + 1387/43*a3^3 + 13047/172*a3^2 - 4477/172*a3 - 1741/86, -7/172*a3^10 - 7/43*a3^9 + 40/43*a3^8 + 375/172*a3^7 - 1177/172*a3^6 - 398/43*a3^5 + 3395/172*a3^4 + 565/43*a3^3 - 3739/172*a3^2 - 421/172*a3 + 743/86, -1)" "x^11 - 3*x^10 - 14*x^9 + 45*x^8 + 64*x^7 - 237*x^6 - 99*x^5 + 529*x^4 - 7*x^3 - 460*x^2 + 67*x + 110"
"1443d1" 1443 481 5 1.72E+018 "(a4, -5/4*a4^10 + 5/2*a4^9 + 16*a4^8 - 129/4*a4^7 - 241/4*a4^6 + 120*a4^5 + 293/4*a4^4 - 130*a4^3 - 139/4*a4^2 + 101/4*a4 + 5/2, -1/4*a4^10 + 5/4*a4^9 + 11/4*a4^8 - 16*a4^7 - 27/4*a4^6 + 237/4*a4^5 - 125/2*a4^3 - 13/4*a4^2 + 9*a4 + 1, 3/8*a4^10 - 1/4*a4^9 - 11/2*a4^8 + 27/8*a4^7 + 215/8*a4^6 - 13*a4^5 - 423/8*a4^4 + 27/2*a4^3 + 321/8*a4^2 + 17/8*a4 - 21/4, 3/8*a4^10 - 1/2*a4^9 - 19/4*a4^8 + 53/8*a4^7 + 139/8*a4^6 - 103/4*a4^5 - 145/8*a4^4 + 32*a4^3 + 29/8*a4^2 - 97/8*a4 + 1/4, 1)" "x^11 - 3*x^10 - 12*x^9 + 39*x^8 + 38*x^7 - 149*x^6 - 23*x^5 + 175*x^4 - 5*x^3 - 48*x^2 + 5*x + 2"
"11a1" 11 482 5 5 "(1, -1, 1/2*a1, -a1 - 5, -3, 1/2*a1 - 2)" "x^2 + 6*x + 4"
"1446d1" 1446 482 5 131357120 "(-1, 1/2*a3 + 1/2, 1/64*a3^5 + 3/64*a3^4 - 17/32*a3^3 - 43/32*a3^2 + 209/64*a3 + 291/64, -1/32*a3^4 - 1/16*a3^3 + a3^2 + 21/16*a3 - 103/32, -1/4*a3^2 + 13/4, 1/16*a3^3 - 1/16*a3^2 - 21/16*a3 + 53/16)" "x^6 + 2*x^5 - 45*x^4 - 52*x^3 + 535*x^2 + 82*x - 1291"
"69a1" 69 483 5 5 "(a2, 1, a2 - 1, 1, -4*a2 - 7, a2 - 2)" "x^2 + 3*x + 1"
"483a1" 483 483 5 837 "(a7, 1, -a7 + 1, -1, a7^2 - a7 - 2, -a7^2 + 7)" "x^3 - 6*x - 1"
"483b1" 483 483 5 5 "(a5, 1, a5 + 3, 1, 1, a5)" "x^2 + x - 1"
"966a1" 966 483 5 5 "(a3, -1, a3 + 1, -1, -2*a3 - 1, -a3 - 4)" "x^2 + x - 1"
"966h1" 966 483 5 5 "(a6, -1, -a6 - 1, 1, -2*a6 + 1, -3*a6 - 2)" "x^2 - x - 1"
"44a1" 44 484 5 5 "(0, 1/2*a1, 1/2*a1 + 1, 3/2*a1 + 4, 0, 1/2*a1 + 5)" "x^2 + 6*x + 4"
"484a1" 484 484 5 5 "(0, a2, a2 + 1, -3*a2 - 4, 0, -a2 - 5)" "x^2 + 3*x + 1"
"485a1" 485 485 5 5 "(a2, 1/2*a2 + 1/2, -1, 4, -a2 - 3, -1/2*a2 + 5/2)" "x^2 - 5"
"5335b1" 5335 485 5 29 "(1, 1/2*a3 - 1/2, 1, 0, -a3 + 3, 1/2*a3 + 5/2)" "x^2 - 4*x - 25"
"5335b1" 5335 485 5 568 "(a4, 2, 1, -a4 + 1, a4^2 - 3, -a4^2 - 2*a4 + 3)" "x^3 + 2*x^2 - 5*x - 8"
"19885c1" 19885 485 5 29 "(1, 1/2*a3 - 1/2, 1, 0, -a3 + 3, 1/2*a3 + 5/2)" "x^2 - 4*x - 25"
"974h1" 974 487 5 257 "(a2, 2, 2, 2, -2*a2^2 - 4*a2 + 8, -2)" "x^3 - 5*x + 3"
"974d1" 974 487 5 1.33E+028 "(a3, -7/15*a3^15 + 49/15*a3^14 + 1/3*a3^13 - 707/15*a3^12 + 313/5*a3^11 + 3839/15*a3^10 - 7567/15*a3^9 - 9707/15*a3^8 + 24712/15*a3^7 + 3888/5*a3^6 - 12804/5*a3^5 - 6799/15*a3^4 + 5450/3*a3^3 + 867/5*a3^2 - 6464/15*a3 - 37, 43/35*a3^15 - 276/35*a3^14 - 44/7*a3^13 + 629/5*a3^12 - 3121/35*a3^11 - 4023/5*a3^10 + 4709/5*a3^9 + 94118/35*a3^8 - 121943/35*a3^7 - 26023/5*a3^6 + 211363/35*a3^5 + 212736/35*a3^4 - 4744*a3^3 - 137484/35*a3^2 + 41761/35*a3 + 6381/7, -6/35*a3^15 - 73/35*a3^14 + 166/7*a3^13 - 93/5*a3^12 - 10898/35*a3^11 + 2936/5*a3^10 + 7872/5*a3^9 - 142811/35*a3^8 - 124834/35*a3^7 + 63331/5*a3^6 + 115764/35*a3^5 - 674122/35*a3^4 - 764*a3^3 + 474463/35*a3^2 - 1877/35*a3 - 22396/7, -a3^4 + a3^3 + 6*a3^2 - 3*a3 - 6, 146/105*a3^15 - 557/105*a3^14 - 635/21*a3^13 + 1948/15*a3^12 + 8276/35*a3^11 - 18526/15*a3^10 - 11962/15*a3^9 + 622486/105*a3^8 + 92914/105*a3^7 - 77067/5*a3^6 + 31587/35*a3^5 + 2251292/105*a3^4 - 6565/3*a3^3 - 506381/35*a3^2 + 78247/105*a3 + 23451/7)" "x^16 - 7*x^15 - 5*x^14 + 131*x^13 - 132*x^12 - 977*x^11 + 1666*x^10 + 3671*x^9 - 8191*x^8 - 7212*x^7 + 20571*x^6 + 6937*x^5 - 27100*x^4 - 2748*x^3 + 17207*x^2 + 360*x - 3825"
"1464f1" 1464 488 5 148 "(0, -a1, a1 - 1, -1/2*a1^2 + a1 - 1, 1/2*a1^2 - 3, -a1^2 + 2*a1 + 1)" "x^3 - 2*x^2 - 4*x + 4"
"1464a1" 1464 488 5 643168996 "(0, -a3, -1/4*a3^5 - 3/4*a3^4 + 9/4*a3^3 + 11/2*a3^2 - 5*a3 - 6, -1/4*a3^5 - 1/4*a3^4 + 11/4*a3^3 + a3^2 - 7*a3, 1/4*a3^5 + 1/4*a3^4 - 15/4*a3^3 - 3*a3^2 + 12*a3 + 8, 1/4*a3^5 + 3/4*a3^4 - 5/4*a3^3 - 9/2*a3^2 + 6)" "x^6 + 3*x^5 - 9*x^4 - 26*x^3 + 16*x^2 + 52*x + 16"
"5368d1" 5368 488 5 13676 "(0, 1/2*a2, -1/4*a2^2 + 1/2*a2 + 3, 1/16*a2^3 - 1/8*a2^2 - 5/4*a2 + 3, -1/16*a2^3 - 1/8*a2^2 + 5/4*a2 + 3, 1/4*a2^2 + 1/2*a2 - 3)" "x^4 - 2*x^3 - 28*x^2 + 32*x + 128"
"978d1" 978 489 5 93559285808 "(a2, -1, -1/2*a2^7 + a2^6 + 11/2*a2^5 - 19/2*a2^4 - 35/2*a2^3 + 49/2*a2^2 + 25/2*a2 - 11, -1/2*a2^6 + 2*a2^5 + 1/2*a2^4 - 19/2*a2^3 + 15/2*a2^2 + 13/2*a2 - 9/2, a2^7 - 2*a2^6 - 9*a2^5 + 14*a2^4 + 23*a2^3 - 24*a2^2 - 9*a2 + 10, a2^7 - 2*a2^6 - 10*a2^5 + 17*a2^4 + 27*a2^3 - 38*a2^2 - 8*a2 + 13)" "x^8 - 4*x^7 - 6*x^6 + 35*x^5 - 86*x^3 + 36*x^2 + 39*x - 19"
"11a1" 11 491 5 4.49E+066 "(a2, 23108313731491005958945/218089520041081175482624*a2^28 - 4990921243167303783455/109044760020540587741312*a2^27 - 1128237043944943824602305/218089520041081175482624*a2^26 + 510789038220329400741103/218089520041081175482624*a2^25 + 12235940192251196566205495/109044760020540587741312*a2^24 - 11486392256760376002059439/218089520041081175482624*a2^23 - 310884227120062146619354149/218089520041081175482624*a2^22 + 37441678869415215565124865/54522380010270293870656*a2^21 + 2567387872825066096992801631/218089520041081175482624*a2^20 - 314422047663874124131196579/54522380010270293870656*a2^19 - 14462925102759462326803330109/218089520041081175482624*a2^18 + 7144730506518246130810302047/218089520041081175482624*a2^17 + 56723385490790397675247041219/218089520041081175482624*a2^16 - 28062356711339419523041158657/218089520041081175482624*a2^15 - 155202108078989193851145985279/218089520041081175482624*a2^14 + 19128539572470952946010911329/54522380010270293870656*a2^13 + 73033019213460611902799783449/54522380010270293870656*a2^12 - 71579667312412771283916815127/109044760020540587741312*a2^11 - 183180316062116736693216330747/109044760020540587741312*a2^10 + 89138874931513893180363639905/109044760020540587741312*a2^9 + 289372922052299143129515027651/218089520041081175482624*a2^8 - 8685639012562813198804414721/13630595002567573467664*a2^7 - 8212619346483800913099528667/13630595002567573467664*a2^6 + 3749859888199500177434582251/13630595002567573467664*a2^5 + 1894985749176688097788896587/13630595002567573467664*a2^4 - 174625295706668521753160397/3407648750641893366916*a2^3 - 14453544936544907868787544/851912187660473341729*a2^2 + 5691745989950541422276935/1703824375320946683458*a2 + 788008533738074726670509/851912187660473341729, 46390173195350031769459/218089520041081175482624*a2^28 - 287700363345141299539/3407648750641893366916*a2^27 - 2265767449072243036297399/218089520041081175482624*a2^26 + 945847363434923118382099/218089520041081175482624*a2^25 + 6145977858546805278593191/27261190005135146935328*a2^24 - 21330737248031017375519769/218089520041081175482624*a2^23 - 624974105843270153900174245/218089520041081175482624*a2^22 + 139349391489420176348280481/109044760020540587741312*a2^21 + 5164987186501287486885159437/218089520041081175482624*a2^20 - 1171885420233881582783868231/109044760020540587741312*a2^19 - 29122846557622810688666145047/218089520041081175482624*a2^18 + 13327490858026602210543250555/218089520041081175482624*a2^17 + 114356044958796382283112755879/218089520041081175482624*a2^16 - 52383951831533553402571383693/218089520041081175482624*a2^15 - 313395683406478584247391816415/218089520041081175482624*a2^14 + 71469683156800433541820547015/109044760020540587741312*a2^13 + 147810722720736126192852171027/54522380010270293870656*a2^12 - 133890950984541638690786833049/109044760020540587741312*a2^11 - 372034250554197688812806961967/109044760020540587741312*a2^10 + 167126736004092685116375453133/109044760020540587741312*a2^9 + 591174263418013248190082402749/218089520041081175482624*a2^8 - 130803458946685504966057124841/109044760020540587741312*a2^7 - 33922494148411792015317901443/27261190005135146935328*a2^6 + 7102753082548731859023170365/13630595002567573467664*a2^5 + 997800743541289215828456651/3407648750641893366916*a2^4 - 667587883910328388526351711/6815297501283786733832*a2^3 - 30679456747676303654145250/851912187660473341729*a2^2 + 10976915534645600786004999/1703824375320946683458*a2 + 1644794886766733723348133/851912187660473341729, 61123797985732835716123/109044760020540587741312*a2^28 - 12190108946092542051659/54522380010270293870656*a2^27 - 2985463439888759090665163/109044760020540587741312*a2^26 + 1251536292297903683822073/109044760020540587741312*a2^25 + 32393001103029889016833303/54522380010270293870656*a2^24 - 28208065115954643852521069/109044760020540587741312*a2^23 - 823480979166375963047315115/109044760020540587741312*a2^22 + 11511379858528989528328083/3407648750641893366916*a2^21 + 6805081549849536775125990325/109044760020540587741312*a2^20 - 48381043553957760047842117/1703824375320946683458*a2^19 - 38365569004662461861863688743/109044760020540587741312*a2^18 + 17599679067322927531931025721/109044760020540587741312*a2^17 + 150614195244010388149920731637/109044760020540587741312*a2^16 - 69149223775111563634175417039/109044760020540587741312*a2^15 - 412598582814892509531459836073/109044760020540587741312*a2^14 + 11788797519853207410988007769/6815297501283786733832*a2^13 + 194470131894016552926084570015/27261190005135146935328*a2^12 - 176624757996204068967619525425/54522380010270293870656*a2^11 - 488929803445812233033915779877/54522380010270293870656*a2^10 + 220398892873424408277504202663/54522380010270293870656*a2^9 + 775440175452382255961731672441/109044760020540587741312*a2^8 - 86209725616540986132753892421/27261190005135146935328*a2^7 - 44344934001635122357382391757/13630595002567573467664*a2^6 + 18704834937907753289929900769/13630595002567573467664*a2^5 + 5187087264287998316374350849/6815297501283786733832*a2^4 - 219027106568433982006669321/851912187660473341729*a2^3 - 79463662998394308469978272/851912187660473341729*a2^2 + 14349089490187851413898124/851912187660473341729*a2 + 4265173104774073687949840/851912187660473341729, -4024315406687105321637/54522380010270293870656*a2^28 + 2927901798278404361441/109044760020540587741312*a2^27 + 196696304405427346693207/54522380010270293870656*a2^26 - 151156043936377633708303/109044760020540587741312*a2^25 - 8544669523508507947746643/109044760020540587741312*a2^24 + 1711035021507586695012101/54522380010270293870656*a2^23 + 108740997028145789635504291/109044760020540587741312*a2^22 - 44845330292988785575063039/109044760020540587741312*a2^21 - 225012548162525101847868523/27261190005135146935328*a2^20 + 378015171297692285732095579/109044760020540587741312*a2^19 + 1271275906697182967870011125/27261190005135146935328*a2^18 - 2153575621295811283212959799/109044760020540587741312*a2^17 - 20020710251516341961499802941/109044760020540587741312*a2^16 + 8479060568151502253092777079/109044760020540587741312*a2^15 + 55067290546633924923199397119/109044760020540587741312*a2^14 - 23180398345681783826694044061/109044760020540587741312*a2^13 - 52215040212521650634008721549/54522380010270293870656*a2^12 + 5442549423050810179594236985/13630595002567573467664*a2^11 + 66232826683298861270531540411/54522380010270293870656*a2^10 - 27288409243425212563552456263/54522380010270293870656*a2^9 - 6663918674373270782710962125/6815297501283786733832*a2^8 + 43014895113449314945109504931/109044760020540587741312*a2^7 + 25052085788904929317307262119/54522380010270293870656*a2^6 - 2364286315075455852363888015/13630595002567573467664*a2^5 - 1538720843856984570736165065/13630595002567573467664*a2^4 + 56936703638242928517996863/1703824375320946683458*a2^3 + 49219716104480577221231971/3407648750641893366916*a2^2 - 3870824592869818274304823/1703824375320946683458*a2 - 668333035848226034529820/851912187660473341729, -136514578125992580164467/218089520041081175482624*a2^28 + 13534961113744893724129/54522380010270293870656*a2^27 + 6667633629029924516861847/218089520041081175482624*a2^26 - 2780859707090495317624031/218089520041081175482624*a2^25 - 36172433358200228073320305/54522380010270293870656*a2^24 + 62707652342394643793032241/218089520041081175482624*a2^23 + 1839136998369782425658048593/218089520041081175482624*a2^22 - 409609857284213840659959735/109044760020540587741312*a2^21 - 15198769203286378828615267053/218089520041081175482624*a2^20 + 3444244534619409648904073553/109044760020540587741312*a2^19 + 85693296516396691284855907983/218089520041081175482624*a2^18 - 39164516305054810907522365591/218089520041081175482624*a2^17 - 336453201082426920907716984611/218089520041081175482624*a2^16 + 153911131907951599633548062137/218089520041081175482624*a2^15 + 921884666860285647665663517019/218089520041081175482624*a2^14 - 209948828681731507938937655333/109044760020540587741312*a2^13 - 434661658817553429404924099347/54522380010270293870656*a2^12 + 393237810739577611452274170517/109044760020540587741312*a2^11 + 1093443867244021063586489551299/109044760020540587741312*a2^10 - 490736897770061011284370737905/109044760020540587741312*a2^9 - 1735945695215242621960061794837/218089520041081175482624*a2^8 + 383947563167493036602898079295/109044760020540587741312*a2^7 + 49727698223156074617317769197/13630595002567573467664*a2^6 - 41665128374416230776623001451/27261190005135146935328*a2^5 - 5835458436630303640960465031/6815297501283786733832*a2^4 + 976766433801533951348584949/3407648750641893366916*a2^3 + 358176988028726436258969575/3407648750641893366916*a2^2 - 32013722419203811484670621/1703824375320946683458*a2 - 4794044879575333710187837/851912187660473341729)" "x^29 - 49*x^27 + x^26 + 1068*x^25 - 39*x^24 - 13655*x^23 + 658*x^22 + 113723*x^21 - 6306*x^20 - 647801*x^19 + 37953*x^18 + 2578721*x^17 - 150115*x^16 - 7201417*x^15 + 398246*x^14 + 13959112*x^13 - 711934*x^12 - 18310154*x^11 + 839798*x^10 + 15574775*x^9 - 585854*x^8 - 8065060*x^7 + 132680*x^6 + 2339280*x^5 + 83968*x^4 - 350400*x^3 - 36608*x^2 + 20992*x + 3584"
"15221a1" 15221 491 5 5 "(a0, -a0, a0 - 1, -3*a0 + 2, a0 - 2, 2*a0 - 5)" "x^2 - x - 1"
3.44E+004 3444 492 5 24 "(0, -1, -a2 + 2, -a2 + 6, a2 - 5, a2 - 2)" "x^2 - 8*x + 10"
"8364a1" 8364 492 5 24 "(0, -1, -a2 + 2, -a2 + 6, a2 - 5, a2 - 2)" "x^2 - 8*x + 10"
"11a1" 11 493 5 7313969 "(a5, a5^2 - a5 - 2, a5^5 - 5*a5^4 + 2*a5^3 + 17*a5^2 - 16*a5 - 1, -a5^4 + 2*a5^3 + 4*a5^2 - 7*a5, a5^5 - 2*a5^4 - 6*a5^3 + 7*a5^2 + 10*a5, -a5^3 + a5^2 + 5*a5 - 3)" "x^6 - 5*x^5 + 3*x^4 + 16*x^3 - 20*x^2 + 1"
"493b1" 493 493 5 270017 "(a4, -a4^2 - a4 + 2, -a4^4 - a4^3 + 4*a4^2 + a4 - 2, a4^4 + 2*a4^3 - 2*a4^2 - 3*a4 - 2, -a4^3 + 3*a4 - 5, -a4^3 - a4^2 + 3*a4 - 1)" "x^5 + 2*x^4 - 5*x^3 - 7*x^2 + 7*x + 3"
"1479a1" 1479 493 5 2.88E+015 "(a7, 5/22*a7^9 + 23/22*a7^8 - a7^7 - 17/2*a7^6 - 15/22*a7^5 + 218/11*a7^4 + 1/22*a7^3 - 167/11*a7^2 + 119/22*a7 + 1, 7/22*a7^9 + 19/22*a7^8 - 4*a7^7 - 21/2*a7^6 + 353/22*a7^5 + 435/11*a7^4 - 465/22*a7^3 - 500/11*a7^2 + 127/22*a7 + 6, -9/22*a7^9 - 13/11*a7^8 + 9/2*a7^7 + 25/2*a7^6 - 190/11*a7^5 - 919/22*a7^4 + 601/22*a7^3 + 973/22*a7^2 - 333/22*a7 - 11/2, 15/22*a7^9 + 47/22*a7^8 - 7*a7^7 - 43/2*a7^6 + 571/22*a7^5 + 742/11*a7^4 - 965/22*a7^3 - 732/11*a7^2 + 577/22*a7 + 5, -7/22*a7^9 - 19/22*a7^8 + 4*a7^7 + 19/2*a7^6 - 397/22*a7^5 - 347/11*a7^4 + 751/22*a7^3 + 324/11*a7^2 - 501/22*a7 - 1)" "x^10 + 5*x^9 - 3*x^8 - 44*x^7 - 25*x^6 + 119*x^5 + 98*x^4 - 116*x^3 - 94*x^2 + 28*x + 11"
"1479d1" 1479 493 5 2.88E+015 "(a7, 5/22*a7^9 + 23/22*a7^8 - a7^7 - 17/2*a7^6 - 15/22*a7^5 + 218/11*a7^4 + 1/22*a7^3 - 167/11*a7^2 + 119/22*a7 + 1, 7/22*a7^9 + 19/22*a7^8 - 4*a7^7 - 21/2*a7^6 + 353/22*a7^5 + 435/11*a7^4 - 465/22*a7^3 - 500/11*a7^2 + 127/22*a7 + 6, -9/22*a7^9 - 13/11*a7^8 + 9/2*a7^7 + 25/2*a7^6 - 190/11*a7^5 - 919/22*a7^4 + 601/22*a7^3 + 973/22*a7^2 - 333/22*a7 - 11/2, 15/22*a7^9 + 47/22*a7^8 - 7*a7^7 - 43/2*a7^6 + 571/22*a7^5 + 742/11*a7^4 - 965/22*a7^3 - 732/11*a7^2 + 577/22*a7 + 5, -7/22*a7^9 - 19/22*a7^8 + 4*a7^7 + 19/2*a7^6 - 397/22*a7^5 - 347/11*a7^4 + 751/22*a7^3 + 324/11*a7^2 - 501/22*a7 - 1)" "x^10 + 5*x^9 - 3*x^8 - 44*x^7 - 25*x^6 + 119*x^5 + 98*x^4 - 116*x^3 - 94*x^2 + 28*x + 11"
2.47E+004 2470 494 5 16609 "(1, -1/2*a7 + 1/2, -1/4*a7^2 + 1/2*a7 + 15/4, -1/8*a7^3 + 1/8*a7^2 + 17/8*a7 + 7/8, 1/8*a7^3 + 1/8*a7^2 - 17/8*a7 - 17/8, 1)" "x^4 - 26*x^2 - 8*x + 113"
"99c1" 99 495 5 48704 "(a5, 0, -1, a5^3 - 5*a5 + 2, 1, -a5^3 + 7*a5 + 2)" "x^4 + 2*x^3 - 6*x^2 - 10*x + 3"
"99d1" 99 495 5 148 "(a4, 0, -1, -a4^2 + 2*a4 + 3, -1, -a4^2 + 3)" "x^3 - x^2 - 5*x + 1"
"99a1" 99 495 5 48704 "(a6, 0, 1, -a6^3 + 5*a6 + 2, -1, a6^3 - 7*a6 + 2)" "x^4 - 2*x^3 - 6*x^2 + 10*x + 3"
"176b1" 176 496 5 5 "(0, a8, 1, -a8 + 3, -2, -a8)" "x^2 - 2*x - 4"
"166a1" 166 498 5 21 "(-1, 1, -1/2*a2, 1/2*a2 - 1, 0, -1/2*a2 + 5)" "x^2 - 6*x - 12"
2.49E+004 2490 498 5 21 "(-1, 1, -1/2*a2, 1/2*a2 - 1, 0, -1/2*a2 + 5)" "x^2 - 6*x - 12"
"5478k1" 5478 498 5 5 "(1, -1, -a3 + 3, 3*a3 - 18, -4*a3 + 20, -a3 + 2)" "x^2 - 11*x + 29"
"3493a1" 3493 499 5 1.04E+026 "(a1, -175/108*a1^15 - 469/54*a1^14 + 1511/108*a1^13 + 7595/54*a1^12 + 189/4*a1^11 - 90257/108*a1^10 - 22667/27*a1^9 + 122191/54*a1^8 + 175661/54*a1^7 - 282515/108*a1^6 - 580537/108*a1^5 + 16955/36*a1^4 + 3677*a1^3 + 11477/12*a1^2 - 7789/12*a1 - 973/4, 833/1404*a1^15 + 203/54*a1^14 - 4093/1404*a1^13 - 41875/702*a1^12 - 25427/468*a1^11 + 36919/108*a1^10 + 189727/351*a1^9 - 603329/702*a1^8 - 1328191/702*a1^7 + 1105621/1404*a1^6 + 4215899/1404*a1^5 + 133363/468*a1^4 - 78469/39*a1^3 - 37481/52*a1^2 + 55115/156*a1 + 8179/52, 3479/1404*a1^15 + 713/54*a1^14 - 31483/1404*a1^13 - 151453/702*a1^12 - 2849/52*a1^11 + 140581/108*a1^10 + 411178/351*a1^9 - 2545769/702*a1^8 - 3246949/702*a1^7 + 6316195/1404*a1^6 + 10786625/1404*a1^5 - 666139/468*a1^4 - 205213/39*a1^3 - 161573/156*a1^2 + 144689/156*a1 + 15577/52, 575/468*a1^15 + 43/6*a1^14 - 411/52*a1^13 - 8855/78*a1^12 - 38003/468*a1^11 + 23341/36*a1^10 + 107993/117*a1^9 - 126151/78*a1^8 - 260033/78*a1^7 + 673547/468*a1^6 + 837563/156*a1^5 + 296039/468*a1^4 - 47115/13*a1^3 - 223667/156*a1^2 + 32693/52*a1 + 16307/52, -2531/702*a1^15 - 560/27*a1^14 + 18559/702*a1^13 + 117343/351*a1^12 + 42917/234*a1^11 - 106357/54*a1^10 - 827111/351*a1^9 + 1838360/351*a1^8 + 3049642/351*a1^7 - 4022641/702*a1^6 - 9875987/702*a1^5 + 74201/234*a1^4 + 370856/39*a1^3 + 221795/78*a1^2 - 129461/78*a1 - 17789/26)" "x^16 + 5*x^15 - 11*x^14 - 85*x^13 + 9*x^12 + 548*x^11 + 293*x^10 - 1718*x^9 - 1408*x^8 + 2735*x^7 + 2662*x^6 - 2058*x^5 - 2241*x^4 + 585*x^3 + 738*x^2 - 54*x - 81"
"24950b1" 24950 499 5 5 "(a0, 2*a0 + 1, -a0 - 3, -1, -4*a0 - 3, -6*a0 - 3)" "x^2 + x - 1"
"20a1" 20 500 5 5 "(0, 1/2*a1, 0, -a1 + 3, a1 - 1, 1/2*a1 + 4)" "x^2 - 2*x - 4"
"20a1" 20 500 5 12400 "(0, 1/2*a2, 0, -1/24*a2^3 + 11/6*a2, -1/3*a2^2 + 26/3, 1/12*a2^3 - 8/3*a2)" "x^4 - 52*x^2 + 496"
"100a1" 100 500 5 12400 "(0, 1/2*a2, 0, -1/24*a2^3 + 11/6*a2, -1/3*a2^2 + 26/3, 1/12*a2^3 - 8/3*a2)" "x^4 - 52*x^2 + 496"
"100a1" 100 500 5 5 "(0, a0, 0, -2*a0 - 3, -2*a0 - 1, a0 - 4)" "x^2 + x - 1"
"26b1" 26 29 7 8 "(a0, -a0, -1, 2*a0 + 2, a0 + 2, 2*a0 + 1)" "x^2 + 2*x - 1"
"551c1" 551 29 7 8 "(a0, -a0, -1, 2*a0 + 2, a0 + 2, 2*a0 + 1)" "x^2 + 2*x - 1"
"26b1" 26 39 7 8 "(a1, 1, -2*a1 - 2, 2*a1 + 2, -2, -1)" "x^2 + 2*x - 1"
"195c1" 195 39 7 8 "(a1, 1, -2*a1 - 2, 2*a1 + 2, -2, -1)" "x^2 + 2*x - 1"
"26b1" 26 43 7 8 "(a1, -a1, -a1 + 2, a1 - 2, 2*a1 - 1, 2*a1 + 1)" "x^2 - 2"
"258b1" 258 43 7 8 "(a1, -a1, -a1 + 2, a1 - 2, 2*a1 - 1, 2*a1 + 1)" "x^2 - 2"
"141a1" 141 47 7 1957 "(a0, a0^3 - a0^2 - 6*a0 + 4, -4*a0^3 + 2*a0^2 + 20*a0 - 10, 3*a0^3 - a0^2 - 16*a0 + 7, 2*a0^3 - 2*a0^2 - 10*a0 + 6, -4*a0^3 + 2*a0^2 + 22*a0 - 8)" "x^4 - x^3 - 5*x^2 + 5*x - 1"
"11a1" 11 55 7 8 "(a1, -2*a1 + 2, -1, -2, 1, 2*a1 - 6)" "x^2 - 2*x - 1"
"110c1" 110 55 7 8 "(a1, -2*a1 + 2, -1, -2, 1, 2*a1 - 6)" "x^2 - 2*x - 1"
"3835a1" 3835 59 7 138136 "(a0, -1/4*a0^4 + 5/4*a0^2 - 1/2*a0, 3/4*a0^4 + 1/2*a0^3 - 23/4*a0^2 - 3*a0 + 7, -1/2*a0^4 - 1/2*a0^3 + 7/2*a0^2 + 3/2*a0 - 3, -1/2*a0^4 - a0^3 + 9/2*a0^2 + 6*a0 - 8, -1/2*a0^4 - a0^3 + 9/2*a0^2 + 6*a0 - 6)" "x^5 - 9*x^3 + 2*x^2 + 16*x - 8"
"26b1" 26 65 7 8 "(a1, a1 + 1, 1, -2*a1, -a1 + 1, -1)" "x^2 + 2*x - 1"
"195d1" 195 65 7 8 "(a1, a1 + 1, 1, -2*a1, -a1 + 1, -1)" "x^2 + 2*x - 1"
"26b1" 26 71 7 257 "(a0, -a0, -a0^2 + a0 + 5, -2*a0, 2*a0^2 - 6, -2*a0^2 + 4)" "x^3 + x^2 - 4*x - 3"
"3337b1" 3337 71 7 257 "(a1, -a1^2 + 3, -a1 - 1, 2*a1^2 + 2*a1 - 6, -2*a1^2 - 2*a1 + 6, 4)" "x^3 - 5*x + 3"
"26b1" 26 82 7 8 "(1, a1 - 1, -2*a1 + 2, -a1 - 1, 3*a1 - 3, 0)" "x^2 - 2*x - 1"
"246a1" 246 82 7 8 "(1, a1 - 1, -2*a1 + 2, -a1 - 1, 3*a1 - 3, 0)" "x^2 - 2*x - 1"
"170c1" 170 85 7 8 "(a1, -a1 - 3, -1, a1 - 1, a1 - 3, -2*a1 - 2)" "x^2 + 2*x - 1"
"595b1" 595 85 7 8 "(a1, -a1 - 3, -1, a1 - 1, a1 - 3, -2*a1 - 2)" "x^2 + 2*x - 1"
"258b1" 258 86 7 21 "(-1, 1/2*a0 + 1/2, -1/2*a0 + 1/2, 2, 0, 2)" "x^2 + 4*x - 17"
"435b1" 435 87 7 229 "(a1, -1, -2*a1^2 + 8, a1^2 - a1 - 2, a1^2 - a1 - 6, -a1^2 - a1 + 6)" "x^3 - 2*x^2 - 4*x + 7"
"178b1" 178 89 7 535120 "(a2, -1/2*a2^4 + 1/2*a2^3 + 7/2*a2^2 - 5/2*a2 - 4, -a2^2 + 4, 1/2*a2^4 - 4*a2^2 - a2 + 13/2, -a2^3 + 5*a2 + 2, -a2^4 + a2^3 + 8*a2^2 - 5*a2 - 11)" "x^5 + x^4 - 10*x^3 - 10*x^2 + 21*x + 17"
"26b1" 26 91 7 8 "(a2, -a2, a2 + 3, 1, -3*a2, -1)" "x^2 - 2"
1.82E+003 182 91 7 8 "(a2, -a2, a2 + 3, 1, -3*a2, -1)" "x^2 - 2"
"186c1" 186 93 7 229 "(a1, 1, -a1^2 - a1 + 2, -a1^2 - a1 + 4, 2*a1^2 - 6, 2*a1^2 - 4)" "x^3 - 4*x + 1"
"470c1" 470 94 7 8 "(-1, a1 + 1, -1/2*a1 + 3/2, -a1 - 3, -1/2*a1 + 7/2, -1/2*a1 - 5/2)" "x^2 + 2*x - 7"
"1786b1" 1786 94 7 8 "(-1, a1 + 1, -1/2*a1 + 3/2, -a1 - 3, -1/2*a1 + 7/2, -1/2*a1 - 5/2)" "x^2 + 2*x - 7"
"4171a1" 4171 97 7 49 "(a0, -a0^2 - 3*a0 - 2, 2*a0^2 + 5*a0 - 1, -a0^2 - 3*a0 - 3, a0 - 1, -a0 - 2)" "x^3 + 4*x^2 + 3*x - 1"
"26b1" 26 98 7 8 "(1, a1 - 1, -2*a1 + 2, 0, -2, 0)" "x^2 - 2*x - 1"
"294a1" 294 98 7 8 "(1, a1 - 1, -2*a1 + 2, 0, -2, 0)" "x^2 - 2*x - 1"
"303a1" 303 101 7 1124401088 "(a1, 1/4*a1^6 + 1/4*a1^5 - 5/2*a1^4 - 5/2*a1^3 + 19/4*a1^2 + 17/4*a1 + 1/2, -1/2*a1^6 - 3/4*a1^5 + 11/2*a1^4 + 7*a1^3 - 29/2*a1^2 - 45/4*a1 + 15/2, -1/4*a1^5 - 1/2*a1^4 + 5/2*a1^3 + 4*a1^2 - 21/4*a1 - 7/2, -1/4*a1^6 + 3*a1^4 - 35/4*a1^2 + 5, 3/4*a1^6 + a1^5 - 17/2*a1^4 - 9*a1^3 + 91/4*a1^2 + 12*a1 - 10)" "x^7 - 13*x^5 + 2*x^4 + 47*x^3 - 16*x^2 - 43*x + 14"
"214a1" 214 107 7 890531404 "(a1, -1/4*a1^6 - 1/4*a1^5 + 5/2*a1^4 + 3/4*a1^3 - 29/4*a1^2 + 2*a1 + 4, 1/2*a1^6 + 1/2*a1^5 - 4*a1^4 - 5/2*a1^3 + 15/2*a1^2 + a1, -1/2*a1^6 - 1/2*a1^5 + 4*a1^4 + 7/2*a1^3 - 15/2*a1^2 - 6*a1 + 2, 1/2*a1^5 - 1/2*a1^4 - 4*a1^3 + 5/2*a1^2 + 11/2*a1, 1/2*a1^6 - 11/2*a1^4 + 1/2*a1^3 + 17*a1^2 - 7/2*a1 - 8)" "x^7 + x^6 - 10*x^5 - 7*x^4 + 29*x^3 + 12*x^2 - 20*x - 8"
"None found" "none" 109 7 49 "(a1, -a1 - 2, -2*a1^2 - 3*a1, 3*a1^2 + 5*a1 - 3, a1^2 + 2*a1 - 5, -2*a1^2 - a1 + 3)" "x^3 + 2*x^2 - x - 1"
"37a1" 37 111 7 6224 "(a1, 1, -a1^3 - 2*a1^2 + 3*a1 + 4, 2*a1^3 + 2*a1^2 - 8*a1 - 2, 2*a1^2 - 6, -2*a1^3 - 4*a1^2 + 6*a1 + 10)" "x^4 - 6*x^2 + 2*x + 5"
"26b1" 26 113 7 321 "(a3, a3^2 - 5, -1, -a3^2 - a3 + 6, a3^2 - 4, a3^2 - 2)" "x^3 + 2*x^2 - 5*x - 9"
"4746b1" 4746 113 7 49 "(a2, -a2^2 - 2*a2 - 1, 2*a2^2 + 2*a2 - 3, -a2^2 - a2 - 2, -3*a2^2 - 4*a2 + 4, a2^2 + 4*a2 - 2)" "x^3 + 2*x^2 - x - 1"
"234a1" 234 117 7 8 "(a2, 0, -2*a2 + 2, -2*a2 + 2, 2, -1)" "x^2 - 2*x - 1"
"585i1" 585 117 7 8 "(a2, 0, -2*a2 + 2, -2*a2 + 2, 2, -1)" "x^2 - 2*x - 1"
"238a1" 238 119 7 9301 "(a0, -a0^3 - a0^2 + 4*a0 + 1, a0^3 + a0^2 - 4*a0, 1, -2*a0, 2*a0^3 + 4*a0^2 - 6*a0 - 4)" "x^4 + x^3 - 5*x^2 - x + 3"
"357d1" 357 119 7 9301 "(a0, -a0^3 - a0^2 + 4*a0 + 1, a0^3 + a0^2 - 4*a0, 1, -2*a0, 2*a0^3 + 4*a0^2 - 6*a0 - 4)" "x^4 + x^3 - 5*x^2 - x + 3"
"854d1" 854 122 7 229 "(1, 1/2*a2 - 1/2, -1/4*a2^2 - a2 + 17/4, 1/2*a2^2 + 1/2*a2 - 6, -1/4*a2^2 + 5/4, -1/4*a2^2 + 13/4)" "x^3 - x^2 - 21*x + 37"
"26b1" 26 123 7 8 "(a2, 1, -a2 + 2, a2 - 2, -a2 + 1, -3*a2 + 2)" "x^2 - 2"
"246c1" 246 123 7 8 "(a2, 1, -a2 + 2, a2 - 2, -a2 + 1, -3*a2 + 2)" "x^2 - 2"
"26b1" 26 127 7 603651293 "(a1, a1^6 - 2*a1^5 - 6*a1^4 + 12*a1^3 + 4*a1^2 - 11*a1 + 4, -a1^6 + a1^5 + 8*a1^4 - 6*a1^3 - 16*a1^2 + 5*a1 + 9, -a1^5 + a1^4 + 7*a1^3 - 7*a1^2 - 9*a1 + 8, a1^6 - 2*a1^5 - 6*a1^4 + 13*a1^3 + 3*a1^2 - 15*a1 + 6, -2*a1^6 + 6*a1^5 + 11*a1^4 - 38*a1^3 - 2*a1^2 + 39*a1 - 13)" "x^7 - 2*x^6 - 8*x^5 + 15*x^4 + 17*x^3 - 28*x^2 - 11*x + 15"
"258b1" 258 129 7 8 "(a2, -1, -a2 + 2, -2*a2 + 3, -a2 + 4, -5)" "x^2 - 2*x - 1"
"2451f1" 2451 129 7 8 "(a2, -1, -a2 + 2, -2*a2 + 3, -a2 + 4, -5)" "x^2 - 2*x - 1"
"19a1" 19 133 7 229 "(a3, -a3^2 + 5, a3^2 - a3 - 4, -1, -a3 + 3, a3^2 - a3 - 4)" "x^3 - 2*x^2 - 4*x + 7"
"274a1" 274 137 7 1435966564 "(a1, -1/2*a1^6 + 1/2*a1^5 + 11/2*a1^4 - 9/2*a1^3 - 33/2*a1^2 + 9*a1 + 21/2, a1^6 - a1^5 - 10*a1^4 + 8*a1^3 + 26*a1^2 - 13*a1 - 13, -a1^6 + 9*a1^4 - a1^3 - 21*a1^2 + 3*a1 + 11, 2*a1^6 - a1^5 - 19*a1^4 + 10*a1^3 + 47*a1^2 - 21*a1 - 22, a1^6 - 9*a1^4 + 2*a1^3 + 22*a1^2 - 8*a1 - 10)" "x^7 - 10*x^5 + 28*x^3 + 3*x^2 - 19*x - 7"
"15755a1" 15755 137 7 1435966564 "(a1, -1/2*a1^6 + 1/2*a1^5 + 11/2*a1^4 - 9/2*a1^3 - 33/2*a1^2 + 9*a1 + 21/2, a1^6 - a1^5 - 10*a1^4 + 8*a1^3 + 26*a1^2 - 13*a1 - 13, -a1^6 + 9*a1^4 - a1^3 - 21*a1^2 + 3*a1 + 11, 2*a1^6 - a1^5 - 19*a1^4 + 10*a1^3 + 47*a1^2 - 21*a1 - 22, a1^6 - 9*a1^4 + 2*a1^3 + 22*a1^2 - 8*a1 - 10)" "x^7 - 10*x^5 + 28*x^3 + 3*x^2 - 19*x - 7"
"834a1" 834 139 7 49 "(a1, -a1^2 - 2*a1, a1^2 + a1 - 4, 2*a1^2 + 3*a1 - 2, -3*a1^2 - 4*a1 + 1, -3*a1^2 - 5*a1 + 3)" "x^3 + 2*x^2 - x - 1"
"26b1" 26 143 7 1957 "(a1, -a1^3 + 3*a1^2 - 3, -2*a1^2 + 2*a1 + 4, a1^3 - a1^2 - 4*a1 + 2, 1, -1)" "x^4 - 3*x^3 - x^2 + 5*x + 1"
"715b1" 715 143 7 194616205 "(a2, -a2^5 - a2^4 + 8*a2^3 + 6*a2^2 - 11*a2 - 5, a2^5 + 2*a2^4 - 8*a2^3 - 14*a2^2 + 12*a2 + 15, 2*a2^5 + 2*a2^4 - 17*a2^3 - 13*a2^2 + 26*a2 + 14, -1, 1)" "x^6 - 10*x^4 + 2*x^3 + 24*x^2 - 7*x - 12"
"551c1" 551 145 7 8 "(a1, -2, 1, -2*a1 - 4, 2*a1, -2)" "x^2 + 2*x - 1"
"14210u1" 14210 145 7 8 "(a1, -2, 1, -2*a1 - 4, 2*a1, -2)" "x^2 + 2*x - 1"
"730c1" 730 146 7 404 "(-1, -1/2*a0 - 1/2, -1/8*a0^2 - 1/4*a0 + 15/8, 1/8*a0^2 + 1/4*a0 + 1/8, -1/4*a0^2 + 1/2*a0 + 27/4, -1/8*a0^2 - 1/4*a0 + 31/8)" "x^3 + 3*x^2 - 29*x - 63"
"730j1" 730 146 7 6224 "(1, -a1 + 1, 1/2*a1^3 - 2*a1^2 + 1/2*a1 + 2, -a1^3 + 7/2*a1^2 + 3*a1 - 9/2, a1^2 - 2*a1 - 3, -3/2*a1^2 + 4*a1 + 5/2)" "x^4 - 4*x^3 - 2*x^2 + 8*x + 1"
"26b1" 26 147 7 8 "(a4, 1, a4 + 3, 0, -2, -a4 + 3)" "x^2 + 2*x - 1"
"147c1" 147 147 7 8 "(a3, -1, -a3 - 3, 0, -2, a3 - 3)" "x^2 + 2*x - 1"
"147b1" 147 147 7 8 "(a4, 1, a4 + 3, 0, -2, -a4 + 3)" "x^2 + 2*x - 1"
"294a1" 294 147 7 8 "(a3, -1, -a3 - 3, 0, -2, a3 - 3)" "x^2 + 2*x - 1"
"None found" "none" 149 7 49 "(a0, -a0^2 - a0, a0^2 - a0 - 3, a0^2 + a0 - 3, -2*a0^2 + a0 + 2, -2*a0^2 - a0 + 2)" "x^3 + x^2 - 2*x - 1"
"2114c1" 2114 151 7 49 "(a0, -a0 - 1, -a0^2 - a0 - 1, -1, 2*a0^2 + 4*a0 - 3, 3*a0^2 + 5*a0 - 3)" "x^3 + 2*x^2 - x - 1"
"None found" "none" 151 7 257 "(a1, 2, -a1^2 - 2*a1 + 5, -2, 2*a1^2 + a1 - 7, -2*a1^2 + 6)" "x^3 - 5*x + 3"
"2355c1" 2355 157 7 390366232 "(a1, a1^4 - 3*a1^3 - 2*a1^2 + 7*a1 + 1, a1^6 - 4*a1^5 - 2*a1^4 + 18*a1^3 - 2*a1^2 - 20*a1 + 3, -a1^6 + 3*a1^5 + 4*a1^4 - 13*a1^3 - 5*a1^2 + 13*a1 + 2, -a1^6 + 4*a1^5 + a1^4 - 15*a1^3 + 3*a1^2 + 13*a1 + 1, a1^6 - 3*a1^5 - 5*a1^4 + 17*a1^3 + 4*a1^2 - 22*a1 + 3)" "x^7 - 5*x^6 + 2*x^5 + 21*x^4 - 22*x^3 - 21*x^2 + 27*x - 1"
"53a1" 53 159 7 1957 "(a0, 1, -a0^3 + a0^2 + 2*a0, a0^3 - 3*a0^2 - 2*a0 + 5, 4*a0^3 - 6*a0^2 - 12*a0 + 12, -3*a0^3 + 5*a0^2 + 8*a0 - 10)" "x^4 - 3*x^3 - x^2 + 7*x - 3"
"1120h1" 1120 160 7 8 "(0, 1/2*a2, 1, -1/2*a2, -a2, -2)" "x^2 - 32"
"1120f1" 1120 160 7 8 "(0, 1/2*a2, 1, -1/2*a2, -a2, -2)" "x^2 - 32"
"322b1" 322 161 7 2147108 "(a3, 1/2*a3^4 - 1/2*a3^3 - 4*a3^2 + 5/2*a3 + 11/2, -1/2*a3^4 - 1/2*a3^3 + 5*a3^2 + 5/2*a3 - 21/2, 1, -a3^4 + 8*a3^2 + a3 - 12, a3^4 - 9*a3^2 + 14)" "x^5 - 2*x^4 - 9*x^3 + 17*x^2 + 16*x - 27"
"330d1" 330 165 7 8 "(a0, -1, -1, -2*a0 - 4, -1, 4*a0 + 4)" "x^2 + 2*x - 1"
"1155b1" 1155 165 7 8 "(a0, -1, -1, -2*a0 - 4, -1, 4*a0 + 4)" "x^2 + 2*x - 1"
"26b1" 26 166 7 229 "(1, 1/2*a2 - 1/2, -1/8*a2^2 + 17/8, 1/8*a2^2 - a2 - 1/8, -1/2*a2 + 5/2, -1/8*a2^2 + 1/2*a2 - 11/8)" "x^3 - 5*x^2 - 17*x + 53"
"None found" "none" 167 7 4.22E+019 "(a1, 544/933*a1^11 + 157/933*a1^10 - 10187/933*a1^9 - 1063/311*a1^8 + 68788/933*a1^7 + 7637/311*a1^6 - 200347/933*a1^5 - 23356/311*a1^4 + 76833/311*a1^3 + 80543/933*a1^2 - 60181/933*a1 - 1147/311, -779/933*a1^11 + 631/933*a1^10 + 13207/933*a1^9 - 2957/311*a1^8 - 78341/933*a1^7 + 12545/311*a1^6 + 193997/933*a1^5 - 13559/311*a1^4 - 64281/311*a1^3 - 12787/933*a1^2 + 42281/933*a1 + 1204/311, -98/311*a1^11 - 34/311*a1^10 + 1802/311*a1^9 + 754/311*a1^8 - 11866/311*a1^7 - 5855/311*a1^6 + 33461/311*a1^5 + 18902/311*a1^4 - 37164/311*a1^3 - 21634/311*a1^2 + 8350/311*a1 + 2112/311, -623/933*a1^11 + 628/933*a1^10 + 10567/933*a1^9 - 3008/311*a1^8 - 62594/933*a1^7 + 13132/311*a1^6 + 154004/933*a1^5 - 15052/311*a1^4 - 49696/311*a1^3 - 12775/933*a1^2 + 24248/933*a1 + 1943/311, 652/933*a1^11 - 491/933*a1^10 - 11297/933*a1^9 + 2227/311*a1^8 + 69355/933*a1^7 - 8631/311*a1^6 - 182461/933*a1^5 + 5275/311*a1^4 + 67433/311*a1^3 + 30887/933*a1^2 - 59101/933*a1 - 755/311)" "x^12 - 2*x^11 - 17*x^10 + 33*x^9 + 103*x^8 - 189*x^7 - 277*x^6 + 447*x^5 + 363*x^4 - 433*x^3 - 205*x^2 + 120*x + 9"
"None found" "none" 167 7 4.22E+019 "(a1, 544/933*a1^11 + 157/933*a1^10 - 10187/933*a1^9 - 1063/311*a1^8 + 68788/933*a1^7 + 7637/311*a1^6 - 200347/933*a1^5 - 23356/311*a1^4 + 76833/311*a1^3 + 80543/933*a1^2 - 60181/933*a1 - 1147/311, -779/933*a1^11 + 631/933*a1^10 + 13207/933*a1^9 - 2957/311*a1^8 - 78341/933*a1^7 + 12545/311*a1^6 + 193997/933*a1^5 - 13559/311*a1^4 - 64281/311*a1^3 - 12787/933*a1^2 + 42281/933*a1 + 1204/311, -98/311*a1^11 - 34/311*a1^10 + 1802/311*a1^9 + 754/311*a1^8 - 11866/311*a1^7 - 5855/311*a1^6 + 33461/311*a1^5 + 18902/311*a1^4 - 37164/311*a1^3 - 21634/311*a1^2 + 8350/311*a1 + 2112/311, -623/933*a1^11 + 628/933*a1^10 + 10567/933*a1^9 - 3008/311*a1^8 - 62594/933*a1^7 + 13132/311*a1^6 + 154004/933*a1^5 - 15052/311*a1^4 - 49696/311*a1^3 - 12775/933*a1^2 + 24248/933*a1 + 1943/311, 652/933*a1^11 - 491/933*a1^10 - 11297/933*a1^9 + 2227/311*a1^8 + 69355/933*a1^7 - 8631/311*a1^6 - 182461/933*a1^5 + 5275/311*a1^4 + 67433/311*a1^3 + 30887/933*a1^2 - 59101/933*a1 - 755/311)" "x^12 - 2*x^11 - 17*x^10 + 33*x^9 + 103*x^8 - 189*x^7 - 277*x^6 + 447*x^5 + 363*x^4 - 433*x^3 - 205*x^2 + 120*x + 9"
"26b1" 26 169 7 49 "(a2, -a2^2 + 2*a2, -a2^2 + 2*a2 + 2, -a2^2 + 3, a2^2 - 2*a2 + 2, 0)" "x^3 - 2*x^2 - x + 1"
"338f1" 338 169 7 49 "(a1, -a1^2 - 2*a1, a1^2 + 2*a1 - 2, a1^2 - 3, -a1^2 - 2*a1 - 2, 0)" "x^3 + 2*x^2 - x - 1"
"1892a1" 1892 172 7 8 "(0, -a1, a1 + 2, a1 + 2, 2*a1 + 5, 2*a1 + 1)" "x^2 + 4*x + 2"
"3956b1" 3956 172 7 8 "(0, -a1, a1 + 2, a1 + 2, 2*a1 + 5, 2*a1 + 1)" "x^2 + 4*x + 2"
"346b1" 346 173 7 2.51E+015 "(a1, 9/116*a1^9 - 11/58*a1^8 - 69/58*a1^7 + 81/29*a1^6 + 645/116*a1^5 - 1439/116*a1^4 - 235/29*a1^3 + 465/29*a1^2 + 98/29*a1 - 303/116, -7/58*a1^9 + 15/29*a1^8 + 44/29*a1^7 - 213/29*a1^6 - 231/58*a1^5 + 1783/58*a1^4 - 179/29*a1^3 - 1023/29*a1^2 + 376/29*a1 + 371/58, -1/58*a1^9 - 37/116*a1^8 + 79/116*a1^7 + 537/116*a1^6 - 849/116*a1^5 - 579/29*a1^4 + 3125/116*a1^3 + 2767/116*a1^2 - 2913/116*a1 - 387/116, 23/116*a1^9 + 5/116*a1^8 - 343/116*a1^7 - 71/116*a1^6 + 400/29*a1^5 + 389/116*a1^4 - 2399/116*a1^3 - 921/116*a1^2 + 715/116*a1 + 275/58, -25/116*a1^9 - 13/116*a1^8 + 393/116*a1^7 + 173/116*a1^6 - 1007/58*a1^5 - 791/116*a1^4 + 3755/116*a1^3 + 1455/116*a1^2 - 2265/116*a1 - 140/29)" "x^10 - x^9 - 16*x^8 + 16*x^7 + 85*x^6 - 80*x^5 - 175*x^4 + 136*x^3 + 138*x^2 - 71*x - 25"
"None found" "none" 173 7 2.51E+015 "(a1, 9/116*a1^9 - 11/58*a1^8 - 69/58*a1^7 + 81/29*a1^6 + 645/116*a1^5 - 1439/116*a1^4 - 235/29*a1^3 + 465/29*a1^2 + 98/29*a1 - 303/116, -7/58*a1^9 + 15/29*a1^8 + 44/29*a1^7 - 213/29*a1^6 - 231/58*a1^5 + 1783/58*a1^4 - 179/29*a1^3 - 1023/29*a1^2 + 376/29*a1 + 371/58, -1/58*a1^9 - 37/116*a1^8 + 79/116*a1^7 + 537/116*a1^6 - 849/116*a1^5 - 579/29*a1^4 + 3125/116*a1^3 + 2767/116*a1^2 - 2913/116*a1 - 387/116, 23/116*a1^9 + 5/116*a1^8 - 343/116*a1^7 - 71/116*a1^6 + 400/29*a1^5 + 389/116*a1^4 - 2399/116*a1^3 - 921/116*a1^2 + 715/116*a1 + 275/58, -25/116*a1^9 - 13/116*a1^8 + 393/116*a1^7 + 173/116*a1^6 - 1007/58*a1^5 - 791/116*a1^4 + 3755/116*a1^3 + 1455/116*a1^2 - 2265/116*a1 - 140/29)" "x^10 - x^9 - 16*x^8 + 16*x^7 + 85*x^6 - 80*x^5 - 175*x^4 + 136*x^3 + 138*x^2 - 71*x - 25"
"354f1" 354 177 7 229 "(a3, -1, -a3^2 + a3 + 2, a3 + 3, -a3^2 - a3 + 2, -a3^2 - a3 + 4)" "x^3 - 4*x - 1"
"4094d1" 4094 178 7 8 "(-1, a2 + 1, -2*a2 - 5, -2, 2*a2 + 2, -2)" "x^2 + 4*x + 2"
"8722f1" 8722 178 7 8 "(-1, a2 + 1, -2*a2 - 5, -2, 2*a2 + 2, -2)" "x^2 + 4*x + 2"
"6265a1" 6265 179 7 49 "(a1, -a1 - 1, -a1^2 - a1, a1 - 1, 2*a1^2 + a1 - 4, -a1^2 - 2)" "x^3 + x^2 - 2*x - 1"
"362b1" 362 181 7 6664578334400 "(a1, 1/2*a1^8 - 2*a1^7 - 5/2*a1^6 + 16*a1^5 - 7/2*a1^4 - 59/2*a1^3 + 12*a1^2 + 25/2*a1 - 7/2, 1/4*a1^7 - 1/4*a1^6 - 5/2*a1^5 + 2*a1^4 + 25/4*a1^3 - 9/2*a1^2 - 5/2*a1 + 15/4, 1/4*a1^8 - 3/4*a1^7 - a1^6 + 5*a1^5 - 19/4*a1^4 - 5*a1^3 + 29/2*a1^2 - 1/4*a1 - 11/2, -1/2*a1^8 + 1/2*a1^7 + 6*a1^6 - 4*a1^5 - 47/2*a1^4 + 8*a1^3 + 35*a1^2 - 9/2*a1 - 12, -1/2*a1^8 + 7/4*a1^7 + 11/4*a1^6 - 29/2*a1^5 + 7/2*a1^4 + 121/4*a1^3 - 41/2*a1^2 - 18*a1 + 47/4)" "x^9 - 3*x^8 - 9*x^7 + 29*x^6 + 23*x^5 - 84*x^4 - 23*x^3 + 89*x^2 + 8*x - 27"
"366d1" 366 183 7 8 "(a0, -1, -1, -a0 - 2, -a0 - 2, -3)" "x^2 + 2*x - 1"
"915a1" 915 183 7 8 "(a0, -1, -1, -a0 - 2, -a0 - 2, -3)" "x^2 + 2*x - 1"
"27a1" 27 189 7 28 "(a4, 0, -a4, -1, -a4, -2)" "x^2 - 7"
"None found" "none" 193 7 70601 "(a1, a1^4 - 5*a1^2 + a1 + 1, -a1^4 + 5*a1^2 - 2*a1 - 4, -a1^4 - a1^3 + 3*a1^2 + a1 - 1, a1^4 + 3*a1^3 - 3*a1^2 - 8*a1 + 1, -a1^4 - 4*a1^3 + 3*a1^2 + 13*a1 - 4)" "x^5 + 2*x^4 - 5*x^3 - 7*x^2 + 7*x + 1"
"26b1" 26 194 7 8768 "(1, 1/2*a2 - 1/2, 1/16*a2^3 - 5/16*a2^2 - 37/16*a2 + 105/16, -1/16*a2^3 + 3/16*a2^2 + 29/16*a2 - 39/16, -1/4*a2^3 + 5/4*a2^2 + 31/4*a2 - 103/4, 1/8*a2^3 - 5/8*a2^2 - 37/8*a2 + 121/8)" "x^4 - 8*x^3 - 18*x^2 + 200*x - 287"
"194a1" 194 194 7 8768 "(1, 1/2*a2 - 1/2, 1/16*a2^3 - 5/16*a2^2 - 37/16*a2 + 105/16, -1/16*a2^3 + 3/16*a2^2 + 29/16*a2 - 39/16, -1/4*a2^3 + 5/4*a2^2 + 31/4*a2 - 103/4, 1/8*a2^3 - 5/8*a2^2 - 37/8*a2 + 121/8)" "x^4 - 8*x^3 - 18*x^2 + 200*x - 287"
"582b1" 582 194 7 8768 "(1, 1/2*a2 - 1/2, 1/16*a2^3 - 5/16*a2^2 - 37/16*a2 + 105/16, -1/16*a2^3 + 3/16*a2^2 + 29/16*a2 - 39/16, -1/4*a2^3 + 5/4*a2^2 + 31/4*a2 - 103/4, 1/8*a2^3 - 5/8*a2^2 - 37/8*a2 + 121/8)" "x^4 - 8*x^3 - 18*x^2 + 200*x - 287"
"3686d1" 3686 194 7 8768 "(1, 1/2*a2 - 1/2, 1/16*a2^3 - 5/16*a2^2 - 37/16*a2 + 105/16, -1/16*a2^3 + 3/16*a2^2 + 29/16*a2 - 39/16, -1/4*a2^3 + 5/4*a2^2 + 31/4*a2 - 103/4, 1/8*a2^3 - 5/8*a2^2 - 37/8*a2 + 121/8)" "x^4 - 8*x^3 - 18*x^2 + 200*x - 287"
"196b1" 196 196 7 8 "(0, -1/2*a2, 1/4*a2, 0, 4, 3/4*a2)" "x^2 - 32"
"196a1" 196 196 7 8 "(0, -1/2*a2, 1/4*a2, 0, 4, 3/4*a2)" "x^2 - 32"
"26b1" 26 197 7 2.25E+015 "(a2, 1/4*a2^8 + 1/2*a2^7 - 5/2*a2^6 - 17/4*a2^5 + 15/2*a2^4 + 9*a2^3 - 27/4*a2^2 - 7/4*a2 + 5/2, -1/2*a2^8 + 5*a2^6 - 3/2*a2^5 - 13*a2^4 + 7*a2^3 + 11/2*a2^2 - 9/2*a2 + 1, -a2^7 - a2^6 + 10*a2^5 + 8*a2^4 - 27*a2^3 - 18*a2^2 + 14*a2 + 9, -1/2*a2^9 + 1/4*a2^8 + 13/2*a2^7 - 3*a2^6 - 109/4*a2^5 + 15/2*a2^4 + 85/2*a2^3 + 3/4*a2^2 - 75/4*a2 - 3/2, 1/2*a2^9 + 1/2*a2^8 - 7*a2^7 - 11/2*a2^6 + 67/2*a2^5 + 20*a2^4 - 121/2*a2^3 - 27*a2^2 + 53/2*a2 + 11)" "x^10 - 15*x^8 + x^7 + 78*x^6 - 7*x^5 - 165*x^4 + 15*x^3 + 123*x^2 - 9*x - 26"
"None found" "none" 199 7 1.14E+015 "(a2, -2/9*a2^9 + 7/9*a2^8 + 23/9*a2^7 - 9*a2^6 - 89/9*a2^5 + 287/9*a2^4 + 151/9*a2^3 - 107/3*a2^2 - 35/3*a2 + 3, 4/9*a2^9 - 14/9*a2^8 - 37/9*a2^7 + 16*a2^6 + 97/9*a2^5 - 430/9*a2^4 - 122/9*a2^3 + 136/3*a2^2 + 37/3*a2 - 4, 7/9*a2^9 - 29/9*a2^8 - 58/9*a2^7 + 34*a2^6 + 109/9*a2^5 - 964/9*a2^4 - 74/9*a2^3 + 337/3*a2^2 + 40/3*a2 - 14, 11/9*a2^9 - 34/9*a2^8 - 104/9*a2^7 + 39*a2^6 + 278/9*a2^5 - 1070/9*a2^4 - 313/9*a2^3 + 362/3*a2^2 + 68/3*a2 - 14, -1/3*a2^9 + 4/3*a2^8 + 3*a2^7 - 44/3*a2^6 - 22/3*a2^5 + 50*a2^4 + 8*a2^3 - 181/3*a2^2 - 6*a2 + 13)" "x^10 - 5*x^9 - 4*x^8 + 51*x^7 - 32*x^6 - 154*x^5 + 151*x^4 + 168*x^3 - 168*x^2 - 54*x + 27"
"551c1" 551 203 7 8 "(2, -a4 + 2, 2*a4 - 2, -1, 2*a4 - 4, -2*a4 + 6)" "x^2 - 2*x - 1"
"3045h1" 3045 203 7 8 "(2, -a4 + 2, 2*a4 - 2, -1, 2*a4 - 4, -2*a4 + 6)" "x^2 - 2*x - 1"
"26b1" 26 205 7 229 "(a5, a5^2 - a5 - 2, 1, -a5^2 + 3, -a5^2 + a5 + 4, -a5^2 + 2*a5 + 3)" "x^3 - 4*x - 1"
"615b1" 615 205 7 229 "(a6, -a6^2 + a6 + 4, -1, a6^2 - 7, -a6^2 - a6 + 6, -a6^2 + 3)" "x^3 - 2*x^2 - 4*x + 7"
"618f1" 618 206 7 5744 "(1, -a3 + 1, a3^3 - 3*a3^2 - 2*a3 + 2, -2*a3^3 + 5*a3^2 + 8*a3 - 2, 2*a3^3 - 4*a3^2 - 8*a3, -2*a3^3 + 6*a3^2 + 4*a3 - 4)" "x^4 - 2*x^3 - 5*x^2 + 1"
"1030b1" 1030 206 7 29 "(-1, 1/2*a2 + 1/2, -1/2*a2 + 1/2, 1/2*a2 - 3/2, 4, -a2 + 1)" "x^2 - 29"
"3914c1" 3914 206 7 29 "(-1, 1/2*a2 + 1/2, -1/2*a2 + 1/2, 1/2*a2 - 3/2, 4, -a2 + 1)" "x^2 - 29"
"1449b1" 1449 207 7 8 "(a4, 0, -a4 + 3, -a4 - 1, -2*a4 + 2, 0)" "x^2 - 2*x - 1"
"1449a1" 1449 207 7 8 "(a1, 0, -a1 - 3, a1 - 1, -2*a1 - 2, 0)" "x^2 + 2*x - 1"
"2070j1" 2070 207 7 8 "(a1, 0, -a1 - 3, a1 - 1, -2*a1 - 2, 0)" "x^2 + 2*x - 1"
"2070c1" 2070 207 7 8 "(a4, 0, -a4 + 3, -a4 - 1, -2*a4 + 2, 0)" "x^2 - 2*x - 1"
"1254f1" 1254 209 7 8 "(a1, -a1 - 1, -1, -a1 - 2, -1, 3*a1 - 2)" "x^2 - 2"
"9614a1" 9614 209 7 8 "(a1, -a1 - 1, -1, -a1 - 2, -1, 3*a1 - 2)" "x^2 - 2"
"26b1" 26 211 7 26927210518644 "(a3, 9/58*a3^8 + 15/58*a3^7 - 2*a3^6 - 157/58*a3^5 + 235/29*a3^4 + 222/29*a3^3 - 637/58*a3^2 - 161/29*a3 + 62/29, 7/116*a3^8 + 31/116*a3^7 - 1/2*a3^6 - 309/116*a3^5 + 41/58*a3^4 + 183/29*a3^3 + 91/116*a3^2 - 93/58*a3 + 8/29, -13/58*a3^8 - 41/58*a3^7 + 2*a3^6 + 433/58*a3^5 - 101/29*a3^4 - 630/29*a3^3 - 111/58*a3^2 + 500/29*a3 + 78/29, 3/29*a3^8 - 19/58*a3^7 - 3/2*a3^6 + 112/29*a3^5 + 381/58*a3^4 - 374/29*a3^3 - 280/29*a3^2 + 665/58*a3 + 167/29, 3/116*a3^8 + 5/116*a3^7 - 33/116*a3^5 - 43/29*a3^4 + 8/29*a3^3 + 271/116*a3^2 + 7/29*a3 + 49/29)" "x^9 + x^8 - 14*x^7 - 11*x^6 + 66*x^5 + 36*x^4 - 123*x^3 - 38*x^2 + 72*x + 8"
"24898d1" 24898 211 7 49 "(a1, -a1^2 - a1 + 1, a1^2 + a1 - 4, -a1^2 - 4*a1, 3*a1^2 + 7*a1 - 2, 2*a1^2 + 3*a1 - 3)" "x^3 + 2*x^2 - x - 1"
"24898d1" 24898 211 7 229 "(a2, -a2 - 1, -a2^2 - a2 + 1, a2 - 1, -3, 2*a2^2 - 5)" "x^3 - 4*x + 1"
"212b1" 212 212 7 756 "(0, a2, -a2^2 - 2*a2 + 3, a2^2 + 2*a2 - 1, -a2^2 + 7, 5)" "x^3 + 3*x^2 - 3*x - 7"
"1484b1" 1484 212 7 756 "(0, a2, -a2^2 - 2*a2 + 3, a2^2 + 2*a2 - 1, -a2^2 + 7, 5)" "x^3 + 3*x^2 - 3*x - 7"
"645c1" 645 215 7 321 "(a1, a1 + 1, 1, -a1^2 - 2*a1 + 1, -a1^2 + a1 + 7, -2*a1 - 2)" "x^3 + 2*x^2 - 3*x - 3"
"2365a1" 2365 215 7 32503921 "(a3, a3^5 - 2*a3^4 - 6*a3^3 + 9*a3^2 + 6*a3 - 2, -1, -2*a3^5 + 3*a3^4 + 13*a3^3 - 12*a3^2 - 16*a3 + 2, -3*a3^5 + 3*a3^4 + 23*a3^3 - 9*a3^2 - 38*a3 - 9, -2*a3 + 2)" "x^6 - 3*x^5 - 5*x^4 + 17*x^3 + 3*x^2 - 17*x - 3"
"1085h1" 1085 217 7 138136 "(a3, -a3^3 + 2*a3^2 + 3*a3 - 4, a3^4 - 2*a3^3 - 5*a3^2 + 6*a3 + 6, -1, -a3^4 + 2*a3^3 + 4*a3^2 - 5*a3 - 2, -a3^4 + a3^3 + 6*a3^2 - 2*a3 - 8)" "x^5 - 3*x^4 - 5*x^3 + 16*x^2 + 6*x - 19"
"1090a1" 1090 218 7 621 "(-1, -a4 - 1, -a4^2 - 3*a4 + 1, 2, a4^2 + 3*a4 - 1, a4^2 + 4*a4 + 3)" "x^3 + 6*x^2 + 6*x - 7"
"1526a1" 1526 218 7 8 "(-1, a1 + 1, -a1 - 2, -a1 - 5, 2*a1 + 5, 2*a1 + 2)" "x^2 + 6*x + 7"
"None found" "none" 218 7 8 "(-1, a1 + 1, -a1 - 2, -a1 - 5, 2*a1 + 5, 2*a1 + 2)" "x^2 + 6*x + 7"
4.38E+003 438 219 7 4758548 "(a4, 1, -1/2*a4^5 - 1/2*a4^4 + 7/2*a4^3 + 3/2*a4^2 - 5*a4 + 1, 1/2*a4^5 + a4^4 - 7/2*a4^3 - 5*a4^2 + 5*a4 + 4, 1/2*a4^5 - 11/2*a4^3 + 13*a4, a4^3 - 5*a4 + 2)" "x^6 + x^5 - 9*x^4 - 5*x^3 + 20*x^2 + 4*x - 4"
"26b1" 26 221 7 21 "(a3, a3 + 1, -1, -a3 - 3, a3 + 2, -1)" "x^2 + x - 5"
"3094c1" 3094 221 7 229 "(a5, -a5 - 1, -a5^2 - a5 + 2, a5 - 3, a5^2 - 5, 1)" "x^3 - 4*x + 1"
"446b1" 446 223 7 3.20E+019 "(a2, 2*a2^11 - 11*a2^10 - 2*a2^9 + 98*a2^8 - 103*a2^7 - 245*a2^6 + 397*a2^5 + 123*a2^4 - 412*a2^3 + 129*a2^2 + 41*a2 - 18, 4*a2^11 - 21*a2^10 - 10*a2^9 + 196*a2^8 - 152*a2^7 - 550*a2^6 + 654*a2^5 + 468*a2^4 - 731*a2^3 + 20*a2^2 + 114*a2 + 4, -9*a2^11 + 45*a2^10 + 34*a2^9 - 435*a2^8 + 235*a2^7 + 1320*a2^6 - 1172*a2^5 - 1412*a2^4 + 1388*a2^3 + 350*a2^2 - 263*a2 - 61, -12*a2^11 + 60*a2^10 + 45*a2^9 - 578*a2^8 + 315*a2^7 + 1739*a2^6 - 1559*a2^5 - 1813*a2^4 + 1827*a2^3 + 390*a2^2 - 327*a2 - 68, a2^11 - 7*a2^10 + 6*a2^9 + 56*a2^8 - 119*a2^7 - 96*a2^6 + 400*a2^5 - 95*a2^4 - 403*a2^3 + 248*a2^2 + 36*a2 - 31)" "x^12 - 7*x^11 + 6*x^10 + 57*x^9 - 122*x^8 - 105*x^7 + 430*x^6 - 73*x^5 - 499*x^4 + 242*x^3 + 143*x^2 - 52*x - 19"
"2453b1" 2453 223 7 8 "(a0, a0, -a0 - 3, -a0 - 1, -a0, a0 + 3)" "x^2 + 2*x - 1"
"6690h1" 6690 223 7 1957 "(a1, -a1 - 1, -a1^3 - 3*a1^2 + a1 + 3, 2*a1^3 + 5*a1^2 - 2*a1 - 6, -2*a1^3 - 6*a1^2 + a1 + 4, a1^3 + 4*a1^2 - 8)" "x^4 + 4*x^3 + 2*x^2 - 5*x - 3"
"6690h1" 6690 223 7 8 "(a0, a0, -a0 - 3, -a0 - 1, -a0, a0 + 3)" "x^2 + 2*x - 1"
"4294d1" 4294 226 7 8 "(-1, -1/2*a1 - 1/2, 1/2*a1 - 3/2, a1 - 1, -4, 2)" "x^2 + 2*x - 7"
"4746b1" 4746 226 7 8 "(-1, -1/2*a1 - 1/2, 1/2*a1 - 3/2, a1 - 1, -4, 2)" "x^2 + 2*x - 7"
"4994b1" 4994 227 7 49 "(a3, -a3^2 - 2*a3 + 1, a3^2 + a3 - 3, a3^2 + 3*a3 - 2, a3^2 - a3 - 3, -3)" "x^3 + 2*x^2 - x - 1"
"4994b1" 4994 227 7 8 "(a0, -2, -a0, -2*a0 - 1, 2*a0 + 1, 2*a0 - 4)" "x^2 - 2"
"None found" "none" 227 7 8 "(a0, -2, -a0, -2*a0 - 1, 2*a0 + 1, 2*a0 - 4)" "x^2 - 2"
"None found" "none" 227 7 29 "(1, a2 - 1, 2, -a2 + 2, a2 + 2, -2*a2 + 2)" "x^2 - x - 7"
"None found" "none" 227 7 29 "(1, a2 - 1, 2, -a2 + 2, a2 + 2, -2*a2 + 2)" "x^2 - x - 7"
"None found" "none" 229 7 1.36E+017 "(a2, 1/4*a2^9 - 1/4*a2^8 - 13/4*a2^7 + 11/4*a2^6 + 55/4*a2^5 - 10*a2^4 - 83/4*a2^3 + 53/4*a2^2 + 8*a2 - 11/4, -1/4*a2^9 + 1/4*a2^8 + 11/4*a2^7 - 5/4*a2^6 - 43/4*a2^5 + 65/4*a2^3 + 15/4*a2^2 - 6*a2 - 3/4, -1/4*a2^10 + 3/4*a2^9 + 9/4*a2^8 - 31/4*a2^7 - 21/4*a2^6 + 53/2*a2^5 - 3/4*a2^4 - 131/4*a2^3 + 13/2*a2^2 + 41/4*a2 + 3/2, 1/2*a2^10 - 7/4*a2^9 - 17/4*a2^8 + 71/4*a2^7 + 39/4*a2^6 - 235/4*a2^5 - 1/2*a2^4 + 265/4*a2^3 - 49/4*a2^2 - 27/2*a2 + 23/4, 1/2*a2^10 - 3/2*a2^9 - 9/2*a2^8 + 29/2*a2^7 + 25/2*a2^6 - 46*a2^5 - 19/2*a2^4 + 105/2*a2^3 - 3*a2^2 - 31/2*a2 + 2)" "x^11 - 5*x^10 - 4*x^9 + 50*x^8 - 26*x^7 - 165*x^6 + 152*x^5 + 193*x^4 - 207*x^3 - 50*x^2 + 52*x + 1"
"None found" "none" 229 7 1.36E+017 "(a2, 1/4*a2^9 - 1/4*a2^8 - 13/4*a2^7 + 11/4*a2^6 + 55/4*a2^5 - 10*a2^4 - 83/4*a2^3 + 53/4*a2^2 + 8*a2 - 11/4, -1/4*a2^9 + 1/4*a2^8 + 11/4*a2^7 - 5/4*a2^6 - 43/4*a2^5 + 65/4*a2^3 + 15/4*a2^2 - 6*a2 - 3/4, -1/4*a2^10 + 3/4*a2^9 + 9/4*a2^8 - 31/4*a2^7 - 21/4*a2^6 + 53/2*a2^5 - 3/4*a2^4 - 131/4*a2^3 + 13/2*a2^2 + 41/4*a2 + 3/2, 1/2*a2^10 - 7/4*a2^9 - 17/4*a2^8 + 71/4*a2^7 + 39/4*a2^6 - 235/4*a2^5 - 1/2*a2^4 + 265/4*a2^3 - 49/4*a2^2 - 27/2*a2 + 23/4, 1/2*a2^10 - 3/2*a2^9 - 9/2*a2^8 + 29/2*a2^7 + 25/2*a2^6 - 46*a2^5 - 19/2*a2^4 + 105/2*a2^3 - 3*a2^2 - 31/2*a2 + 2)" "x^11 - 5*x^10 - 4*x^9 + 50*x^8 - 26*x^7 - 165*x^6 + 152*x^5 + 193*x^4 - 207*x^3 - 50*x^2 + 52*x + 1"
"690b1" 690 230 7 21 "(-1, -a0 - 1, -1, -a0, -a0 + 1, a0 + 4)" "x^2 + x - 5"
"77a1" 77 231 7 229 "(a4, 1, -a4^2 - a4 + 6, -1, -1, -3*a4^2 + a4 + 10)" "x^3 - 2*x^2 - 4*x + 7"
4.62E+003 462 231 7 21 "(a1, -1, 3, 1, -1, 1)" "x^2 + x - 5"
"696f1" 696 232 7 8 "(0, -a2, 2*a2 - 3, -4, a2 - 2, -4*a2 + 3)" "x^2 - 2*x - 1"
"3944a1" 3944 232 7 8 "(0, -a2, 2*a2 - 3, -4, a2 - 2, -4*a2 + 3)" "x^2 - 2*x - 1"
"470f1" 470 235 7 7379590429 "(a4, 1/2*a4^6 - 5*a4^4 + 12*a4^2 - 3/2*a4 - 3, 1, -1/2*a4^6 + 4*a4^4 + a4^3 - 7*a4^2 - 3/2*a4 + 1, -3/2*a4^6 + 13*a4^4 + 3*a4^3 - 25*a4^2 - 15/2*a4 + 3, -1/2*a4^6 - a4^5 + 5*a4^4 + 9*a4^3 - 11*a4^2 - 33/2*a4 + 2)" "x^7 - x^6 - 10*x^5 + 8*x^4 + 28*x^3 - 17*x^2 - 19*x + 2"
"705a1" 705 235 7 106069 "(a3, a3^4 + 2*a3^3 - 4*a3^2 - 5*a3 + 3, -1, -2*a3^4 - 5*a3^3 + 5*a3^2 + 10*a3 - 5, a3^4 + 3*a3^3 + a3^2 - 3*a3 - 5, a3^4 + a3^3 - 5*a3^2 - 3*a3 + 1)" "x^5 + 4*x^4 - 12*x^2 - 4*x + 7"
"236b1" 236 236 7 321 "(0, 1/2*a2, -1/12*a2^2 + 1/6*a2 + 2/3, -1/12*a2^2 - 1/3*a2 + 14/3, 1/6*a2^2 - 1/3*a2 - 10/3, -1/6*a2^2 + 1/3*a2 + 16/3)" "x^3 - 36*x + 8"
"474a1" 474 237 7 1957 "(a1, -1, -a1^3 - 3*a1^2 + 2, 2*a1^3 + 4*a1^2 - 4*a1 - 4, -a1^3 - a1^2 + 2*a1 - 3, -a1^3 + a1^2 + 6*a1 - 5)" "x^4 + 3*x^3 - x^2 - 5*x + 1"
"3318c1" 3318 237 7 8 "(a0, -1, 0, 1, -a0 + 4, -2*a0 + 1)" "x^2 - 2*x - 1"
"None found" "none" 237 7 8 "(a0, -1, 0, 1, -a0 + 4, -2*a0 + 1)" "x^2 - 2*x - 1"
"26b1" 26 239 7 1.50E+032 "(a1, 16771351/11107271*a1^16 - 2866545/1586753*a1^15 - 63196242/1586753*a1^14 + 548454202/11107271*a1^13 + 4613893796/11107271*a1^12 - 5855599700/11107271*a1^11 - 24126751696/11107271*a1^10 + 4398458577/1586753*a1^9 + 9469941088/1586753*a1^8 - 82906055202/11107271*a1^7 - 91822850183/11107271*a1^6 + 108744026520/11107271*a1^5 + 54627655140/11107271*a1^4 - 59185678764/11107271*a1^3 - 7102994828/11107271*a1^2 + 7384450585/11107271*a1 + 86905773/1586753, 22511799/11107271*a1^16 - 4122295/1586753*a1^15 - 85029894/1586753*a1^14 + 783888478/11107271*a1^13 + 6223382488/11107271*a1^12 - 8326382581/11107271*a1^11 - 32632212856/11107271*a1^10 + 6229020626/1586753*a1^9 + 12852845780/1586753*a1^8 - 117052738164/11107271*a1^7 - 125297104388/11107271*a1^6 + 153180936380/11107271*a1^5 + 75340597103/11107271*a1^4 - 83236570496/11107271*a1^3 - 10250253852/11107271*a1^2 + 10451957825/11107271*a1 + 132668371/1586753, 25677032/11107271*a1^16 - 4808908/1586753*a1^15 - 96911585/1586753*a1^14 + 913041769/11107271*a1^13 + 7082868525/11107271*a1^12 - 9683160111/11107271*a1^11 - 37044681867/11107271*a1^10 + 7231854089/1586753*a1^9 + 2075098395/226679*a1^8 - 135617406635/11107271*a1^7 - 140464578889/11107271*a1^6 + 176959976663/11107271*a1^5 + 83052116143/11107271*a1^4 - 95724702685/11107271*a1^3 - 10472865097/11107271*a1^2 + 11880604573/11107271*a1 + 142368927/1586753, 11795867/11107271*a1^16 - 1932394/1586753*a1^15 - 44322451/1586753*a1^14 + 372521827/11107271*a1^13 + 3225743447/11107271*a1^12 - 4005866463/11107271*a1^11 - 16804920021/11107271*a1^10 + 3031135855/1586753*a1^9 + 6564330462/1586753*a1^8 - 57627409134/11107271*a1^7 - 63241803565/11107271*a1^6 + 76509429271/11107271*a1^5 + 37396414775/11107271*a1^4 - 42451276279/11107271*a1^3 - 5056555641/11107271*a1^2 + 5464612926/11107271*a1 + 75908807/1586753, 12932667/11107271*a1^16 - 2279337/1586753*a1^15 - 48752987/1586753*a1^14 + 433764071/11107271*a1^13 + 3560780261/11107271*a1^12 - 4604482467/11107271*a1^11 - 18627365653/11107271*a1^10 + 3435101051/1586753*a1^9 + 7316629361/1586753*a1^8 - 64145365971/11107271*a1^7 - 71086180147/11107271*a1^6 + 82910826763/11107271*a1^5 + 42558283977/11107271*a1^4 - 44016310883/11107271*a1^3 - 5687517959/11107271*a1^2 + 5215960508/11107271*a1 + 67672208/1586753)" "x^17 - 28*x^15 + x^14 + 319*x^13 - 17*x^12 - 1903*x^11 + 91*x^10 + 6377*x^9 - 125*x^8 - 11967*x^7 - 233*x^6 + 11733*x^5 + 503*x^4 - 5015*x^3 - 94*x^2 + 609*x + 49"
"21749a1" 21749 239 7 49 "(a0, -a0^2 - a0 + 1, a0^2 - 3, -1, a0^2 - 2, a0^2 - 4)" "x^3 + x^2 - 2*x - 1"
"44215a1" 44215 239 7 1.50E+032 "(a1, 16771351/11107271*a1^16 - 2866545/1586753*a1^15 - 63196242/1586753*a1^14 + 548454202/11107271*a1^13 + 4613893796/11107271*a1^12 - 5855599700/11107271*a1^11 - 24126751696/11107271*a1^10 + 4398458577/1586753*a1^9 + 9469941088/1586753*a1^8 - 82906055202/11107271*a1^7 - 91822850183/11107271*a1^6 + 108744026520/11107271*a1^5 + 54627655140/11107271*a1^4 - 59185678764/11107271*a1^3 - 7102994828/11107271*a1^2 + 7384450585/11107271*a1 + 86905773/1586753, 22511799/11107271*a1^16 - 4122295/1586753*a1^15 - 85029894/1586753*a1^14 + 783888478/11107271*a1^13 + 6223382488/11107271*a1^12 - 8326382581/11107271*a1^11 - 32632212856/11107271*a1^10 + 6229020626/1586753*a1^9 + 12852845780/1586753*a1^8 - 117052738164/11107271*a1^7 - 125297104388/11107271*a1^6 + 153180936380/11107271*a1^5 + 75340597103/11107271*a1^4 - 83236570496/11107271*a1^3 - 10250253852/11107271*a1^2 + 10451957825/11107271*a1 + 132668371/1586753, 25677032/11107271*a1^16 - 4808908/1586753*a1^15 - 96911585/1586753*a1^14 + 913041769/11107271*a1^13 + 7082868525/11107271*a1^12 - 9683160111/11107271*a1^11 - 37044681867/11107271*a1^10 + 7231854089/1586753*a1^9 + 2075098395/226679*a1^8 - 135617406635/11107271*a1^7 - 140464578889/11107271*a1^6 + 176959976663/11107271*a1^5 + 83052116143/11107271*a1^4 - 95724702685/11107271*a1^3 - 10472865097/11107271*a1^2 + 11880604573/11107271*a1 + 142368927/1586753, 11795867/11107271*a1^16 - 1932394/1586753*a1^15 - 44322451/1586753*a1^14 + 372521827/11107271*a1^13 + 3225743447/11107271*a1^12 - 4005866463/11107271*a1^11 - 16804920021/11107271*a1^10 + 3031135855/1586753*a1^9 + 6564330462/1586753*a1^8 - 57627409134/11107271*a1^7 - 63241803565/11107271*a1^6 + 76509429271/11107271*a1^5 + 37396414775/11107271*a1^4 - 42451276279/11107271*a1^3 - 5056555641/11107271*a1^2 + 5464612926/11107271*a1 + 75908807/1586753, 12932667/11107271*a1^16 - 2279337/1586753*a1^15 - 48752987/1586753*a1^14 + 433764071/11107271*a1^13 + 3560780261/11107271*a1^12 - 4604482467/11107271*a1^11 - 18627365653/11107271*a1^10 + 3435101051/1586753*a1^9 + 7316629361/1586753*a1^8 - 64145365971/11107271*a1^7 - 71086180147/11107271*a1^6 + 82910826763/11107271*a1^5 + 42558283977/11107271*a1^4 - 44016310883/11107271*a1^3 - 5687517959/11107271*a1^2 + 5215960508/11107271*a1 + 67672208/1586753)" "x^17 - 28*x^15 + x^14 + 319*x^13 - 17*x^12 - 1903*x^11 + 91*x^10 + 6377*x^9 - 125*x^8 - 11967*x^7 - 233*x^6 + 11733*x^5 + 503*x^4 - 5015*x^3 - 94*x^2 + 609*x + 49"
"482a1" 482 241 7 31056073 "(a0, -a0^6 - 3*a0^5 + 3*a0^4 + 11*a0^3 - a0^2 - 6*a0 + 1, a0^6 + 2*a0^5 - 6*a0^4 - 9*a0^3 + 10*a0^2 + 8*a0 - 4, 2*a0^6 + 9*a0^5 + 3*a0^4 - 29*a0^3 - 28*a0^2 + 4*a0 + 3, -2*a0^6 - 8*a0^5 - 2*a0^4 + 23*a0^3 + 26*a0^2 + 3*a0 - 8, 2*a0^6 + 7*a0^5 - a0^4 - 21*a0^3 - 15*a0^2 + 2*a0 + 1)" "x^7 + 4*x^6 - 14*x^4 - 10*x^3 + 6*x^2 + 3*x - 1"
"None found" "none" 241 7 3.24E+019 "(a1, 11/8*a1^11 - 15/4*a1^10 - 79/4*a1^9 + 54*a1^8 + 773/8*a1^7 - 1043/4*a1^6 - 1631/8*a1^5 + 4025/8*a1^4 + 827/4*a1^3 - 1375/4*a1^2 - 741/8*a1 + 93/8, 11/8*a1^11 - 17/4*a1^10 - 75/4*a1^9 + 123/2*a1^8 + 669/8*a1^7 - 1199/4*a1^6 - 1223/8*a1^5 + 4717/8*a1^4 + 589/4*a1^3 - 1677/4*a1^2 - 737/8*a1 + 117/8, -15/16*a1^11 + 7/4*a1^10 + 61/4*a1^9 - 205/8*a1^8 - 1415/16*a1^7 + 1011/8*a1^6 + 3567/16*a1^5 - 3951/16*a1^4 - 1809/8*a1^3 + 1283/8*a1^2 + 813/16*a1 - 71/16, -5/4*a1^11 + 31/8*a1^10 + 135/8*a1^9 - 445/8*a1^8 - 589/8*a1^7 + 535/2*a1^6 + 255/2*a1^5 - 4119/8*a1^4 - 443/4*a1^3 + 711/2*a1^2 + 65*a1 - 85/8, 7/8*a1^11 - 5/2*a1^10 - 25/2*a1^9 + 145/4*a1^8 + 487/8*a1^7 - 707/4*a1^6 - 1039/8*a1^5 + 2759/8*a1^4 + 569/4*a1^3 - 947/4*a1^2 - 613/8*a1 + 47/8)" "x^12 - 3*x^11 - 14*x^10 + 44*x^9 + 65*x^8 - 219*x^7 - 123*x^6 + 444*x^5 + 105*x^4 - 328*x^3 - 45*x^2 + 18*x - 1"
"26b1" 26 245 7 8 "(a5, a5 + 1, 1, 0, -2*a5 - 3, -a5 + 3)" "x^2 - 2"
"245b1" 245 245 7 8 "(a6, a6 - 2, -1, 0, -2*a6 + 4, 2*a6)" "x^2 - 2*x - 1"
"245a1" 245 245 7 8 "(a7, -a7 + 2, 1, 0, -2*a7 + 4, -2*a7)" "x^2 - 2*x - 1"
"294a1" 294 245 7 8 "(a4, -a4 - 1, -1, 0, -2*a4 - 3, a4 - 3)" "x^2 - 2"
"490b1" 490 245 7 8 "(a4, -a4 - 1, -1, 0, -2*a4 - 3, a4 - 3)" "x^2 - 2"
"490c1" 490 245 7 8 "(a7, -a7 + 2, 1, 0, -2*a7 + 4, -2*a7)" "x^2 - 2*x - 1"
"490b1" 490 245 7 8 "(a6, a6 - 2, -1, 0, -2*a6 + 4, 2*a6)" "x^2 - 2*x - 1"
"490c1" 490 245 7 8 "(a5, a5 + 1, 1, 0, -2*a5 - 3, -a5 + 3)" "x^2 - 2"
"26b1" 26 247 7 288565 "(a4, -a4^2 + a4 + 3, a4^3 - 2*a4^2 - 2*a4 + 3, -a4^4 + 2*a4^3 + 3*a4^2 - 4*a4 - 1, a4^4 - 4*a4^3 + 9*a4 - 2, -1)" "x^5 - 4*x^4 + 12*x^2 - 5*x - 5"
"741b1" 741 247 7 2655049 "(a3, a3^3 - 5*a3, -a3^3 + 4*a3 + 1, -a3^3 - a3^2 + 5*a3 + 5, -a3^2 + 5, 1)" "x^5 - 9*x^3 - x^2 + 19*x + 4"
"None found" "none" 247 7 288565 "(a4, -a4^2 + a4 + 3, a4^3 - 2*a4^2 - 2*a4 + 3, -a4^4 + 2*a4^3 + 3*a4^2 - 4*a4 - 1, a4^4 - 4*a4^3 + 9*a4 - 2, -1)" "x^5 - 4*x^4 + 12*x^2 - 5*x - 5"
"26b1" 26 249 7 6224 "(a3, 1, -a3 + 2, -a3^2 + 3, -2*a3^3 + a3^2 + 8*a3 - 2, -a3^3 + 5*a3 - 2)" "x^4 - 2*x^3 - 4*x^2 + 8*x - 1"
"5478o1" 5478 249 7 8 "(a2, 1, -a2 - 4, -2, 2*a2 - 1, 0)" "x^2 + 2*x - 1"
"5727g1" 5727 249 7 8 "(a2, 1, -a2 - 4, -2, 2*a2 - 1, 0)" "x^2 + 2*x - 1"
"13805a1" 13805 251 7 4.20E+032 "(a1, 69/1216*a1^16 - 53/304*a1^15 - 219/152*a1^14 + 2819/608*a1^13 + 903/64*a1^12 - 1857/38*a1^11 - 79979/1216*a1^10 + 9809/38*a1^9 + 87207/608*a1^8 - 216513/304*a1^7 - 7719/64*a1^6 + 31535/32*a1^5 + 6777/152*a1^4 - 97473/152*a1^3 - 3451/76*a1^2 + 5735/38*a1 + 434/19, -21/304*a1^16 - 37/608*a1^15 + 653/304*a1^14 + 287/152*a1^13 - 109/4*a1^12 - 14297/608*a1^11 + 27443/152*a1^10 + 91723/608*a1^9 - 200943/304*a1^8 - 161767/304*a1^7 + 20607/16*a1^6 + 32619/32*a1^5 - 21707/19*a1^4 - 146925/152*a1^3 + 5341/19*a1^2 + 5948/19*a1 + 743/19, 7/19*a1^16 - 85/304*a1^15 - 801/76*a1^14 + 1009/152*a1^13 + 973/8*a1^12 - 17893/304*a1^11 - 13748/19*a1^10 + 68557/304*a1^9 + 89407/38*a1^8 - 18169/76*a1^7 - 4087*a1^6 - 9741/16*a1^5 + 518077/152*a1^4 + 205791/152*a1^3 - 68487/76*a1^2 - 10829/19*a1 - 1119/19, -4/19*a1^16 - 11/152*a1^15 + 967/152*a1^14 + 203/76*a1^13 - 313/4*a1^12 - 5829/152*a1^11 + 76243/152*a1^10 + 42431/152*a1^9 - 269993/152*a1^8 - 42051/38*a1^7 + 13471/4*a1^6 + 18769/8*a1^5 - 451977/152*a1^4 - 89797/38*a1^3 + 29179/38*a1^2 + 14852/19*a1 + 1622/19, -277/1216*a1^16 + 47/304*a1^15 + 2007/304*a1^14 - 2231/608*a1^13 - 4951/64*a1^12 + 616/19*a1^11 + 569887/1216*a1^10 - 9297/76*a1^9 - 946677/608*a1^8 + 34695/304*a1^7 + 177391/64*a1^6 + 12773/32*a1^5 - 720659/304*a1^4 - 127435/152*a1^3 + 25057/38*a1^2 + 6630/19*a1 + 606/19)" "x^17 - 2*x^16 - 28*x^15 + 54*x^14 + 317*x^13 - 582*x^12 - 1867*x^11 + 3178*x^10 + 6186*x^9 - 9216*x^8 - 11921*x^7 + 13680*x^6 + 13752*x^5 - 9400*x^4 - 8800*x^3 + 1920*x^2 + 2240*x + 256"
"506a1" 506 253 7 170701 "(a2, -a2^4 - 3*a2^3 + 3*a2^2 + 10*a2 + 1, 2*a2^4 + 5*a2^3 - 8*a2^2 - 18*a2 - 1, -2*a2^4 - 4*a2^3 + 9*a2^2 + 13*a2 - 3, -1, -a2^4 - 3*a2^3 + 3*a2^2 + 10*a2 - 1)" "x^5 + 4*x^4 - 14*x^2 - 13*x - 1"
"510b1" 510 255 7 229 "(a2, 1, 1, -a2^2 - a2 + 4, -a2^2 + a2 + 2, 2*a2^2 - 4)" "x^3 - 4*x + 1"
"None found" "none" 256 7 8 "(0, -a4, 0, 0, a4, 0)" "x^2 - 8"
"None found" "none" 256 7 8 "(0, -a4, 0, 0, a4, 0)" "x^2 - 8"
"37b1" 37 259 7 8 "(0, -1/2*a1, -1/4*a1 + 3, -1, 1/2*a1 - 3, 3/4*a1 + 1)" "x^2 - 32"
"37a1" 37 259 7 49 "(a4, -a4^2 + 1, a4^2 - 2*a4 - 3, -1, a4^2 - 2, -3*a4^2 + a4 + 5)" "x^3 - x^2 - 2*x + 1"
"1295a1" 1295 259 7 8 "(0, -1/2*a1, -1/4*a1 + 3, -1, 1/2*a1 - 3, 3/4*a1 + 1)" "x^2 - 32"
"48174a1" 48174 259 7 26825 "(a5, -a5^2 + 5, a5^2 - 3, -1, -a5^3 - 2*a5^2 + 4*a5 + 9, a5^3 - 5*a5 + 2)" "x^4 - 9*x^2 + x + 17"
"234a1" 234 261 7 8 "(a3, 0, 1, -2*a3 + 2, a3 - 2, -2*a3 + 1)" "x^2 - 2*x - 1"
1.31E+004 1305 261 7 229 "(a4, 0, 2*a4^2 - 8, a4^2 + a4 - 2, -a4^2 - a4 + 6, -a4^2 + a4 + 6)" "x^3 + 2*x^2 - 4*x - 7"
"4959g1" 4959 261 7 8 "(a3, 0, 1, -2*a3 + 2, a3 - 2, -2*a3 + 1)" "x^2 - 2*x - 1"
"786d1" 786 262 7 8 "(-1, -a3 - 1, a3 + 3, -a3, -2*a3, 3*a3 + 3)" "x^2 + 2*x - 1"
"786h1" 786 262 7 8 "(-1, -a3 - 1, a3 + 3, -a3, -2*a3, 3*a3 + 3)" "x^2 + 2*x - 1"
1.32E+004 1315 263 7 1.47E+032 "(a1, 85010/668441*a1^16 - 176339/668441*a1^15 - 2241538/668441*a1^14 + 4190472/668441*a1^13 + 23933223/668441*a1^12 - 39391493/668441*a1^11 - 132842471/668441*a1^10 + 186205893/668441*a1^9 + 408643734/668441*a1^8 - 465256935/668441*a1^7 - 683138027/668441*a1^6 + 586757546/668441*a1^5 + 555506577/668441*a1^4 - 303194375/668441*a1^3 - 158959094/668441*a1^2 + 17326687/668441*a1 + 6750715/668441, 143848/668441*a1^16 - 199927/668441*a1^15 - 3606981/668441*a1^14 + 4857661/668441*a1^13 + 36214213/668441*a1^12 - 46276983/668441*a1^11 - 186415557/668441*a1^10 + 219401931/668441*a1^9 + 523834133/668441*a1^8 - 543663031/668441*a1^7 - 789092227/668441*a1^6 + 674003695/668441*a1^5 + 572350237/668441*a1^4 - 346151879/668441*a1^3 - 145298876/668441*a1^2 + 28757148/668441*a1 + 6281260/668441, -43514/668441*a1^16 + 387440/668441*a1^15 + 1361549/668441*a1^14 - 9030537/668441*a1^13 - 16703058/668441*a1^12 + 83027396/668441*a1^11 + 103963774/668441*a1^10 - 382002286/668441*a1^9 - 350947554/668441*a1^8 + 922397046/668441*a1^7 + 629731852/668441*a1^6 - 1116987852/668441*a1^5 - 539197064/668441*a1^4 + 560122572/668441*a1^3 + 159965080/668441*a1^2 - 45325035/668441*a1 - 6004853/668441, -47976/668441*a1^16 - 59269/668441*a1^15 + 1131843/668441*a1^14 + 1309592/668441*a1^13 - 10511458/668441*a1^12 - 11592732/668441*a1^11 + 48829796/668441*a1^10 + 52587277/668441*a1^9 - 120312720/668441*a1^8 - 129264310/668441*a1^7 + 158327476/668441*a1^6 + 165877480/668441*a1^5 - 115340775/668441*a1^4 - 92636576/668441*a1^3 + 50139863/668441*a1^2 + 9500135/668441*a1 - 3596410/668441, 81195/668441*a1^16 - 58067/668441*a1^15 - 2131430/668441*a1^14 + 1449193/668441*a1^13 + 22632202/668441*a1^12 - 14341944/668441*a1^11 - 124620842/668441*a1^10 + 71906730/668441*a1^9 + 378754518/668441*a1^8 - 193643585/668441*a1^7 - 622117679/668441*a1^6 + 271133268/668441*a1^5 + 494039702/668441*a1^4 - 164894323/668441*a1^3 - 139152381/668441*a1^2 + 15752546/668441*a1 + 8602445/668441)" "x^17 - x^16 - 26*x^15 + 24*x^14 + 274*x^13 - 225*x^12 - 1505*x^11 + 1041*x^10 + 4613*x^9 - 2467*x^8 - 7815*x^7 + 2761*x^6 + 6709*x^5 - 974*x^4 - 2284*x^3 - 239*x^2 + 135*x + 19"
"1590k1" 1590 265 7 8 "(a1, a1, -1, -2*a1 - 4, 2, -2*a1 - 1)" "x^2 + 2*x - 1"
"1590k1" 1590 265 7 21 "(a2, -a2 - 1, -1, -3, -5, 2*a2 + 1)" "x^2 + x - 5"
"26765b1" 26765 265 7 8 "(a1, a1, -1, -2*a1 - 4, 2, -2*a1 - 1)" "x^2 + 2*x - 1"
"38a1" 38 266 7 29 "(-1, 1/2*a0 + 1/2, 1/2*a0 - 1/2, -1, -1/2*a0 + 3/2, -a0 - 1)" "x^2 - 29"
"798h1" 798 266 7 469 "(1, 1/2*a3 - 1/2, -1/4*a3^2 - 1/2*a3 + 27/4, -1, 1/2*a3^2 + 1/2*a3 - 9, 1/2*a3^2 + a3 - 23/2)" "x^3 - x^2 - 29*x + 61"
"1330i1" 1330 266 7 469 "(1, 1/2*a3 - 1/2, -1/4*a3^2 - 1/2*a3 + 27/4, -1, 1/2*a3^2 + 1/2*a3 - 9, 1/2*a3^2 + a3 - 23/2)" "x^3 - x^2 - 29*x + 61"
"3458a1" 3458 266 7 29 "(-1, 1/2*a0 + 1/2, 1/2*a0 - 1/2, -1, -1/2*a0 + 3/2, -a0 - 1)" "x^2 - 29"
"267b1" 267 267 7 23377 "(a5, -1, a5^2 - 3, -a5^3 - a5^2 + 5*a5 + 5, -a5^2 + a5 + 2, -a5^3 - a5^2 + 4*a5 + 6)" "x^4 - x^3 - 7*x^2 + 6*x + 7"
"None found" "none" 267 7 49 "(a2, 1, a2^2 + 2*a2 - 3, -3*a2^2 - 8*a2 - 2, a2^2 + 3*a2 - 2, a2^2 + 3*a2 - 3)" "x^3 + 4*x^2 + 3*x - 1"
"804d1" 804 268 7 21 "(0, a2, -1, -a2 + 1, 5, a2 + 1)" "x^2 - x - 5"
"542a1" 542 271 7 592661 "(a0, -a0^5 - 3*a0^4 + a0^3 + 5*a0^2 - a0 - 1, a0^5 + 4*a0^4 + 2*a0^3 - 6*a0^2 - 4*a0, a0^5 + 2*a0^4 - 5*a0^3 - 7*a0^2 + 5*a0 + 2, a0^5 + 3*a0^4 - a0^3 - 4*a0^2 + 3*a0 - 2, -a0^5 - 5*a0^4 - 4*a0^3 + 9*a0^2 + 7*a0 - 4)" "x^6 + 4*x^5 + x^4 - 9*x^3 - 4*x^2 + 5*x + 1"
"542b1" 542 271 7 2.30E+028 "(a1, 4966/763*a1^15 - 26858/763*a1^14 - 49243/763*a1^13 + 474081/763*a1^12 - 128875/763*a1^11 - 3063997/763*a1^10 + 3087453/763*a1^9 + 8695891/763*a1^8 - 1814217/109*a1^7 - 9799739/763*a1^6 + 19637291/763*a1^5 + 2259965/763*a1^4 - 1419203/109*a1^3 - 760516/763*a1^2 + 1897494/763*a1 + 406918/763, -2931/763*a1^15 + 15816/763*a1^14 + 29560/763*a1^13 - 280031/763*a1^12 + 67017/763*a1^11 + 1819457/763*a1^10 - 1760793/763*a1^9 - 5219351/763*a1^8 + 1043544/109*a1^7 + 6055573/763*a1^6 - 11326071/763*a1^5 - 1666627/763*a1^4 + 817097/109*a1^3 + 533915/763*a1^2 - 1063246/763*a1 - 229968/763, 4747/763*a1^15 - 25342/763*a1^14 - 48836/763*a1^13 + 449248/763*a1^12 - 91214/763*a1^11 - 2925197/763*a1^10 + 2735429/763*a1^9 + 8428341/763*a1^8 - 1639143/109*a1^7 - 9899208/763*a1^6 + 17856212/763*a1^5 + 2928854/763*a1^4 - 1289523/109*a1^3 - 966229/763*a1^2 + 1684731/763*a1 + 377795/763, 7251/763*a1^15 - 38561/763*a1^14 - 74756/763*a1^13 + 683219/763*a1^12 - 136608/763*a1^11 - 4444746/763*a1^10 + 4161832/763*a1^9 + 12784879/763*a1^8 - 2498112/109*a1^7 - 14949252/763*a1^6 + 27259040/763*a1^5 + 4317273/763*a1^4 - 1977730/109*a1^3 - 1421394/763*a1^2 + 2608957/763*a1 + 583200/763, -5580/763*a1^15 + 29983/763*a1^14 + 56725/763*a1^13 - 531848/763*a1^12 + 121076/763*a1^11 + 3466885/763*a1^10 - 3325823/763*a1^9 - 10012231/763*a1^8 + 1988907/109*a1^7 + 11833721/763*a1^6 - 21864055/763*a1^5 - 3620923/763*a1^4 + 1631536/109*a1^3 + 1218208/763*a1^2 - 2212377/763*a1 - 498223/763)" "x^16 - 5*x^15 - 12*x^14 + 91*x^13 + 11*x^12 - 620*x^11 + 381*x^10 + 1953*x^9 - 1863*x^8 - 2853*x^7 + 3137*x^6 + 1830*x^5 - 1758*x^4 - 831*x^3 + 308*x^2 + 204*x + 27"
"None found" "none" 271 7 2.30E+028 "(a1, 4966/763*a1^15 - 26858/763*a1^14 - 49243/763*a1^13 + 474081/763*a1^12 - 128875/763*a1^11 - 3063997/763*a1^10 + 3087453/763*a1^9 + 8695891/763*a1^8 - 1814217/109*a1^7 - 9799739/763*a1^6 + 19637291/763*a1^5 + 2259965/763*a1^4 - 1419203/109*a1^3 - 760516/763*a1^2 + 1897494/763*a1 + 406918/763, -2931/763*a1^15 + 15816/763*a1^14 + 29560/763*a1^13 - 280031/763*a1^12 + 67017/763*a1^11 + 1819457/763*a1^10 - 1760793/763*a1^9 - 5219351/763*a1^8 + 1043544/109*a1^7 + 6055573/763*a1^6 - 11326071/763*a1^5 - 1666627/763*a1^4 + 817097/109*a1^3 + 533915/763*a1^2 - 1063246/763*a1 - 229968/763, 4747/763*a1^15 - 25342/763*a1^14 - 48836/763*a1^13 + 449248/763*a1^12 - 91214/763*a1^11 - 2925197/763*a1^10 + 2735429/763*a1^9 + 8428341/763*a1^8 - 1639143/109*a1^7 - 9899208/763*a1^6 + 17856212/763*a1^5 + 2928854/763*a1^4 - 1289523/109*a1^3 - 966229/763*a1^2 + 1684731/763*a1 + 377795/763, 7251/763*a1^15 - 38561/763*a1^14 - 74756/763*a1^13 + 683219/763*a1^12 - 136608/763*a1^11 - 4444746/763*a1^10 + 4161832/763*a1^9 + 12784879/763*a1^8 - 2498112/109*a1^7 - 14949252/763*a1^6 + 27259040/763*a1^5 + 4317273/763*a1^4 - 1977730/109*a1^3 - 1421394/763*a1^2 + 2608957/763*a1 + 583200/763, -5580/763*a1^15 + 29983/763*a1^14 + 56725/763*a1^13 - 531848/763*a1^12 + 121076/763*a1^11 + 3466885/763*a1^10 - 3325823/763*a1^9 - 10012231/763*a1^8 + 1988907/109*a1^7 + 11833721/763*a1^6 - 21864055/763*a1^5 - 3620923/763*a1^4 + 1631536/109*a1^3 + 1218208/763*a1^2 - 2212377/763*a1 - 498223/763)" "x^16 - 5*x^15 - 12*x^14 + 91*x^13 + 11*x^12 - 620*x^11 + 381*x^10 + 1953*x^9 - 1863*x^8 - 2853*x^7 + 3137*x^6 + 1830*x^5 - 1758*x^4 - 831*x^3 + 308*x^2 + 204*x + 27"
1.82E+003 182 273 7 8 "(a2, -1, 0, 1, 2, -1)" "x^2 - 2*x - 1"
"3003f1" 3003 273 7 8 "(a2, -1, 0, 1, 2, -1)" "x^2 - 2*x - 1"
"275b1" 275 275 7 8 "(a2, -2*a2 - 2, 0, 2, 1, 2*a2 + 6)" "x^2 + 2*x - 1"
"550i1" 550 275 7 8 "(a2, -2*a2 - 2, 0, 2, 1, 2*a2 + 6)" "x^2 + 2*x - 1"
"92b1" 92 276 7 8 "(0, 1, -a1 + 1, -a1 - 1, 4*a1 + 4, 4*a1 + 4)" "x^2 + 2*x - 1"
1.38E+004 1380 276 7 8 "(0, 1, -a1 + 1, -a1 - 1, 4*a1 + 4, 4*a1 + 4)" "x^2 + 2*x - 1"
"26b1" 26 278 7 617176 "(1, -1/2*a4 + 1/2, 1/80*a4^4 - 1/10*a4^3 - 9/40*a4^2 + 9/5*a4 + 5/16, -1/40*a4^4 + 1/5*a4^3 + 1/5*a4^2 - 13/5*a4 + 29/8, -1/8*a4^3 + 5/8*a4^2 + 25/8*a4 - 37/8, 3/80*a4^4 - 1/20*a4^3 - 57/40*a4^2 - 17/20*a4 + 91/16)" "x^5 - 3*x^4 - 38*x^3 + 34*x^2 + 245*x - 175"
"834a1" 834 278 7 8 "(-1, -1/2*a2 - 1/2, 1/2*a2 - 1/2, 1/2*a2 - 5/2, a2 + 2, 1/2*a2 - 9/2)" "x^2 + 2*x - 7"
"5838b1" 5838 278 7 8 "(-1, -1/2*a2 - 1/2, 1/2*a2 - 1/2, 1/2*a2 - 5/2, a2 + 2, 1/2*a2 - 9/2)" "x^2 + 2*x - 7"
"558g1" 558 279 7 229 "(a2, 0, a2^2 - a2 - 2, -a2^2 + a2 + 4, -2*a2^2 + 6, 2*a2^2 - 4)" "x^3 - 4*x - 1"
"26b1" 26 281 7 9.35E+029 "(a1, -13665/151856*a1^15 - 4453/75928*a1^14 + 360823/151856*a1^13 + 192549/151856*a1^12 - 3808793/151856*a1^11 - 393525/37964*a1^10 + 10220589/75928*a1^9 + 6015201/151856*a1^8 - 58521373/151856*a1^7 - 5496873/75928*a1^6 + 85533697/151856*a1^5 + 10360255/151856*a1^4 - 55824393/151856*a1^3 - 495365/9491*a1^2 + 6299351/75928*a1 + 2953595/151856, -5097/75928*a1^15 - 73/9491*a1^14 + 142687/75928*a1^13 - 599/75928*a1^12 - 1608837/75928*a1^11 + 87021/37964*a1^10 + 4649421/37964*a1^9 - 1750371/75928*a1^8 - 28958277/75928*a1^7 + 3301675/37964*a1^6 + 46755675/75928*a1^5 - 9261139/75928*a1^4 - 34843841/75928*a1^3 + 249793/9491*a1^2 + 1195511/9491*a1 + 1626197/75928, 599/18982*a1^15 + 3543/37964*a1^14 - 15197/18982*a1^13 - 42087/18982*a1^12 + 305459/37964*a1^11 + 777481/37964*a1^10 - 1529371/37964*a1^9 - 3507895/37964*a1^8 + 975791/9491*a1^7 + 1985247/9491*a1^6 - 2259949/18982*a1^5 - 8255973/37964*a1^4 + 1467147/37964*a1^3 + 739551/9491*a1^2 + 371647/37964*a1 + 33381/18982, -12727/151856*a1^15 + 204/9491*a1^14 + 346247/151856*a1^13 - 99493/151856*a1^12 - 3793561/151856*a1^11 + 144027/18982*a1^10 + 10706791/75928*a1^9 - 6451005/151856*a1^8 - 66041481/151856*a1^7 + 8902335/75928*a1^6 + 108659163/151856*a1^5 - 20422589/151856*a1^4 - 86268599/151856*a1^3 + 1062797/75928*a1^2 + 1623433/9491*a1 + 5250719/151856, 1845/18982*a1^15 + 1311/37964*a1^14 - 101841/37964*a1^13 - 8453/18982*a1^12 + 1130421/37964*a1^11 - 2887/9491*a1^10 - 3205285/18982*a1^9 + 515547/18982*a1^8 + 19453149/37964*a1^7 - 2577655/18982*a1^6 - 7543373/9491*a1^5 + 8568847/37964*a1^4 + 5259886/9491*a1^3 - 3199653/37964*a1^2 - 5388413/37964*a1 - 668059/37964)" "x^16 + x^15 - 27*x^14 - 24*x^13 + 294*x^12 + 229*x^11 - 1650*x^10 - 1115*x^9 + 5054*x^8 + 2991*x^7 - 8223*x^6 - 4526*x^5 + 6338*x^4 + 3707*x^3 - 1604*x^2 - 1215*x - 167"
"13916g1" 13916 284 7 321 "(0, -1/2*a1, -1/4*a1^2 - 1/2*a1 + 3, 2, a1 + 2, 1/2*a1^2 + a1 - 4)" "x^3 + 2*x^2 - 16*x - 8"
"57c1" 57 285 7 8 "(a6, 1, -1, -a6 + 1, -3*a6 + 5, -a6 - 1)" "x^2 - 2*x - 1"
"570d1" 570 285 7 8 "(a6, 1, -1, -a6 + 1, -3*a6 + 5, -a6 - 1)" "x^2 - 2*x - 1"
"570b1" 570 285 7 8 "(a5, -1, -1, a5 + 1, -a5 + 1, -a5 + 5)" "x^2 - 2*x - 1"
"1995b1" 1995 285 7 28 "(a3, -1, 1, -a3 - 1, a3 + 3, -a3 - 3)" "x^2 - 7"
"3705b1" 3705 285 7 8 "(a5, -1, -1, a5 + 1, -a5 + 1, -a5 + 5)" "x^2 - 2*x - 1"
"26b1" 26 287 7 633117 "(a4, a4 + 1, a4^4 - 7*a4^2 + a4 + 6, 1, -a4^4 - a4^3 + 3*a4^2 + 2*a4 + 3, -a4^4 - a4^3 + 6*a4^2 + 3*a4 - 4)" "x^5 + x^4 - 6*x^3 - 4*x^2 + 6*x + 3"
"574c1" 574 287 7 257 "(a2, a2^2 - a2 - 3, 2, 1, -2, -a2^2 + 6)" "x^3 - x^2 - 4*x + 3"
"861c1" 861 287 7 49 "(a3, -a3 + 3, -2*a3^2 + 4*a3 + 2, -1, 2*a3^2 - 6*a3, -a3^2 + 5*a3 - 1)" "x^3 - 4*x^2 + 3*x + 1"
"1435c1" 1435 287 7 633117 "(a4, a4 + 1, a4^4 - 7*a4^2 + a4 + 6, 1, -a4^4 - a4^3 + 3*a4^2 + 2*a4 + 3, -a4^4 - a4^3 + 6*a4^2 + 3*a4 - 4)" "x^5 + x^4 - 6*x^3 - 4*x^2 + 6*x + 3"
"26b1" 26 290 7 469 "(1, 1/2*a3 - 1/2, 1, -1/4*a3^2 - 1/2*a3 + 19/4, 1/2*a3^2 + a3 - 19/2, -1/2*a3^2 - 3/2*a3 + 12)" "x^3 - x^2 - 29*x + 61"
"58b1" 58 290 7 621 "(1, a4 - 1, -1, -a4^2 + 2*a4 + 5, -2*a4 + 4, 2*a4^2 - 7*a4 - 1)" "x^3 - 6*x^2 + 6*x + 7"
"14210u1" 14210 290 7 469 "(1, 1/2*a3 - 1/2, 1, -1/4*a3^2 - 1/2*a3 + 19/4, 1/2*a3^2 + a3 - 19/2, -1/2*a3^2 - 3/2*a3 + 12)" "x^3 - x^2 - 29*x + 61"
"26b1" 26 291 7 578530924 "(a7, 1, -1/2*a7^6 + 9/2*a7^4 - 1/2*a7^3 - 10*a7^2 + 5/2*a7 + 4, 1/2*a7^6 + 1/2*a7^5 - 5*a7^4 - 7/2*a7^3 + 25/2*a7^2 + 3*a7 - 2, a7^4 - a7^3 - 7*a7^2 + 5*a7 + 6, a7^3 - 5*a7 + 2)" "x^7 - 11*x^5 + x^4 + 34*x^3 - 5*x^2 - 24*x - 4"
"885a1" 885 295 7 1254052688 "(a3, a3^5 - 3*a3^4 - 4*a3^3 + 14*a3^2 - a3 - 3, -1, a3^6 - a3^5 - 10*a3^4 + 8*a3^3 + 25*a3^2 - 15*a3 - 4, -a3^6 + 2*a3^5 + 5*a3^4 - 8*a3^3 - 3*a3^2 - 2*a3 + 3, -2*a3^6 + 4*a3^5 + 15*a3^4 - 23*a3^3 - 30*a3^2 + 23*a3 + 7)" "x^7 - x^6 - 10*x^5 + 7*x^4 + 27*x^3 - 11*x^2 - 10*x - 1"
"3835a1" 3835 295 7 1254052688 "(a3, a3^5 - 3*a3^4 - 4*a3^3 + 14*a3^2 - a3 - 3, -1, a3^6 - a3^5 - 10*a3^4 + 8*a3^3 + 25*a3^2 - 15*a3 - 4, -a3^6 + 2*a3^5 + 5*a3^4 - 8*a3^3 - 3*a3^2 - 2*a3 + 3, -2*a3^6 + 4*a3^5 + 15*a3^4 - 23*a3^3 - 30*a3^2 + 23*a3 + 7)" "x^7 - x^6 - 10*x^5 + 7*x^4 + 27*x^3 - 11*x^2 - 10*x - 1"
"5015a1" 5015 295 7 49 "(a1, -a1^2 - a1 + 1, -1, 2*a1^2 + a1 - 3, -a1^2 - 2*a1 - 2, 2*a1^2 - 3)" "x^3 + x^2 - 2*x - 1"
"2072d1" 2072 296 7 229 "(0, 1/2*a2, 1/2*a2 - 1, 1/4*a2^2 - 1/2*a2 - 1, -3/4*a2^2 + 12, -3/4*a2^2 + 13)" "x^3 - 4*x^2 - 16*x + 56"
"894g1" 894 298 7 617176 "(1, -a4 + 1, 2/5*a4^4 - 7/5*a4^3 - 9/5*a4^2 + 18/5*a4 + 14/5, -3/5*a4^4 + 13/5*a4^3 + 1/5*a4^2 - 22/5*a4 + 9/5, -1/5*a4^4 + 1/5*a4^3 + 12/5*a4^2 + 6/5*a4 - 22/5, 3/5*a4^4 - 18/5*a4^3 + 19/5*a4^2 + 37/5*a4 - 44/5)" "x^5 - 4*x^4 - 4*x^3 + 15*x^2 + 5*x - 11"
"26b1" 26 299 7 6.08E+015 "(a6, -3/16*a6^9 - 3/16*a6^8 + 47/16*a6^7 + 11/4*a6^6 - 233/16*a6^5 - 195/16*a6^4 + 397/16*a6^3 + 141/8*a6^2 - 23/2*a6 - 7, 7/32*a6^9 + 9/32*a6^8 - 117/32*a6^7 - 65/16*a6^6 + 649/32*a6^5 + 565/32*a6^4 - 1379/32*a6^3 - 199/8*a6^2 + 61/2*a6 + 11, -3/16*a6^9 + 1/16*a6^8 + 51/16*a6^7 - a6^6 - 289/16*a6^5 + 73/16*a6^4 + 617/16*a6^3 - 29/8*a6^2 - 25*a6 - 4, 7/32*a6^9 + 13/32*a6^8 - 105/32*a6^7 - 95/16*a6^6 + 481/32*a6^5 + 849/32*a6^4 - 711/32*a6^3 - 39*a6^2 + 21/2*a6 + 15, -1)" "x^10 - x^9 - 19*x^8 + 18*x^7 + 127*x^6 - 109*x^5 - 357*x^4 + 252*x^3 + 400*x^2 - 192*x - 128"
"1495b1" 1495 299 7 6.08E+015 "(a6, -3/16*a6^9 - 3/16*a6^8 + 47/16*a6^7 + 11/4*a6^6 - 233/16*a6^5 - 195/16*a6^4 + 397/16*a6^3 + 141/8*a6^2 - 23/2*a6 - 7, 7/32*a6^9 + 9/32*a6^8 - 117/32*a6^7 - 65/16*a6^6 + 649/32*a6^5 + 565/32*a6^4 - 1379/32*a6^3 - 199/8*a6^2 + 61/2*a6 + 11, -3/16*a6^9 + 1/16*a6^8 + 51/16*a6^7 - a6^6 - 289/16*a6^5 + 73/16*a6^4 + 617/16*a6^3 - 29/8*a6^2 - 25*a6 - 4, 7/32*a6^9 + 13/32*a6^8 - 105/32*a6^7 - 95/16*a6^6 + 481/32*a6^5 + 849/32*a6^4 - 711/32*a6^3 - 39*a6^2 + 21/2*a6 + 15, -1)" "x^10 - x^9 - 19*x^8 + 18*x^7 + 127*x^6 - 109*x^5 - 357*x^4 + 252*x^3 + 400*x^2 - 192*x - 128"
"5083b1" 5083 299 7 6.08E+015 "(a6, -3/16*a6^9 - 3/16*a6^8 + 47/16*a6^7 + 11/4*a6^6 - 233/16*a6^5 - 195/16*a6^4 + 397/16*a6^3 + 141/8*a6^2 - 23/2*a6 - 7, 7/32*a6^9 + 9/32*a6^8 - 117/32*a6^7 - 65/16*a6^6 + 649/32*a6^5 + 565/32*a6^4 - 1379/32*a6^3 - 199/8*a6^2 + 61/2*a6 + 11, -3/16*a6^9 + 1/16*a6^8 + 51/16*a6^7 - a6^6 - 289/16*a6^5 + 73/16*a6^4 + 617/16*a6^3 - 29/8*a6^2 - 25*a6 - 4, 7/32*a6^9 + 13/32*a6^8 - 105/32*a6^7 - 95/16*a6^6 + 481/32*a6^5 + 849/32*a6^4 - 711/32*a6^3 - 39*a6^2 + 21/2*a6 + 15, -1)" "x^10 - x^9 - 19*x^8 + 18*x^7 + 127*x^6 - 109*x^5 - 357*x^4 + 252*x^3 + 400*x^2 - 192*x - 128"
"None found" "none" 299 7 21 "(a1, a1, -a1 + 1, 1, a1 + 2, 1)" "x^2 + x - 5"
"26b1" 26 301 7 1957 "(a0, -a0^3 - 2*a0^2 + 2*a0 + 1, -a0^2 - 2*a0, 1, -a0^3 - 3*a0^2 + a0, 3*a0^3 + 8*a0^2 - 2*a0 - 7)" "x^4 + 4*x^3 + 2*x^2 - 5*x - 3"
"None found" "none" 301 7 301909 "(a2, -a2^3 + 4*a2 + 1, a2^4 - 5*a2^2 + a2 + 3, -1, a2^4 - a2^3 - 5*a2^2 + 4*a2 + 5, -a2^3 - 2*a2^2 + 4*a2 + 5)" "x^5 - x^4 - 6*x^3 + 5*x^2 + 6*x - 1"
"906a1" 906 302 7 8 "(-1, -a3 - 1, 0, 2*a3 - 2, 2*a3 + 2, -2*a3 - 4)" "x^2 - 2"
9.06E+003 906 302 7 6224 "(1, -1/2*a5 + 1/2, -1/4*a5^2 + 1/2*a5 + 11/4, -1/8*a5^3 + 3/8*a5^2 + 17/8*a5 - 3/8, 1/4*a5^3 - 1/2*a5^2 - 15/4*a5 + 1, 1/8*a5^3 + 1/8*a5^2 - 17/8*a5 - 17/8)" "x^4 - 22*x^2 - 24*x + 29"
"2114c1" 2114 302 7 8 "(-1, -a3 - 1, 0, 2*a3 - 2, 2*a3 + 2, -2*a3 - 4)" "x^2 - 2"
"606d1" 606 303 7 8 "(a2, -1, -a2 - 1, -a2 - 2, 2, 2*a2 - 3)" "x^2 - 2"
"24846c1" 24846 303 7 8 "(a2, -1, -a2 - 1, -a2 - 2, 2, 2*a2 - 3)" "x^2 - 2"
"None found" "none" 307 7 12263945120689 "(a6, a6^9 + 6*a6^8 + 5*a6^7 - 29*a6^6 - 48*a6^5 + 37*a6^4 + 91*a6^3 - 7*a6^2 - 52*a6 - 6, -a6^9 - 6*a6^8 - 4*a6^7 + 34*a6^6 + 50*a6^5 - 57*a6^4 - 111*a6^3 + 22*a6^2 + 69*a6 + 7, -a6^9 - 8*a6^8 - 16*a6^7 + 22*a6^6 + 95*a6^5 + 21*a6^4 - 143*a6^3 - 56*a6^2 + 71*a6 + 9, 2*a6^8 + 10*a6^7 + 3*a6^6 - 46*a6^5 - 42*a6^4 + 58*a6^3 + 50*a6^2 - 23*a6 - 6, a6^9 + 7*a6^8 + 8*a6^7 - 35*a6^6 - 67*a6^5 + 49*a6^4 + 129*a6^3 - 12*a6^2 - 75*a6 - 12)" "x^10 + 7*x^9 + 10*x^8 - 28*x^7 - 73*x^6 + 16*x^5 + 128*x^4 + 26*x^3 - 69*x^2 - 18*x - 1"
"622a1" 622 311 7 6.35E+045 "(a1, -1333218028123436678/106341562018576649119*a1^21 + 1367946423136236257/106341562018576649119*a1^20 + 49328489263264063408/106341562018576649119*a1^19 - 48698618113739814119/106341562018576649119*a1^18 - 780071490285978038489/106341562018576649119*a1^17 + 731764058773877640305/106341562018576649119*a1^16 + 6883435129930837071209/106341562018576649119*a1^15 - 6029718454604453812991/106341562018576649119*a1^14 - 37117408682963362048611/106341562018576649119*a1^13 + 29643589741202443321628/106341562018576649119*a1^12 + 125904278451589035925849/106341562018576649119*a1^11 - 88764078616540344648331/106341562018576649119*a1^10 - 266400248133720180154691/106341562018576649119*a1^9 + 159042733994278329421197/106341562018576649119*a1^8 + 336261615438596631255820/106341562018576649119*a1^7 - 162008001244132052237259/106341562018576649119*a1^6 - 230084343080867524283273/106341562018576649119*a1^5 + 85032171085335940948597/106341562018576649119*a1^4 + 71086649415902837709445/106341562018576649119*a1^3 - 17051195074052769029465/106341562018576649119*a1^2 - 6284781941061791629214/106341562018576649119*a1 - 2035191172956196509/2473059581827363933, -21242974024529590/106341562018576649119*a1^21 - 1434491652110563978/106341562018576649119*a1^20 + 3209217338769634321/106341562018576649119*a1^19 + 48282217898366329351/106341562018576649119*a1^18 - 94578303848943192367/106341562018576649119*a1^17 - 676590780104692901915/106341562018576649119*a1^16 + 1270815302353166006692/106341562018576649119*a1^15 + 5102603103564094427213/106341562018576649119*a1^14 - 9439579417621543494677/106341562018576649119*a1^13 - 22357866355125222974699/106341562018576649119*a1^12 + 41280678241435124160901/106341562018576649119*a1^11 + 57441564627509462184517/106341562018576649119*a1^10 - 106882614769975285857639/106341562018576649119*a1^9 - 83882843771650414225579/106341562018576649119*a1^8 + 158593036380613931304765/106341562018576649119*a1^7 + 66319079553842412941717/106341562018576649119*a1^6 - 126427357236440356717803/106341562018576649119*a1^5 - 28369596568106140688094/106341562018576649119*a1^4 + 47782658911006380501745/106341562018576649119*a1^3 + 8238984211089590694971/106341562018576649119*a1^2 - 6439892278957108980653/106341562018576649119*a1 - 30557112079337671866/2473059581827363933, 504418815307781939/106341562018576649119*a1^21 - 1021065885099576655/106341562018576649119*a1^20 - 16604493185137817773/106341562018576649119*a1^19 + 33056103831567470983/106341562018576649119*a1^18 + 226015020692329680027/106341562018576649119*a1^17 - 435479859114799908685/106341562018576649119*a1^16 - 1641199345467818455453/106341562018576649119*a1^15 + 2956466065705411278227/106341562018576649119*a1^14 + 6861291586789371631471/106341562018576649119*a1^13 - 10597470554231302540041/106341562018576649119*a1^12 - 16835996047441621774817/106341562018576649119*a1^11 + 16674122550262725807072/106341562018576649119*a1^10 + 24918511100968457522896/106341562018576649119*a1^9 + 4438859628397342489851/106341562018576649119*a1^8 - 26019738542206463779319/106341562018576649119*a1^7 - 47775179818655449476697/106341562018576649119*a1^6 + 24030985031406062666739/106341562018576649119*a1^5 + 52435121331955185077307/106341562018576649119*a1^4 - 16943596953875463472297/106341562018576649119*a1^3 - 19178717695756638586794/106341562018576649119*a1^2 + 5034806783502259963324/106341562018576649119*a1 + 39595990210148060592/2473059581827363933, -949531404212230610/106341562018576649119*a1^21 + 1404606076267666588/106341562018576649119*a1^20 + 31860596932911204463/106341562018576649119*a1^19 - 46971051976902102427/106341562018576649119*a1^18 - 443194299396015920727/106341562018576649119*a1^17 + 654211796697056201475/106341562018576649119*a1^16 + 3289263238009343513027/106341562018576649119*a1^15 - 4909640949988760976063/106341562018576649119*a1^14 - 13911354804136965503755/106341562018576649119*a1^13 + 21492498277511827879899/106341562018576649119*a1^12 + 32809246067622506014675/106341562018576649119*a1^11 - 55848212667582391995663/106341562018576649119*a1^10 - 37152948138636735453445/106341562018576649119*a1^9 + 85393270687204170694965/106341562018576649119*a1^8 + 5583375858342452495631/106341562018576649119*a1^7 - 76499001320510405514675/106341562018576649119*a1^6 + 25817695878266203276277/106341562018576649119*a1^5 + 39666285577392711382787/106341562018576649119*a1^4 - 19730812320902394420787/106341562018576649119*a1^3 - 10921342107175992074971/106341562018576649119*a1^2 + 3730720089149782086801/106341562018576649119*a1 + 28348484555942980958/2473059581827363933, 321226424163746048/106341562018576649119*a1^21 + 3801901583102434231/106341562018576649119*a1^20 - 18552232937067380885/106341562018576649119*a1^19 - 129228358922459727636/106341562018576649119*a1^18 + 415822499184604316188/106341562018576649119*a1^17 + 1838181668057575308290/106341562018576649119*a1^16 - 4909941181790293676126/106341562018576649119*a1^15 - 14192061774488959599914/106341562018576649119*a1^14 + 33996329744624815911691/106341562018576649119*a1^13 + 64611826293534390239510/106341562018576649119*a1^12 - 143009619717835957566812/106341562018576649119*a1^11 - 177164866440755054595842/106341562018576649119*a1^10 + 363135701598845915429974/106341562018576649119*a1^9 + 289742407609106508486970/106341562018576649119*a1^8 - 534122568544790467437490/106341562018576649119*a1^7 - 275603753317877822408499/106341562018576649119*a1^6 + 420748487273236095304854/106341562018576649119*a1^5 + 145078038418898400990846/106341562018576649119*a1^4 - 153245015674186693664582/106341562018576649119*a1^3 - 38930610655526174141722/106341562018576649119*a1^2 + 18299352733124579928085/106341562018576649119*a1 + 96767738356241061887/2473059581827363933)" "x^22 - 2*x^21 - 35*x^20 + 70*x^19 + 517*x^18 - 1033*x^17 - 4195*x^16 + 8357*x^15 + 20417*x^14 - 40403*x^13 - 61287*x^12 + 119701*x^11 + 113017*x^10 - 215615*x^9 - 124399*x^8 + 228609*x^7 + 76453*x^6 - 133295*x^5 - 23503*x^4 + 36742*x^3 + 3587*x^2 - 3200*x - 473"
"2198c1" 2198 314 7 48599781 "(-1, 1/2*a1 + 1/2, -5/416*a1^5 - 9/416*a1^4 + 109/208*a1^3 + 105/208*a1^2 - 1893/416*a1 - 1113/416, -1/208*a1^5 - 7/208*a1^4 + 7/52*a1^3 + 43/52*a1^2 - 155/208*a1 - 389/208, 5/416*a1^5 + 35/416*a1^4 - 83/208*a1^3 - 573/208*a1^2 + 1217/416*a1 + 7639/416, 1/52*a1^5 + 1/104*a1^4 - 41/52*a1^3 + 5/26*a1^2 + 81/13*a1 - 93/104)" "x^6 - 51*x^4 + 24*x^3 + 683*x^2 - 280*x - 2489"
"630g1" 630 315 7 8 "(a2, 0, -1, -1, -2*a2 - 4, 2*a2)" "x^2 + 2*x - 1"
"630b1" 630 315 7 8 "(a5, 0, 1, -1, -2*a5 + 4, -2*a5)" "x^2 - 2*x - 1"
"7245g1" 7245 315 7 8 "(a5, 0, 1, -1, -2*a5 + 4, -2*a5)" "x^2 - 2*x - 1"
"7245d1" 7245 315 7 8 "(a2, 0, -1, -1, -2*a2 - 4, 2*a2)" "x^2 + 2*x - 1"
"None found" "none" 317 7 1.68E+027 "(a1, -2929/9028*a1^14 + 3305/4514*a1^13 + 31073/4514*a1^12 - 35302/2257*a1^11 - 248773/4514*a1^10 + 573563/4514*a1^9 + 919473/4514*a1^8 - 4378801/9028*a1^7 - 3005667/9028*a1^6 + 1935368/2257*a1^5 + 1592783/9028*a1^4 - 5224775/9028*a1^3 - 38286/2257*a1^2 + 248643/2257*a1 - 29861/9028, 6887/4514*a1^14 - 10787/4514*a1^13 - 144831/4514*a1^12 + 232879/4514*a1^11 + 1153635/4514*a1^10 - 1909601/4514*a1^9 - 4281777/4514*a1^8 + 3670378/2257*a1^7 + 7216765/4514*a1^6 - 12991581/4514*a1^5 - 2205724/2257*a1^4 + 8622515/4514*a1^3 + 846049/4514*a1^2 - 1576987/4514*a1 + 2893/2257, -175/122*a1^14 + 251/122*a1^13 + 3703/122*a1^12 - 5485/122*a1^11 - 29711/122*a1^10 + 45521/122*a1^9 + 111249/122*a1^8 - 88481/61*a1^7 - 189781/122*a1^6 + 316101/122*a1^5 + 59244/61*a1^4 - 210853/122*a1^3 - 22725/122*a1^2 + 38633/122*a1 - 55/61, 93/4514*a1^14 - 1741/4514*a1^13 - 2817/4514*a1^12 + 35583/4514*a1^11 + 30911/4514*a1^10 - 277307/4514*a1^9 - 158111/4514*a1^8 + 512581/2257*a1^7 + 392617/4514*a1^6 - 1800053/4514*a1^5 - 224672/2257*a1^4 + 1279815/4514*a1^3 + 214893/4514*a1^2 - 246421/4514*a1 - 3148/2257, -2172/2257*a1^14 + 2583/2257*a1^13 + 45696/2257*a1^12 - 56593/2257*a1^11 - 365097/2257*a1^10 + 469928/2257*a1^9 + 1366782/2257*a1^8 - 1822073/2257*a1^7 - 2356643/2257*a1^6 + 3225372/2257*a1^5 + 1542585/2257*a1^4 - 2096010/2257*a1^3 - 333769/2257*a1^2 + 368683/2257*a1 + 6380/2257)" "x^15 - x^14 - 22*x^13 + 22*x^12 + 188*x^11 - 184*x^10 - 786*x^9 + 723*x^8 + 1666*x^7 - 1315*x^6 - 1715*x^5 + 910*x^4 + 829*x^3 - 168*x^2 - 129*x + 1"
"957a1" 957 319 7 230985139597 "(a4, -1/9*a4^7 - 1/9*a4^6 + 16/9*a4^5 + 10/9*a4^4 - 26/3*a4^3 - 25/9*a4^2 + 113/9*a4 + 14/9, 4/9*a4^7 - 2/9*a4^6 - 49/9*a4^5 + 17/9*a4^4 + 56/3*a4^3 - 26/9*a4^2 - 143/9*a4 + 13/9, -2/9*a4^7 - 1/3*a4^6 + 3*a4^5 + 34/9*a4^4 - 12*a4^3 - 98/9*a4^2 + 13*a4 + 29/9, -1, 2/3*a4^7 - 2/9*a4^6 - 73/9*a4^5 + 16/9*a4^4 + 86/3*a4^3 - 2*a4^2 - 254/9*a4 - 13/9)" "x^8 - 13*x^6 - x^5 + 50*x^4 + 7*x^3 - 54*x^2 - 5*x + 1"
"2240q1" 2240 320 7 8 "(0, -a6, -1, -a6, 2*a6, 2)" "x^2 - 8"
"2240u1" 2240 320 7 8 "(0, -a6, -1, -a6, 2*a6, 2)" "x^2 - 8"
"19a1" 19 323 7 1957 "(a2, a2^3 - 2*a2^2 - 4*a2 + 5, -a2^3 + a2^2 + 3*a2 - 4, -a2^3 + 2*a2^2 + 3*a2 - 8, -2*a2^3 + 4*a2^2 + 7*a2 - 11, -2*a2^3 + a2^2 + 7*a2 - 4)" "x^4 - 6*x^2 - x + 7"
"323a1" 323 323 7 28145473 "(a4, 1/2*a4^5 - 1/2*a4^4 - 4*a4^3 + 5/2*a4^2 + 6*a4 - 1/2, -a4^4 + a4^3 + 7*a4^2 - 4*a4 - 9, 1/2*a4^5 - 1/2*a4^4 - 4*a4^3 + 5/2*a4^2 + 7*a4 + 1/2, 1/2*a4^5 - 1/2*a4^4 - 5*a4^3 + 5/2*a4^2 + 11*a4 + 3/2, -a4^5 + a4^4 + 8*a4^3 - 4*a4^2 - 13*a4 - 1)" "x^6 - 2*x^5 - 9*x^4 + 15*x^3 + 23*x^2 - 23*x - 21"
"4522a1" 4522 323 7 106069 "(a3, -a3^3 - 2*a3^2 + 2*a3 + 1, a3^4 + 3*a3^3 - a3^2 - 6*a3 - 1, a3^3 + 2*a3^2 - a3 - 2, -2*a3^4 - 6*a3^3 + 2*a3^2 + 9*a3 - 1, -a3^2 - a3 - 2)" "x^5 + 3*x^4 - 2*x^3 - 7*x^2 + 2*x + 1"
"27778f1" 27778 323 7 28145473 "(a4, 1/2*a4^5 - 1/2*a4^4 - 4*a4^3 + 5/2*a4^2 + 6*a4 - 1/2, -a4^4 + a4^3 + 7*a4^2 - 4*a4 - 9, 1/2*a4^5 - 1/2*a4^4 - 4*a4^3 + 5/2*a4^2 + 7*a4 + 1/2, 1/2*a4^5 - 1/2*a4^4 - 5*a4^3 + 5/2*a4^2 + 11*a4 + 3/2, -a4^5 + a4^4 + 8*a4^3 - 4*a4^2 - 13*a4 - 1)" "x^6 - 2*x^5 - 9*x^4 + 15*x^3 + 23*x^2 - 23*x - 21"
3.25E+003 325 325 7 8 "(a8, -2*a8 + 2, 0, a8, a8 + 4, 1)" "x^2 - 2*x - 1"
"325d1" 325 325 7 8 "(a5, -2*a5 - 2, 0, a5, -a5 + 4, -1)" "x^2 + 2*x - 1"
"650f1" 650 325 7 8 "(a7, a7 - 1, 0, -2*a7, a7 + 1, 1)" "x^2 - 2*x - 1"
"650k1" 650 325 7 8 "(a5, -2*a5 - 2, 0, a5, -a5 + 4, -1)" "x^2 + 2*x - 1"
"650d1" 650 325 7 8 "(a8, -2*a8 + 2, 0, a8, a8 + 4, 1)" "x^2 - 2*x - 1"
"975i1" 975 325 7 8 "(a7, a7 - 1, 0, -2*a7, a7 + 1, 1)" "x^2 - 2*x - 1"
"None found" "none" 327 7 367901428451840 "(a3, 1, -1/6*a3^8 - 1/6*a3^7 + 8/3*a3^6 + 7/3*a3^5 - 40/3*a3^4 - 10*a3^3 + 125/6*a3^2 + 85/6*a3 - 1/3, -1/3*a3^8 + 2/3*a3^7 + 13/3*a3^6 - 22/3*a3^5 - 53/3*a3^4 + 22*a3^3 + 68/3*a3^2 - 44/3*a3 + 1/3, 3*a3^8 - 7/2*a3^7 - 79/2*a3^6 + 33*a3^5 + 163*a3^4 - 72*a3^3 - 217*a3^2 - 5/2*a3 + 23/2, -4/3*a3^8 + 5/3*a3^7 + 52/3*a3^6 - 46/3*a3^5 - 212/3*a3^4 + 30*a3^3 + 278/3*a3^2 + 31/3*a3 - 2/3)" "x^9 - 3*x^8 - 11*x^7 + 35*x^6 + 34*x^5 - 122*x^4 - 29*x^3 + 127*x^2 + 9*x - 5"
"987d1" 987 329 7 49 "(a3, -a3^2 + 1, -a3 - 1, -1, a3^2 - 3, a3^2 - 2*a3 - 2)" "x^3 + x^2 - 2*x - 1"
"None found" "none" 329 7 49 "(a2, a2^2 - 3, -2*a2^2 - a2 + 3, 1, 3*a2^2 - 5, -a2^2 - 2)" "x^3 + x^2 - 2*x - 1"
"12247a1" 12247 331 7 229 "(a1, -a1 - 1, -a1^2 + 2, a1^2 - 3, -a1 - 3, -2*a1^2 - a1 + 3)" "x^3 + 2*x^2 - 4*x - 7"
"6308c1" 6308 332 7 8 "(0, a0, -a0 - 1, -a0 - 4, -a0 - 4, a0 + 1)" "x^2 + 2*x - 1"
"16268f1" 16268 332 7 49 "(0, a2, -2*a2^2 + 4*a2 + 2, -a2^2 + 3*a2 + 2, 3*a2^2 - 10*a2 + 2, 4*a2^2 - 10*a2 + 2)" "x^3 - 4*x^2 + 3*x + 1"
"29548d1" 29548 332 7 8 "(0, a0, -a0 - 1, -a0 - 4, -a0 - 4, a0 + 1)" "x^2 + 2*x - 1"
"None found" "none" 332 7 28 "(0, -1/2*a1, -1/2*a1 - 1, 1/2*a1, -1/2*a1 + 2, 1/2*a1 - 3)" "x^2 - 28"
"333d1" 333 333 7 6224 "(a6, 0, -a6^3 + 2*a6^2 + 3*a6 - 4, -2*a6^3 + 2*a6^2 + 8*a6 - 2, -2*a6^2 + 6, 2*a6^3 - 4*a6^2 - 6*a6 + 10)" "x^4 - 6*x^2 - 2*x + 5"
"26b1" 26 334 7 733 "(1, 1/2*a5 - 1/2, -1, 1, -1/4*a5^2 - 1/2*a5 + 35/4, -1/4*a5^2 + 25/4)" "x^3 - 5*x^2 - 21*x + 89"
"1002c1" 1002 334 7 469 "(-1, a4 + 1, -a4^2 - a4 + 4, -a4^2 - a4 + 4, a4^2 + 2*a4 + 1, -a4^2 - 3*a4 - 2)" "x^3 + 4*x^2 - 7"
"16366n1" 16366 334 7 8 "(-1, -a2 - 1, 1/2*a2 + 3/2, -3, -a2 - 1, -a2 + 3)" "x^2 + 2*x - 7"
"None found" "none" 334 7 469 "(-1, a4 + 1, -a4^2 - a4 + 4, -a4^2 - a4 + 4, a4^2 + 2*a4 + 1, -a4^2 - 3*a4 - 2)" "x^3 + 4*x^2 - 7"
"None found" "none" 334 7 8 "(-1, -a2 - 1, 1/2*a2 + 3/2, -3, -a2 - 1, -a2 + 3)" "x^2 + 2*x - 7"
"2010h1" 2010 335 7 8 "(a1, -a1, -1, -2, a1, -2)" "x^2 - 2"
"8710m1" 8710 335 7 1.52E+019 "(a4, 43/5261*a4^10 - 84/5261*a4^9 - 1344/5261*a4^8 + 1488/5261*a4^7 + 13496/5261*a4^6 - 9411/5261*a4^5 - 54847/5261*a4^4 + 24218/5261*a4^3 + 84666/5261*a4^2 - 17145/5261*a4 - 28424/5261, 1, 2136/5261*a4^10 + 966/5261*a4^9 - 37154/5261*a4^8 - 11851/5261*a4^7 + 223588/5261*a4^6 + 42464/5261*a4^5 - 550354/5261*a4^4 - 52284/5261*a4^3 + 499421/5261*a4^2 + 31446/5261*a4 - 115048/5261, -1271/5261*a4^10 + 770/5261*a4^9 + 22842/5261*a4^8 - 13640/5261*a4^7 - 141250/5261*a4^6 + 78376/5261*a4^5 + 351072/5261*a4^4 - 160620/5261*a4^3 - 307876/5261*a4^2 + 86139/5261*a4 + 57128/5261, 1936/5261*a4^10 + 1112/5261*a4^9 - 34818/5261*a4^8 - 16692/5261*a4^7 + 219421/5261*a4^6 + 85502/5261*a4^5 - 576654/5261*a4^4 - 176549/5261*a4^3 + 579238/5261*a4^2 + 109722/5261*a4 - 156334/5261)" "x^11 - 18*x^9 + 2*x^8 + 114*x^7 - 24*x^6 - 306*x^5 + 86*x^4 + 332*x^3 - 109*x^2 - 114*x + 46"
"118590d1" 118590 335 7 8 "(a1, -a1, -1, -2, a1, -2)" "x^2 - 2"
"None found" "none" 335 7 1.52E+019 "(a4, 43/5261*a4^10 - 84/5261*a4^9 - 1344/5261*a4^8 + 1488/5261*a4^7 + 13496/5261*a4^6 - 9411/5261*a4^5 - 54847/5261*a4^4 + 24218/5261*a4^3 + 84666/5261*a4^2 - 17145/5261*a4 - 28424/5261, 1, 2136/5261*a4^10 + 966/5261*a4^9 - 37154/5261*a4^8 - 11851/5261*a4^7 + 223588/5261*a4^6 + 42464/5261*a4^5 - 550354/5261*a4^4 - 52284/5261*a4^3 + 499421/5261*a4^2 + 31446/5261*a4 - 115048/5261, -1271/5261*a4^10 + 770/5261*a4^9 + 22842/5261*a4^8 - 13640/5261*a4^7 - 141250/5261*a4^6 + 78376/5261*a4^5 + 351072/5261*a4^4 - 160620/5261*a4^3 - 307876/5261*a4^2 + 86139/5261*a4 + 57128/5261, 1936/5261*a4^10 + 1112/5261*a4^9 - 34818/5261*a4^8 - 16692/5261*a4^7 + 219421/5261*a4^6 + 85502/5261*a4^5 - 576654/5261*a4^4 - 176549/5261*a4^3 + 579238/5261*a4^2 + 109722/5261*a4 - 156334/5261)" "x^11 - 18*x^9 + 2*x^8 + 114*x^7 - 24*x^6 - 306*x^5 + 86*x^4 + 332*x^3 - 109*x^2 - 114*x + 46"
"26b1" 26 337 7 2.90E+025 "(a1, -1949/1618*a1^14 + 1320/809*a1^13 + 19977/809*a1^12 - 22552/809*a1^11 - 322023/1618*a1^10 + 281379/1618*a1^9 + 1285759/1618*a1^8 - 383962/809*a1^7 - 2607215/1618*a1^6 + 826791/1618*a1^5 + 2373167/1618*a1^4 - 68300/809*a1^3 - 287702/809*a1^2 - 35427/809*a1 + 4591/1618, 971/1618*a1^14 - 954/809*a1^13 - 9264/809*a1^12 + 16549/809*a1^11 + 137225/1618*a1^10 - 212741/1618*a1^9 - 498023/1618*a1^8 + 309926/809*a1^7 + 915105/1618*a1^6 - 797805/1618*a1^5 - 761279/1618*a1^4 + 176743/809*a1^3 + 85396/809*a1^2 - 10937/809*a1 - 3535/1618, 849/1618*a1^14 - 685/809*a1^13 - 8280/809*a1^12 + 11507/809*a1^11 + 125879/1618*a1^10 - 139611/1618*a1^9 - 470549/1618*a1^8 + 180836/809*a1^7 + 890021/1618*a1^6 - 342519/1618*a1^5 - 750325/1618*a1^4 - 655/809*a1^3 + 74829/809*a1^2 + 24406/809*a1 + 7347/1618, 6103/3236*a1^14 - 4299/1618*a1^13 - 30978/809*a1^12 + 36187/809*a1^11 + 989877/3236*a1^10 - 882049/3236*a1^9 - 3925325/3236*a1^8 + 575536/809*a1^7 + 7937621/3236*a1^6 - 2195013/3236*a1^5 - 7252033/3236*a1^4 - 12097/809*a1^3 + 444324/809*a1^2 + 86502/809*a1 + 9625/3236, 797/809*a1^14 - 1207/809*a1^13 - 16066/809*a1^12 + 20440/809*a1^11 + 127515/809*a1^10 - 126146/809*a1^9 - 503042/809*a1^8 + 339199/809*a1^7 + 1014207/809*a1^6 - 356190/809*a1^5 - 927323/809*a1^4 + 52978/809*a1^3 + 229839/809*a1^2 + 28557/809*a1 + 142/809)" "x^15 - 3*x^14 - 18*x^13 + 56*x^12 + 123*x^11 - 402*x^10 - 400*x^9 + 1395*x^8 + 643*x^7 - 2406*x^6 - 496*x^5 + 1843*x^4 + 200*x^3 - 388*x^2 - 69*x + 1"
"25949c1" 25949 337 7 2.90E+025 "(a1, -1949/1618*a1^14 + 1320/809*a1^13 + 19977/809*a1^12 - 22552/809*a1^11 - 322023/1618*a1^10 + 281379/1618*a1^9 + 1285759/1618*a1^8 - 383962/809*a1^7 - 2607215/1618*a1^6 + 826791/1618*a1^5 + 2373167/1618*a1^4 - 68300/809*a1^3 - 287702/809*a1^2 - 35427/809*a1 + 4591/1618, 971/1618*a1^14 - 954/809*a1^13 - 9264/809*a1^12 + 16549/809*a1^11 + 137225/1618*a1^10 - 212741/1618*a1^9 - 498023/1618*a1^8 + 309926/809*a1^7 + 915105/1618*a1^6 - 797805/1618*a1^5 - 761279/1618*a1^4 + 176743/809*a1^3 + 85396/809*a1^2 - 10937/809*a1 - 3535/1618, 849/1618*a1^14 - 685/809*a1^13 - 8280/809*a1^12 + 11507/809*a1^11 + 125879/1618*a1^10 - 139611/1618*a1^9 - 470549/1618*a1^8 + 180836/809*a1^7 + 890021/1618*a1^6 - 342519/1618*a1^5 - 750325/1618*a1^4 - 655/809*a1^3 + 74829/809*a1^2 + 24406/809*a1 + 7347/1618, 6103/3236*a1^14 - 4299/1618*a1^13 - 30978/809*a1^12 + 36187/809*a1^11 + 989877/3236*a1^10 - 882049/3236*a1^9 - 3925325/3236*a1^8 + 575536/809*a1^7 + 7937621/3236*a1^6 - 2195013/3236*a1^5 - 7252033/3236*a1^4 - 12097/809*a1^3 + 444324/809*a1^2 + 86502/809*a1 + 9625/3236, 797/809*a1^14 - 1207/809*a1^13 - 16066/809*a1^12 + 20440/809*a1^11 + 127515/809*a1^10 - 126146/809*a1^9 - 503042/809*a1^8 + 339199/809*a1^7 + 1014207/809*a1^6 - 356190/809*a1^5 - 927323/809*a1^4 + 52978/809*a1^3 + 229839/809*a1^2 + 28557/809*a1 + 142/809)" "x^15 - 3*x^14 - 18*x^13 + 56*x^12 + 123*x^11 - 402*x^10 - 400*x^9 + 1395*x^8 + 643*x^7 - 2406*x^6 - 496*x^5 + 1843*x^4 + 200*x^3 - 388*x^2 - 69*x + 1"
"26a1" 26 338 7 49 "(-1, -1/2*a6 - 1/2, 1/2*a6^2 + a6 - 23/2, -a6^2 - 3*a6 + 20, 3/4*a6^2 + 2*a6 - 63/4, 0)" "x^3 + 9*x^2 - x - 113"
"338c1" 338 338 7 49 "(1, -a7 + 1, -2*a7^2 + 4*a7 + 10, 4*a7^2 - 6*a7 - 20, -3*a7^2 + 5*a7 + 15, 0)" "x^3 - 7*x - 7"
"339b1" 339 339 7 8 "(a3, -1, -2*a3 - 1, 3, 2*a3 + 4, 5)" "x^2 + 2*x - 1"
"678c1" 678 339 7 8 "(a3, -1, -2*a3 - 1, 3, 2*a3 + 4, 5)" "x^2 + 2*x - 1"
"4746b1" 4746 339 7 8 "(a4, -1, -a4 - 1, -1, -a4, -2*a4 - 4)" "x^2 - 2"
"33222o1" 33222 339 7 8 "(a4, -1, -a4 - 1, -1, -a4, -2*a4 - 4)" "x^2 - 2"
"1020d1" 1020 340 7 404 "(0, -1/2*a1, 1, -1/2*a1, -1/4*a1^2 + 1/2*a1 + 6, -1/4*a1^2 + a1 + 6)" "x^3 - 32*x - 32"
"None found" "none" 341 7 1.12E+019 "(a3, -7/88*a3^10 + 1/44*a3^9 + 3/2*a3^8 - 15/44*a3^7 - 867/88*a3^6 + 67/44*a3^5 + 2301/88*a3^4 - 69/44*a3^3 - 1029/44*a3^2 - 17/11*a3 + 171/88, -1/88*a3^10 - 3/44*a3^9 + 1/4*a3^8 + 45/44*a3^7 - 171/88*a3^6 - 201/44*a3^5 + 555/88*a3^4 + 229/44*a3^3 - 167/22*a3^2 + 47/22*a3 + 191/88, 13/88*a3^10 + 3/22*a3^9 - 11/4*a3^8 - 28/11*a3^7 + 1563/88*a3^6 + 721/44*a3^5 - 4091/88*a3^4 - 933/22*a3^3 + 464/11*a3^2 + 1627/44*a3 - 107/88, 1, 3/88*a3^10 + 9/44*a3^9 - 3/4*a3^8 - 157/44*a3^7 + 513/88*a3^6 + 933/44*a3^5 - 1621/88*a3^4 - 2183/44*a3^3 + 201/11*a3^2 + 827/22*a3 + 219/88)" "x^11 - x^10 - 20*x^9 + 20*x^8 + 141*x^7 - 135*x^6 - 421*x^5 + 347*x^4 + 530*x^3 - 288*x^2 - 239*x + 17"
"26b1" 26 343 7 1279733 "(a3, -a3^5 - a3^4 + 5*a3^3 + 3*a3^2 - 5*a3 - 1, a3^5 + 2*a3^4 - 4*a3^3 - 6*a3^2 + 4*a3 + 3, 0, -a3^5 + 6*a3^3 - 2*a3^2 - 8*a3 + 2, -a3^5 - 4*a3^4 + 11*a3^2 + 6*a3 + 2)" "x^6 + 2*x^5 - 6*x^4 - 10*x^3 + 10*x^2 + 11*x - 1"
"26b1" 26 343 7 35650048 "(-1438/1048193*a4^5 + 13377/1048193*a4^4 + 74034/1048193*a4^3 - 601799/1048193*a4^2 - 1101448/1048193*a4 + 5040046/1048193, -719/1048193*a4^5 + 13377/2096386*a4^4 + 37017/1048193*a4^3 - 601799/2096386*a4^2 - 2149641/2096386*a4 + 2520023/1048193, 7049/2096386*a4^5 - 40061/2096386*a4^4 - 322091/2096386*a4^3 + 935954/1048193*a4^2 + 2330469/2096386*a4 - 10242784/1048193, 0, -2014/1048193*a4^5 + 11446/1048193*a4^4 + 92026/1048193*a4^3 - 385089/1048193*a4^2 - 965332/1048193*a4 + 2109473/1048193, 10439/2096386*a4^5 - 105127/2096386*a4^4 - 170316/1048193*a4^3 + 2383707/1048193*a4^2 + 961221/1048193*a4 - 44652467/2096386)" "x^6 - 4*x^5 - 78*x^4 + 182*x^3 + 1917*x^2 - 1250*x - 11479"
"49a1" 49 343 7 1279733 "(a2, a2^5 + a2^4 - 5*a2^3 - 3*a2^2 + 5*a2 + 1, -a2^5 - 2*a2^4 + 4*a2^3 + 6*a2^2 - 4*a2 - 3, 0, -a2^5 + 6*a2^3 - 2*a2^2 - 8*a2 + 2, a2^5 + 4*a2^4 - 11*a2^2 - 6*a2 - 2)" "x^6 + 2*x^5 - 6*x^4 - 10*x^3 + 10*x^2 + 11*x - 1"
"49a1" 49 343 7 49 "(a0, 0, 0, 0, -a0^2 - 4*a0 - 5, 0)" "x^3 + 4*x^2 + 3*x - 1"
"49a1" 49 343 7 49 "(a1, 0, 0, 0, -8*a1^2 + 3*a1 + 44, 0)" "x^3 - 3*x^2 - 4*x + 13"
"49a1" 49 343 7 1279733 "(a3, -a3^5 - a3^4 + 5*a3^3 + 3*a3^2 - 5*a3 - 1, a3^5 + 2*a3^4 - 4*a3^3 - 6*a3^2 + 4*a3 + 3, 0, -a3^5 + 6*a3^3 - 2*a3^2 - 8*a3 + 2, -a3^5 - 4*a3^4 + 11*a3^2 + 6*a3 + 2)" "x^6 + 2*x^5 - 6*x^4 - 10*x^3 + 10*x^2 + 11*x - 1"
"294a1" 294 343 7 1279733 "(a2, a2^5 + a2^4 - 5*a2^3 - 3*a2^2 + 5*a2 + 1, -a2^5 - 2*a2^4 + 4*a2^3 + 6*a2^2 - 4*a2 - 3, 0, -a2^5 + 6*a2^3 - 2*a2^2 - 8*a2 + 2, a2^5 + 4*a2^4 - 11*a2^2 - 6*a2 - 2)" "x^6 + 2*x^5 - 6*x^4 - 10*x^3 + 10*x^2 + 11*x - 1"
"294a1" 294 343 7 35650048 "(-1438/1048193*a4^5 + 13377/1048193*a4^4 + 74034/1048193*a4^3 - 601799/1048193*a4^2 - 1101448/1048193*a4 + 5040046/1048193, -719/1048193*a4^5 + 13377/2096386*a4^4 + 37017/1048193*a4^3 - 601799/2096386*a4^2 - 2149641/2096386*a4 + 2520023/1048193, 7049/2096386*a4^5 - 40061/2096386*a4^4 - 322091/2096386*a4^3 + 935954/1048193*a4^2 + 2330469/2096386*a4 - 10242784/1048193, 0, -2014/1048193*a4^5 + 11446/1048193*a4^4 + 92026/1048193*a4^3 - 385089/1048193*a4^2 - 965332/1048193*a4 + 2109473/1048193, 10439/2096386*a4^5 - 105127/2096386*a4^4 - 170316/1048193*a4^3 + 2383707/1048193*a4^2 + 961221/1048193*a4 - 44652467/2096386)" "x^6 - 4*x^5 - 78*x^4 + 182*x^3 + 1917*x^2 - 1250*x - 11479"
"1032b1" 1032 344 7 7998268 "(0, a3, a3^3 - 7*a3 + 2, -a3^3 - a3^2 + 7*a3 + 4, -1/2*a3^4 + 1/2*a3^3 + 9/2*a3^2 - 4*a3 - 4, 1/2*a3^4 - 1/2*a3^3 - 9/2*a3^2 + 4*a3 + 6)" "x^5 + x^4 - 13*x^3 - 8*x^2 + 42*x + 8"
"10664a1" 10664 344 7 229 "(0, 1/2*a2, -1/4*a2^2 + a2 + 2, 2, -1/4*a2^2 - 1/2*a2 + 5, 3/4*a2^2 - 5/2*a2 - 5)" "x^3 - 6*x^2 - 4*x + 32"
"690a1" 690 345 7 8 "(a7, -1, -1, -2*a7 - 1, -a7 - 4, -a7 + 2)" "x^2 - 2"
"690g1" 690 345 7 8 "(a7, -1, -1, -2*a7 - 1, -a7 - 4, -a7 + 2)" "x^2 - 2"
"346a1" 346 346 7 2075621 "(1, 1/2*a4 - 1/2, -1/32*a4^4 + 1/16*a4^3 + 3/4*a4^2 - 21/16*a4 + 17/32, 1/32*a4^4 - 1/16*a4^3 - a4^2 + 21/16*a4 + 151/32, 1/4*a4^2 - 1/2*a4 - 15/4, 1/8*a4^3 + 1/8*a4^2 - 25/8*a4 - 9/8)" "x^5 + x^4 - 46*x^3 - 46*x^2 + 509*x + 477"
"16954k1" 16954 346 7 2075621 "(1, 1/2*a4 - 1/2, -1/32*a4^4 + 1/16*a4^3 + 3/4*a4^2 - 21/16*a4 + 17/32, 1/32*a4^4 - 1/16*a4^3 - a4^2 + 21/16*a4 + 151/32, 1/4*a4^2 - 1/2*a4 - 15/4, 1/8*a4^3 + 1/8*a4^2 - 25/8*a4 - 9/8)" "x^5 + x^4 - 46*x^3 - 46*x^2 + 509*x + 477"
"None found" "none" 346 7 229 "(-1, -a2 - 1, -1/2*a2^2 - 3/2*a2 + 1, -1/2*a2^2 - 3/2*a2, 4, -a2^2 - 3*a2 + 2)" "x^3 + 4*x^2 - x - 8"
"347a1" 347 347 7 97824733 "(a2, -a2^6 - 3*a2^5 + 7*a2^4 + 23*a2^3 - 7*a2^2 - 35*a2 - 8, -a2^6 - a2^5 + 8*a2^4 + 7*a2^3 - 13*a2^2 - 10*a2 - 1, 7*a2^6 + 13*a2^5 - 52*a2^4 - 98*a2^3 + 64*a2^2 + 147*a2 + 31, a2^6 + a2^5 - 8*a2^4 - 7*a2^3 + 14*a2^2 + 8*a2 - 3, -7*a2^6 - 12*a2^5 + 52*a2^4 + 89*a2^3 - 65*a2^2 - 130*a2 - 30)" "x^7 + 2*x^6 - 7*x^5 - 15*x^4 + 6*x^3 + 22*x^2 + 9*x + 1"
"2443c1" 2443 349 7 5.87E+031 "(a1, 715008/3463583*a1^16 - 3971843/3463583*a1^15 - 16588569/6927166*a1^14 + 158865051/6927166*a1^13 - 16523199/3463583*a1^12 - 1193366371/6927166*a1^11 + 1225665635/6927166*a1^10 + 2040760680/3463583*a1^9 - 6331983519/6927166*a1^8 - 2910324614/3463583*a1^7 + 12956859425/6927166*a1^6 + 677682467/3463583*a1^5 - 9771397341/6927166*a1^4 + 1891397865/6927166*a1^3 + 1628902717/6927166*a1^2 - 173708857/6927166*a1 - 26729619/3463583, 954477/13854332*a1^16 - 3024095/6927166*a1^15 - 4718181/6927166*a1^14 + 61112781/6927166*a1^13 - 14161207/3463583*a1^12 - 233310948/3463583*a1^11 + 551154783/6927166*a1^10 + 3290717187/13854332*a1^9 - 2682361823/6927166*a1^8 - 5084510469/13854332*a1^7 + 2729699073/3463583*a1^6 + 1087579147/6927166*a1^5 - 8563127797/13854332*a1^4 + 550576315/13854332*a1^3 + 869328429/6927166*a1^2 + 84175177/13854332*a1 - 15215169/3463583, 2905513/6927166*a1^16 - 27261015/13854332*a1^15 - 86394221/13854332*a1^14 + 554333223/13854332*a1^13 + 258068317/13854332*a1^12 - 4278239417/13854332*a1^11 + 1871113733/13854332*a1^10 + 15393324859/13854332*a1^9 - 6994671029/6927166*a1^8 - 12444132529/6927166*a1^7 + 31554547335/13854332*a1^6 + 12622965207/13854332*a1^5 - 24549976441/13854332*a1^4 + 466327327/3463583*a1^3 + 4093560537/13854332*a1^2 - 260015547/13854332*a1 - 28163165/3463583, 1694339/13854332*a1^16 - 6118499/13854332*a1^15 - 31509881/13854332*a1^14 + 126344463/13854332*a1^13 + 207627961/13854332*a1^12 - 999938265/13854332*a1^11 - 523641917/13854332*a1^10 + 941303368/3463583*a1^9 + 19400320/3463583*a1^8 - 6714025959/13854332*a1^7 + 1333064643/13854332*a1^6 + 4674545327/13854332*a1^5 - 193589442/3463583*a1^4 - 580301749/13854332*a1^3 - 446523973/13854332*a1^2 - 3306351/6927166*a1 + 17995286/3463583, -307079/6927166*a1^16 + 1424408/3463583*a1^15 - 1232279/6927166*a1^14 - 26858856/3463583*a1^13 + 53251971/3463583*a1^12 + 361410325/6927166*a1^11 - 526373679/3463583*a1^10 - 945585989/6927166*a1^9 + 4338299075/6927166*a1^8 + 95570172/3463583*a1^7 - 4039539605/3463583*a1^6 + 1360511433/3463583*a1^5 + 2862527382/3463583*a1^4 - 2663083419/6927166*a1^3 - 763538811/6927166*a1^2 + 225157233/6927166*a1 + 6941920/3463583)" "x^17 - 5*x^16 - 14*x^15 + 102*x^14 + 26*x^13 - 792*x^12 + 474*x^11 + 2887*x^10 - 3021*x^9 - 4835*x^8 + 6673*x^7 + 2880*x^6 - 5373*x^5 - 164*x^4 + 1075*x^3 + 75*x^2 - 41*x - 4"
"22685g1" 22685 349 7 5.87E+031 "(a1, 715008/3463583*a1^16 - 3971843/3463583*a1^15 - 16588569/6927166*a1^14 + 158865051/6927166*a1^13 - 16523199/3463583*a1^12 - 1193366371/6927166*a1^11 + 1225665635/6927166*a1^10 + 2040760680/3463583*a1^9 - 6331983519/6927166*a1^8 - 2910324614/3463583*a1^7 + 12956859425/6927166*a1^6 + 677682467/3463583*a1^5 - 9771397341/6927166*a1^4 + 1891397865/6927166*a1^3 + 1628902717/6927166*a1^2 - 173708857/6927166*a1 - 26729619/3463583, 954477/13854332*a1^16 - 3024095/6927166*a1^15 - 4718181/6927166*a1^14 + 61112781/6927166*a1^13 - 14161207/3463583*a1^12 - 233310948/3463583*a1^11 + 551154783/6927166*a1^10 + 3290717187/13854332*a1^9 - 2682361823/6927166*a1^8 - 5084510469/13854332*a1^7 + 2729699073/3463583*a1^6 + 1087579147/6927166*a1^5 - 8563127797/13854332*a1^4 + 550576315/13854332*a1^3 + 869328429/6927166*a1^2 + 84175177/13854332*a1 - 15215169/3463583, 2905513/6927166*a1^16 - 27261015/13854332*a1^15 - 86394221/13854332*a1^14 + 554333223/13854332*a1^13 + 258068317/13854332*a1^12 - 4278239417/13854332*a1^11 + 1871113733/13854332*a1^10 + 15393324859/13854332*a1^9 - 6994671029/6927166*a1^8 - 12444132529/6927166*a1^7 + 31554547335/13854332*a1^6 + 12622965207/13854332*a1^5 - 24549976441/13854332*a1^4 + 466327327/3463583*a1^3 + 4093560537/13854332*a1^2 - 260015547/13854332*a1 - 28163165/3463583, 1694339/13854332*a1^16 - 6118499/13854332*a1^15 - 31509881/13854332*a1^14 + 126344463/13854332*a1^13 + 207627961/13854332*a1^12 - 999938265/13854332*a1^11 - 523641917/13854332*a1^10 + 941303368/3463583*a1^9 + 19400320/3463583*a1^8 - 6714025959/13854332*a1^7 + 1333064643/13854332*a1^6 + 4674545327/13854332*a1^5 - 193589442/3463583*a1^4 - 580301749/13854332*a1^3 - 446523973/13854332*a1^2 - 3306351/6927166*a1 + 17995286/3463583, -307079/6927166*a1^16 + 1424408/3463583*a1^15 - 1232279/6927166*a1^14 - 26858856/3463583*a1^13 + 53251971/3463583*a1^12 + 361410325/6927166*a1^11 - 526373679/3463583*a1^10 - 945585989/6927166*a1^9 + 4338299075/6927166*a1^8 + 95570172/3463583*a1^7 - 4039539605/3463583*a1^6 + 1360511433/3463583*a1^5 + 2862527382/3463583*a1^4 - 2663083419/6927166*a1^3 - 763538811/6927166*a1^2 + 225157233/6927166*a1 + 6941920/3463583)" "x^17 - 5*x^16 - 14*x^15 + 102*x^14 + 26*x^13 - 792*x^12 + 474*x^11 + 2887*x^10 - 3021*x^9 - 4835*x^8 + 6673*x^7 + 2880*x^6 - 5373*x^5 - 164*x^4 + 1075*x^3 + 75*x^2 - 41*x - 4"
"702k1" 702 351 7 65712 "(a5, 0, -a5^3 + 6*a5, 2, -2*a5, 1)" "x^4 - 7*x^2 + 3"
"702d1" 702 351 7 65712 "(a5, 0, -a5^3 + 6*a5, 2, -2*a5, 1)" "x^4 - 7*x^2 + 3"
"None found" "none" 353 7 229 "(a1, -1/2*a1^2 + 1/2*a1 + 3, -a1 + 1, -a1 + 1, 1/2*a1^2 - 1/2*a1 - 1, -1/2*a1^2 - 1/2*a1 + 6)" "x^3 - x^2 - 6*x + 4"
"None found" "none" 353 7 1.35E+025 "(a3, 1/8*a3^13 - 7/8*a3^12 - 9/8*a3^11 + 65/4*a3^10 - 55/8*a3^9 - 855/8*a3^8 + 405/4*a3^7 + 2405/8*a3^6 - 2763/8*a3^5 - 2871/8*a3^4 + 3453/8*a3^3 + 1145/8*a3^2 - 1245/8*a3 - 75/8, 7/4*a3^13 - 25/4*a3^12 - 103/4*a3^11 + 221/2*a3^10 + 415/4*a3^9 - 2793/4*a3^8 + 89/2*a3^7 + 7619/4*a3^6 - 3777/4*a3^5 - 8801/4*a3^4 + 6115/4*a3^3 + 3263/4*a3^2 - 2347/4*a3 - 121/4, 3/8*a3^13 - 13/8*a3^12 - 39/8*a3^11 + 113/4*a3^10 + 99/8*a3^9 - 1409/8*a3^8 + 253/4*a3^7 + 3815/8*a3^6 - 2637/8*a3^5 - 4409/8*a3^4 + 3663/8*a3^3 + 1667/8*a3^2 - 1371/8*a3 - 53/8, -1/2*a3^13 + 3/2*a3^12 + 15/2*a3^11 - 25*a3^10 - 71/2*a3^9 + 299/2*a3^8 + 41*a3^7 - 777/2*a3^6 + 191/2*a3^5 + 853/2*a3^4 - 443/2*a3^3 - 293/2*a3^2 + 191/2*a3 + 9/2, 5/4*a3^13 - 15/4*a3^12 - 81/4*a3^11 + 135/2*a3^10 + 417/4*a3^9 - 1735/4*a3^8 - 287/2*a3^7 + 4805/4*a3^6 - 927/4*a3^5 - 5623/4*a3^4 + 2489/4*a3^3 + 2093/4*a3^2 - 1073/4*a3 - 59/4)" "x^14 - 4*x^13 - 14*x^12 + 71*x^11 + 47*x^10 - 452*x^9 + 101*x^8 + 1251*x^7 - 740*x^6 - 1488*x^5 + 1096*x^4 + 600*x^3 - 410*x^2 - 42*x - 1"
"1770d1" 1770 354 7 44 "(-1, 1, a6 + 2, 4, -2, -a6 - 2)" "x^2 + 2*x - 10"
1.31E+005 13098 354 7 44 "(-1, 1, a6 + 2, 4, -2, -a6 - 2)" "x^2 + 2*x - 10"
"26b1" 26 355 7 1957 "(a1, -a1^3 - 3*a1^2 + 2, 1, a1^3 + 4*a1^2 + 2*a1 - 5, a1^3 + a1^2 - 5*a1 - 2, 2*a1^3 + 5*a1^2 - 4*a1 - 10)" "x^4 + 4*x^3 + 2*x^2 - 5*x - 3"
"710c1" 710 355 7 62581037 "(a3, -a3^3 + a3^2 + 4*a3 - 2, 1, a3^3 - 2*a3^2 - 4*a3 + 7, -a3^5 + 2*a3^4 + 7*a3^3 - 12*a3^2 - 12*a3 + 16, a3^4 - 2*a3^3 - 3*a3^2 + 7*a3 - 3)" "x^6 - 3*x^5 - 6*x^4 + 21*x^3 + 4*x^2 - 35*x + 16"
"714a1" 714 357 7 8 "(a5, -1, -a5 - 1, -1, 1, -a5 - 3)" "x^2 - 2"
7.14E+003 714 357 7 8 "(a5, -1, -a5 - 1, -1, 1, -a5 - 3)" "x^2 - 2"
"None found" "none" 358 7 21 "(-1, -a2 - 1, 3, 1, -1, a2)" "x^2 + 3*x - 3"
"26b1" 26 362 7 8 "(1, -a3 + 1, a3 + 2, 2*a3, -a3 - 5, -a3 + 4)" "x^2 - 2"
"1086d1" 1086 362 7 5673845 "(1, -1/2*a5 + 1/2, -1/32*a5^4 + 1/8*a5^3 + 15/16*a5^2 - 19/8*a5 - 117/32, 1/32*a5^4 - 1/8*a5^3 - 15/16*a5^2 + 19/8*a5 + 149/32, -1/4*a5^2 + a5 + 21/4, 1/32*a5^4 - 1/4*a5^3 - 17/16*a5^2 + 15/2*a5 + 313/32)" "x^5 - 5*x^4 - 42*x^3 + 122*x^2 + 505*x + 315"
"2534d1" 2534 362 7 5673845 "(1, -1/2*a5 + 1/2, -1/32*a5^4 + 1/8*a5^3 + 15/16*a5^2 - 19/8*a5 - 117/32, 1/32*a5^4 - 1/8*a5^3 - 15/16*a5^2 + 19/8*a5 + 149/32, -1/4*a5^2 + a5 + 21/4, 1/32*a5^4 - 1/4*a5^3 - 17/16*a5^2 + 15/2*a5 + 313/32)" "x^5 - 5*x^4 - 42*x^3 + 122*x^2 + 505*x + 315"
"102446c1" 102446 362 7 8 "(1, -a3 + 1, a3 + 2, 2*a3, -a3 - 5, -a3 + 4)" "x^2 - 2"
"730b1" 730 365 7 1050324147376 "(a4, -1/2*a4^5 + 1/2*a4^4 + 9/2*a4^3 - 3*a4^2 - 8*a4 + 5/2, -1, 1/2*a4^7 - 1/2*a4^6 - 5*a4^5 + 7/2*a4^4 + 23/2*a4^3 - 9/2*a4^2 - 3*a4 + 7/2, -1/4*a4^7 + 5/4*a4^6 + 3/2*a4^5 - 45/4*a4^4 - 1/4*a4^3 + 87/4*a4^2 + a4 - 15/4, 1/2*a4^6 - 1/2*a4^5 - 9/2*a4^4 + 3*a4^3 + 8*a4^2 - 5/2*a4 + 2)" "x^8 - 2*x^7 - 11*x^6 + 19*x^5 + 36*x^4 - 46*x^3 - 41*x^2 + 25*x + 3"
"730i1" 730 365 7 1050324147376 "(a4, -1/2*a4^5 + 1/2*a4^4 + 9/2*a4^3 - 3*a4^2 - 8*a4 + 5/2, -1, 1/2*a4^7 - 1/2*a4^6 - 5*a4^5 + 7/2*a4^4 + 23/2*a4^3 - 9/2*a4^2 - 3*a4 + 7/2, -1/4*a4^7 + 5/4*a4^6 + 3/2*a4^5 - 45/4*a4^4 - 1/4*a4^3 + 87/4*a4^2 + a4 - 15/4, 1/2*a4^6 - 1/2*a4^5 - 9/2*a4^4 + 3*a4^3 + 8*a4^2 - 5/2*a4 + 2)" "x^8 - 2*x^7 - 11*x^6 + 19*x^5 + 36*x^4 - 46*x^3 - 41*x^2 + 25*x + 3"
"21535c1" 21535 365 7 49 "(a1, a1^2 - 3, 1, -3*a1^2 - 2*a1 + 4, -3, 3*a1^2 + a1 - 5)" "x^3 + x^2 - 2*x - 1"
"4771b1" 4771 367 7 9.67E+036 "(a1, 6827828/23610721*a1^18 - 49682236/23610721*a1^17 - 6832536/23610721*a1^16 + 803001118/23610721*a1^15 - 1171782712/23610721*a1^14 - 4794282730/23610721*a1^13 + 10991047449/23610721*a1^12 + 12384298965/23610721*a1^11 - 42478188938/23610721*a1^10 - 9593322662/23610721*a1^9 + 80448498286/23610721*a1^8 - 13480943176/23610721*a1^7 - 72276385698/23610721*a1^6 + 24824130950/23610721*a1^5 + 25244646700/23610721*a1^4 - 151658173/387061*a1^3 - 3069626859/23610721*a1^2 + 818237984/23610721*a1 + 127146744/23610721, -1297203/23610721*a1^18 + 14414733/23610721*a1^17 - 31674448/23610721*a1^16 - 177259634/23610721*a1^15 + 783001630/23610721*a1^14 + 404568652/23610721*a1^13 - 5772832937/23610721*a1^12 + 3265357555/23610721*a1^11 + 19924295543/23610721*a1^10 - 21018429365/23610721*a1^9 - 34798304039/23610721*a1^8 + 47067197132/23610721*a1^7 + 29544729494/23610721*a1^6 - 45508663466/23610721*a1^5 - 10825879428/23610721*a1^4 + 257534213/387061*a1^3 + 2047419967/23610721*a1^2 - 1129150019/23610721*a1 - 90300556/23610721, 8668353/23610721*a1^18 - 60265860/23610721*a1^17 - 26834309/23610721*a1^16 + 1000305143/23610721*a1^15 - 1164221951/23610721*a1^14 - 6298924244/23610721*a1^13 + 11696035826/23610721*a1^12 + 18538529455/23610721*a1^11 - 46108329149/23610721*a1^10 - 24448968422/23610721*a1^9 + 88157892897/23610721*a1^8 + 7995092958/23610721*a1^7 - 79686807986/23610721*a1^6 + 7666753393/23610721*a1^5 + 27565886842/23610721*a1^4 - 55256619/387061*a1^3 - 2607470846/23610721*a1^2 + 357675480/23610721*a1 + 59087112/23610721, -30077634/23610721*a1^18 + 201937607/23610721*a1^17 + 143148399/23610721*a1^16 - 3459315443/23610721*a1^15 + 3250881584/23610721*a1^14 + 22960525766/23610721*a1^13 - 36028052556/23610721*a1^12 - 74577894502/23610721*a1^11 + 148691174127/23610721*a1^10 + 123316420009/23610721*a1^9 - 297147330507/23610721*a1^8 - 98029311857/23610721*a1^7 + 285049889325/23610721*a1^6 + 34291926406/23610721*a1^5 - 110318025294/23610721*a1^4 - 142404670/387061*a1^3 + 13659113660/23610721*a1^2 + 560413723/23610721*a1 - 430003319/23610721, -21308366/23610721*a1^18 + 148805851/23610721*a1^17 + 65861276/23610721*a1^16 - 2489910668/23610721*a1^15 + 2907770481/23610721*a1^14 + 15894527391/23610721*a1^13 - 29526537008/23610721*a1^12 - 48033484574/23610721*a1^11 + 118495883636/23610721*a1^10 + 67667537788/23610721*a1^9 - 233461068532/23610721*a1^8 - 31591358547/23610721*a1^7 + 223324379110/23610721*a1^6 - 10402461182/23610721*a1^5 - 88626492334/23610721*a1^4 + 112771284/387061*a1^3 + 12217451249/23610721*a1^2 - 859979683/23610721*a1 - 450724169/23610721)" "x^19 - 9*x^18 + 11*x^17 + 123*x^16 - 372*x^15 - 469*x^14 + 2884*x^13 - 550*x^12 - 10042*x^11 + 8029*x^10 + 17059*x^9 - 20350*x^8 - 12836*x^7 + 20779*x^6 + 2682*x^5 - 7739*x^4 + 63*x^3 + 899*x^2 - 27*x - 29"
"234a1" 234 369 7 8 "(a2, 0, -a2 - 2, -a2 - 2, -a2 - 1, 3*a2 + 2)" "x^2 - 2"
"738h1" 738 369 7 8 "(a2, 0, -a2 - 2, -a2 - 2, -a2 - 1, 3*a2 + 2)" "x^2 - 2"
"1110m1" 1110 370 7 892 "(1, 1/2*a6 - 1/2, -1, -1/8*a6^2 + 1/4*a6 + 23/8, -1/8*a6^2 - 1/4*a6 + 59/8, -a6 + 1)" "x^3 - 3*x^2 - 37*x + 71"
8.16E+004 8162 371 7 229 "(a3, -a3, -a3^2 + 1, -1, a3^2 - a3 - 4, a3 - 4)" "x^3 - 4*x - 1"
"28938b1" 28938 371 7 7238265542032 "(a4, 1/8*a4^8 - 15/8*a4^6 - 3/8*a4^5 + 35/4*a4^4 + 23/8*a4^3 - 13*a4^2 - 7/2*a4 + 4, 1/8*a4^8 - 11/8*a4^6 + 5/8*a4^5 + 17/4*a4^4 - 37/8*a4^3 - 3*a4^2 + 7*a4, -1, -1/4*a4^7 + 11/4*a4^5 - 1/4*a4^4 - 17/2*a4^3 + 1/4*a4^2 + 6*a4 + 2, a4^4 + a4^3 - 7*a4^2 - 5*a4 + 8)" "x^9 - 15*x^7 + x^6 + 74*x^5 - 9*x^4 - 132*x^3 + 24*x^2 + 64*x - 16"
"29467a1" 29467 373 7 2.54E+017 "(a1, -183/839*a1^11 - 627/839*a1^10 + 1810/839*a1^9 + 6913/839*a1^8 - 5772/839*a1^7 - 26330/839*a1^6 + 5697/839*a1^5 + 41863/839*a1^4 + 3312/839*a1^3 - 26479/839*a1^2 - 5280/839*a1 + 3976/839, 580/839*a1^11 + 2111/839*a1^10 - 5081/839*a1^9 - 22286/839*a1^8 + 12352/839*a1^7 + 80296/839*a1^6 - 1895/839*a1^5 - 119660/839*a1^4 - 23756/839*a1^3 + 67656/839*a1^2 + 16982/839*a1 - 9704/839, -810/839*a1^11 - 2789/839*a1^10 + 7255/839*a1^9 + 27999/839*a1^8 - 20693/839*a1^7 - 92638/839*a1^6 + 22768/839*a1^5 + 119028/839*a1^4 - 6893/839*a1^3 - 49642/839*a1^2 - 745/839*a1 + 1864/839, 1369/839*a1^11 + 4663/839*a1^10 - 12816/839*a1^9 - 47965/839*a1^8 + 40305/839*a1^7 + 164796/839*a1^6 - 56744/839*a1^5 - 223651/839*a1^4 + 41188/839*a1^3 + 101083/839*a1^2 - 18447/839*a1 - 4441/839, -818/839*a1^11 - 2280/839*a1^10 + 9709/839*a1^9 + 25367/839*a1^8 - 43337/839*a1^7 - 95898/839*a1^6 + 91650/839*a1^5 + 142695/839*a1^4 - 89933/839*a1^3 - 66007/839*a1^2 + 32818/839*a1 - 3771/839)" "x^12 + 4*x^11 - 8*x^10 - 43*x^9 + 14*x^8 + 161*x^7 + 17*x^6 - 260*x^5 - 53*x^4 + 177*x^3 + 18*x^2 - 42*x + 7"
"None found" "none" 373 7 2.54E+017 "(a1, -183/839*a1^11 - 627/839*a1^10 + 1810/839*a1^9 + 6913/839*a1^8 - 5772/839*a1^7 - 26330/839*a1^6 + 5697/839*a1^5 + 41863/839*a1^4 + 3312/839*a1^3 - 26479/839*a1^2 - 5280/839*a1 + 3976/839, 580/839*a1^11 + 2111/839*a1^10 - 5081/839*a1^9 - 22286/839*a1^8 + 12352/839*a1^7 + 80296/839*a1^6 - 1895/839*a1^5 - 119660/839*a1^4 - 23756/839*a1^3 + 67656/839*a1^2 + 16982/839*a1 - 9704/839, -810/839*a1^11 - 2789/839*a1^10 + 7255/839*a1^9 + 27999/839*a1^8 - 20693/839*a1^7 - 92638/839*a1^6 + 22768/839*a1^5 + 119028/839*a1^4 - 6893/839*a1^3 - 49642/839*a1^2 - 745/839*a1 + 1864/839, 1369/839*a1^11 + 4663/839*a1^10 - 12816/839*a1^9 - 47965/839*a1^8 + 40305/839*a1^7 + 164796/839*a1^6 - 56744/839*a1^5 - 223651/839*a1^4 + 41188/839*a1^3 + 101083/839*a1^2 - 18447/839*a1 - 4441/839, -818/839*a1^11 - 2280/839*a1^10 + 9709/839*a1^9 + 25367/839*a1^8 - 43337/839*a1^7 - 95898/839*a1^6 + 91650/839*a1^5 + 142695/839*a1^4 - 89933/839*a1^3 - 66007/839*a1^2 + 32818/839*a1 - 3771/839)" "x^12 + 4*x^11 - 8*x^10 - 43*x^9 + 14*x^8 + 161*x^7 + 17*x^6 - 260*x^5 - 53*x^4 + 177*x^3 + 18*x^2 - 42*x + 7"
"1122c1" 1122 374 7 55585 "(-1, -a3 - 1, a3^2 + 2*a3 - 3, a3^3 + a3^2 - 8*a3 + 2, 1, -2*a3^3 - 4*a3^2 + 11*a3 + 3)" "x^4 + 5*x^3 - x^2 - 22*x - 1"
"1122d1" 1122 374 7 55585 "(-1, -a3 - 1, a3^2 + 2*a3 - 3, a3^3 + a3^2 - 8*a3 + 2, 1, -2*a3^3 - 4*a3^2 + 11*a3 + 3)" "x^4 + 5*x^3 - x^2 - 22*x - 1"
"2618d1" 2618 374 7 257 "(1, 1/2*a2 - 1/2, -1/4*a2^2 + 1/2*a2 + 15/4, 1/4*a2^2 - a2 - 1/4, -1, -1/2*a2 + 1/2)" "x^3 - 9*x^2 + 7*x + 57"
"26b1" 26 377 7 1326502796 "(a4, -a4^6 + 2*a4^5 + 8*a4^4 - 15*a4^3 - 7*a4^2 + 8*a4 + 1, -a4^6 + 2*a4^5 + 8*a4^4 - 15*a4^3 - 7*a4^2 + 9*a4, 4*a4^6 - 3*a4^5 - 40*a4^4 + 16*a4^3 + 83*a4^2 + 28*a4 - 6, -5*a4^6 + 5*a4^5 + 49*a4^4 - 32*a4^3 - 97*a4^2 - 13*a4 + 11, -1)" "x^7 - 3*x^6 - 8*x^5 + 26*x^4 + 9*x^3 - 36*x^2 - 14*x + 3"
"377a1" 377 377 7 202817 "(a2, -2*a2^4 - 5*a2^3 + 8*a2^2 + 21*a2 + 6, 2*a2^4 + 5*a2^3 - 8*a2^2 - 22*a2 - 7, a2^4 + 3*a2^3 - 4*a2^2 - 14*a2 - 7, -a2^3 - a2^2 + 4*a2 + 1, 1)" "x^5 + 3*x^4 - 3*x^3 - 13*x^2 - 8*x - 1"
"26b1" 26 379 7 2.42E+034 "(a1, 239646933/1793175190*a1^17 - 484282877/1793175190*a1^16 - 2918698602/896587595*a1^15 + 10920077991/1793175190*a1^14 + 29192188967/896587595*a1^13 - 49015280444/896587595*a1^12 - 309792337413/1793175190*a1^11 + 446493548451/1793175190*a1^10 + 468794375957/896587595*a1^9 - 217714639577/358635038*a1^8 - 160785930047/179317519*a1^7 + 690161150041/896587595*a1^6 + 143607053551/179317519*a1^5 - 825796553337/1793175190*a1^4 - 265893375512/896587595*a1^3 + 37055169135/358635038*a1^2 + 15664352337/896587595*a1 - 3492196834/896587595, -587362301/3586350380*a1^17 + 1362705089/3586350380*a1^16 + 3490982682/896587595*a1^15 - 31159994897/3586350380*a1^14 - 33784895822/896587595*a1^13 + 142584136593/1793175190*a1^12 + 685645325291/3586350380*a1^11 - 1335062480207/3586350380*a1^10 - 975760111749/1793175190*a1^9 + 678126786911/717270076*a1^8 + 306882475889/358635038*a1^7 - 2287907721217/1793175190*a1^6 - 239276091071/358635038*a1^5 + 2998847142899/3586350380*a1^4 + 164405587057/896587595*a1^3 - 149169579219/717270076*a1^2 + 15788512921/1793175190*a1 + 5934308694/896587595, 345660171/1793175190*a1^17 - 702742249/1793175190*a1^16 - 4120088259/896587595*a1^15 + 15812721467/1793175190*a1^14 + 40042452629/896587595*a1^13 - 70877456353/896587595*a1^12 - 409354057071/1793175190*a1^11 + 645708072847/1793175190*a1^10 + 591085357224/896587595*a1^9 - 315794194981/358635038*a1^8 - 191825947930/179317519*a1^7 + 1008875577592/896587595*a1^6 + 161672018357/179317519*a1^5 - 1220808555709/1793175190*a1^4 - 287618713729/896587595*a1^3 + 54423378047/358635038*a1^2 + 20699218389/896587595*a1 - 4083266708/896587595, -132736008/896587595*a1^17 + 285175122/896587595*a1^16 + 3108067204/896587595*a1^15 - 6410410811/896587595*a1^14 - 29427805654/896587595*a1^13 + 57409574768/896587595*a1^12 + 144807378128/896587595*a1^11 - 261431891741/896587595*a1^10 - 395843560339/896587595*a1^9 + 128154480581/179317519*a1^8 + 118727431138/179317519*a1^7 - 826932759102/896587595*a1^6 - 88759808824/179317519*a1^5 + 515880487037/896587595*a1^4 + 120250963559/896587595*a1^3 - 25509324900/179317519*a1^2 + 6461272046/896587595*a1 + 6332734098/896587595, -30264879/896587595*a1^17 - 6594934/896587595*a1^16 + 870582572/896587595*a1^15 + 230342647/896587595*a1^14 - 10275736617/896587595*a1^13 - 3222650196/896587595*a1^12 + 63928825349/896587595*a1^11 + 23296598632/896587595*a1^10 - 223604548322/896587595*a1^9 - 18609033847/179317519*a1^8 + 86531089630/179317519*a1^7 + 202344819449/896587595*a1^6 - 84643457170/179317519*a1^5 - 218774233984/896587595*a1^4 + 171397060597/896587595*a1^3 + 18772501151/179317519*a1^2 - 16314528032/896587595*a1 - 4256662976/896587595)" "x^18 - 3*x^17 - 22*x^16 + 69*x^15 + 190*x^14 - 638*x^13 - 807*x^12 + 3041*x^11 + 1680*x^10 - 7967*x^9 - 1220*x^8 + 11334*x^7 - 1006*x^6 - 8079*x^5 + 1938*x^4 + 2287*x^3 - 752*x^2 - 68*x + 24"
"76a1" 76 380 7 8 "(0, -a2, 1, 2*a2 - 6, -2, -3*a2 + 4)" "x^2 - 4*x + 2"
"2660d1" 2660 380 7 8 "(0, -a2, 1, 2*a2 - 6, -2, -3*a2 + 4)" "x^2 - 4*x + 2"
"762b1" 762 381 7 1.57E+015 "(a4, 1, 1/6*a4^8 + 1/2*a4^7 - 7/3*a4^6 - 20/3*a4^5 + 29/3*a4^4 + 157/6*a4^3 - 59/6*a4^2 - 85/3*a4 - 16/3, -3/4*a4^8 - 5/4*a4^7 + 43/4*a4^6 + 65/4*a4^5 - 95/2*a4^4 - 247/4*a4^3 + 247/4*a4^2 + 251/4*a4 + 31/4, 5/12*a4^8 + 3/4*a4^7 - 73/12*a4^6 - 113/12*a4^5 + 169/6*a4^4 + 401/12*a4^3 - 499/12*a4^2 - 349/12*a4 + 17/12, 1/3*a4^8 + 1/2*a4^7 - 31/6*a4^6 - 19/3*a4^5 + 76/3*a4^4 + 67/3*a4^3 - 235/6*a4^2 - 109/6*a4 + 13/3)" "x^9 + 2*x^8 - 14*x^7 - 26*x^6 + 59*x^5 + 99*x^4 - 66*x^3 - 102*x^2 - 24*x - 1"
1.95E+005 19482 382 7 49 "(1, 1/2*a1 - 1/2, 1/4*a1^2 + 1/2*a1 - 15/4, -3/4*a1^2 - 4*a1 - 9/4, 3/4*a1^2 + 9/2*a1 + 3/4, -1/2*a1^2 - 2*a1 - 5/2)" "x^3 + 7*x^2 + 7*x - 7"
"4979b1" 4979 383 7 2.73E+051 "(a2, 1084096506569374761529/171261395095631272311751*a2^23 - 4676875943116968677282/171261395095631272311751*a2^22 - 31583475280793780500313/171261395095631272311751*a2^21 + 152566634472831118219863/171261395095631272311751*a2^20 + 372951514300544040527356/171261395095631272311751*a2^19 - 2120956637059806820309931/171261395095631272311751*a2^18 - 2237731450385977579008227/171261395095631272311751*a2^17 + 16431900607176618615705457/171261395095631272311751*a2^16 + 6639912945399504566900223/171261395095631272311751*a2^15 - 77962372918852004962730187/171261395095631272311751*a2^14 - 4380780678721158671743857/171261395095631272311751*a2^13 + 234627743402340948897499420/171261395095631272311751*a2^12 - 31477807299921149814988089/171261395095631272311751*a2^11 - 448553612782604426400687115/171261395095631272311751*a2^10 + 103564802957874038494431159/171261395095631272311751*a2^9 + 528715210308935946866134213/171261395095631272311751*a2^8 - 141619619359403870741784233/171261395095631272311751*a2^7 - 356295368351683988050858160/171261395095631272311751*a2^6 + 94637141308415036342531354/171261395095631272311751*a2^5 + 115154983522165788227142836/171261395095631272311751*a2^4 - 27506282984830510686812638/171261395095631272311751*a2^3 - 9892974265624022859872873/171261395095631272311751*a2^2 + 2311496093947297524326116/171261395095631272311751*a2 - 389483847462182006318744/171261395095631272311751, 1610980210331729423845/171261395095631272311751*a2^23 - 8446847331575999174002/171261395095631272311751*a2^22 - 39970741358661123724722/171261395095631272311751*a2^21 + 267656685633220429785018/171261395095631272311751*a2^20 + 335473799924255861905797/171261395095631272311751*a2^19 - 3591725690932758179304004/171261395095631272311751*a2^18 - 429234804791023809832334/171261395095631272311751*a2^17 + 26664821150880028634189110/171261395095631272311751*a2^16 - 11179077743671649715676360/171261395095631272311751*a2^15 - 120306200079762732123826154/171261395095631272311751*a2^14 + 85204117927300822187283972/171261395095631272311751*a2^13 + 342184255162149946289579744/171261395095631272311751*a2^12 - 292904552013233378168312504/171261395095631272311751*a2^11 - 617741442439761706388305102/171261395095631272311751*a2^10 + 555855261588572105838398752/171261395095631272311751*a2^9 + 695093550349174674477524824/171261395095631272311751*a2^8 - 588920867521043088632965786/171261395095631272311751*a2^7 - 462229800092140980767054919/171261395095631272311751*a2^6 + 322234199382349937387872098/171261395095631272311751*a2^5 + 158957241591136791549689730/171261395095631272311751*a2^4 - 74981843769039390084313492/171261395095631272311751*a2^3 - 18197112748073666970506467/171261395095631272311751*a2^2 + 5608668948767292210169994/171261395095631272311751*a2 - 190592589254782134167054/171261395095631272311751, 446531884989395433970/171261395095631272311751*a2^23 - 1593549021570861503999/171261395095631272311751*a2^22 - 12324863612854668810134/171261395095631272311751*a2^21 + 45950555491051309168523/171261395095631272311751*a2^20 + 139195026798951411090031/171261395095631272311751*a2^19 - 542829681477573917280408/171261395095631272311751*a2^18 - 840704363542814124475319/171261395095631272311751*a2^17 + 3372141754473724405768217/171261395095631272311751*a2^16 + 3068186246744384406610697/171261395095631272311751*a2^15 - 11726493340444607794824513/171261395095631272311751*a2^14 - 7710184518579787894752955/171261395095631272311751*a2^13 + 22192215717407365795462739/171261395095631272311751*a2^12 + 15029144633734287397588633/171261395095631272311751*a2^11 - 18971162620638082394430297/171261395095631272311751*a2^10 - 19452174270076326628604898/171261395095631272311751*a2^9 - 1347394326315319506380746/171261395095631272311751*a2^8 + 5049088090739986366317955/171261395095631272311751*a2^7 + 14556980890289587298803049/171261395095631272311751*a2^6 + 20263949941059083048246016/171261395095631272311751*a2^5 - 10634268531414157056296795/171261395095631272311751*a2^4 - 19542055240564648377459924/171261395095631272311751*a2^3 + 3322181134719463911820304/171261395095631272311751*a2^2 + 4194889044207177979046011/171261395095631272311751*a2 - 280547494148786284298744/171261395095631272311751, -1063257354607501573315/171261395095631272311751*a2^23 + 5131096048107555838560/171261395095631272311751*a2^22 + 30211796504430793120076/171261395095631272311751*a2^21 - 167301722115100105716386/171261395095631272311751*a2^20 - 347029667276054017403976/171261395095631272311751*a2^19 + 2330984801480687044787544/171261395095631272311751*a2^18 + 2035822258628456818778006/171261395095631272311751*a2^17 - 18191411666119987190263022/171261395095631272311751*a2^16 - 6208446107465990545705752/171261395095631272311751*a2^15 + 87727259461401532569263480/171261395095631272311751*a2^14 + 7950633626153276854814930/171261395095631272311751*a2^13 - 272419022391613160588296698/171261395095631272311751*a2^12 + 2550633406569999292070108/171261395095631272311751*a2^11 + 550317817450757613971893174/171261395095631272311751*a2^10 - 11249909037064520615287860/171261395095631272311751*a2^9 - 710475595977838981554158714/171261395095631272311751*a2^8 - 12502582572788195620320368/171261395095631272311751*a2^7 + 554161125525934628748267765/171261395095631272311751*a2^6 + 39714610005936667929152072/171261395095631272311751*a2^5 - 229721966347444087351006912/171261395095631272311751*a2^4 - 25055356367985381871077926/171261395095631272311751*a2^3 + 37217134448461737218517720/171261395095631272311751*a2^2 + 3118260173142557083581708/171261395095631272311751*a2 - 1023687666442773290860992/171261395095631272311751, 536200684636879460234/171261395095631272311751*a2^23 - 2340569815602960002914/171261395095631272311751*a2^22 - 18595743201303365159783/171261395095631272311751*a2^21 + 87760148293617451018312/171261395095631272311751*a2^20 + 268172600976935021849649/171261395095631272311751*a2^19 - 1410700359693895406866430/171261395095631272311751*a2^18 - 2059277577649944868493615/171261395095631272311751*a2^17 + 12706896985716606835947834/171261395095631272311751*a2^16 + 8837891379785681812956640/171261395095631272311751*a2^15 - 70406150344068089041458938/171261395095631272311751*a2^14 - 19247366008346513354464238/171261395095631272311751*a2^13 + 248202339205881445876888714/171261395095631272311751*a2^12 + 8066957563125602564194918/171261395095631272311751*a2^11 - 557242319060247759769802454/171261395095631272311751*a2^10 + 52788439765439568352253268/171261395095631272311751*a2^9 + 775583290634458769021955758/171261395095631272311751*a2^8 - 111175694875439734695408398/171261395095631272311751*a2^7 - 626809585090777056997607422/171261395095631272311751*a2^6 + 86175589473873005637504256/171261395095631272311751*a2^5 + 255415007910874927176503003/171261395095631272311751*a2^4 - 26306320918998983689607774/171261395095631272311751*a2^3 - 37134685094063345880893051/171261395095631272311751*a2^2 + 2994215997131283169380060/171261395095631272311751*a2 + 876517934786259523266137/171261395095631272311751)" "x^24 - 5*x^23 - 26*x^22 + 160*x^21 + 244*x^20 - 2173*x^19 - 711*x^18 + 16368*x^17 - 4007*x^16 - 75111*x^15 + 42025*x^14 + 217575*x^13 - 160547*x^12 - 399209*x^11 + 331301*x^10 + 452295*x^9 - 388291*x^8 - 296126*x^7 + 247918*x^6 + 96139*x^5 - 75925*x^4 - 9553*x^3 + 8302*x^2 - 342*x - 49"
"38683b1" 38683 383 7 2.73E+051 "(a2, 1084096506569374761529/171261395095631272311751*a2^23 - 4676875943116968677282/171261395095631272311751*a2^22 - 31583475280793780500313/171261395095631272311751*a2^21 + 152566634472831118219863/171261395095631272311751*a2^20 + 372951514300544040527356/171261395095631272311751*a2^19 - 2120956637059806820309931/171261395095631272311751*a2^18 - 2237731450385977579008227/171261395095631272311751*a2^17 + 16431900607176618615705457/171261395095631272311751*a2^16 + 6639912945399504566900223/171261395095631272311751*a2^15 - 77962372918852004962730187/171261395095631272311751*a2^14 - 4380780678721158671743857/171261395095631272311751*a2^13 + 234627743402340948897499420/171261395095631272311751*a2^12 - 31477807299921149814988089/171261395095631272311751*a2^11 - 448553612782604426400687115/171261395095631272311751*a2^10 + 103564802957874038494431159/171261395095631272311751*a2^9 + 528715210308935946866134213/171261395095631272311751*a2^8 - 141619619359403870741784233/171261395095631272311751*a2^7 - 356295368351683988050858160/171261395095631272311751*a2^6 + 94637141308415036342531354/171261395095631272311751*a2^5 + 115154983522165788227142836/171261395095631272311751*a2^4 - 27506282984830510686812638/171261395095631272311751*a2^3 - 9892974265624022859872873/171261395095631272311751*a2^2 + 2311496093947297524326116/171261395095631272311751*a2 - 389483847462182006318744/171261395095631272311751, 1610980210331729423845/171261395095631272311751*a2^23 - 8446847331575999174002/171261395095631272311751*a2^22 - 39970741358661123724722/171261395095631272311751*a2^21 + 267656685633220429785018/171261395095631272311751*a2^20 + 335473799924255861905797/171261395095631272311751*a2^19 - 3591725690932758179304004/171261395095631272311751*a2^18 - 429234804791023809832334/171261395095631272311751*a2^17 + 26664821150880028634189110/171261395095631272311751*a2^16 - 11179077743671649715676360/171261395095631272311751*a2^15 - 120306200079762732123826154/171261395095631272311751*a2^14 + 85204117927300822187283972/171261395095631272311751*a2^13 + 342184255162149946289579744/171261395095631272311751*a2^12 - 292904552013233378168312504/171261395095631272311751*a2^11 - 617741442439761706388305102/171261395095631272311751*a2^10 + 555855261588572105838398752/171261395095631272311751*a2^9 + 695093550349174674477524824/171261395095631272311751*a2^8 - 588920867521043088632965786/171261395095631272311751*a2^7 - 462229800092140980767054919/171261395095631272311751*a2^6 + 322234199382349937387872098/171261395095631272311751*a2^5 + 158957241591136791549689730/171261395095631272311751*a2^4 - 74981843769039390084313492/171261395095631272311751*a2^3 - 18197112748073666970506467/171261395095631272311751*a2^2 + 5608668948767292210169994/171261395095631272311751*a2 - 190592589254782134167054/171261395095631272311751, 446531884989395433970/171261395095631272311751*a2^23 - 1593549021570861503999/171261395095631272311751*a2^22 - 12324863612854668810134/171261395095631272311751*a2^21 + 45950555491051309168523/171261395095631272311751*a2^20 + 139195026798951411090031/171261395095631272311751*a2^19 - 542829681477573917280408/171261395095631272311751*a2^18 - 840704363542814124475319/171261395095631272311751*a2^17 + 3372141754473724405768217/171261395095631272311751*a2^16 + 3068186246744384406610697/171261395095631272311751*a2^15 - 11726493340444607794824513/171261395095631272311751*a2^14 - 7710184518579787894752955/171261395095631272311751*a2^13 + 22192215717407365795462739/171261395095631272311751*a2^12 + 15029144633734287397588633/171261395095631272311751*a2^11 - 18971162620638082394430297/171261395095631272311751*a2^10 - 19452174270076326628604898/171261395095631272311751*a2^9 - 1347394326315319506380746/171261395095631272311751*a2^8 + 5049088090739986366317955/171261395095631272311751*a2^7 + 14556980890289587298803049/171261395095631272311751*a2^6 + 20263949941059083048246016/171261395095631272311751*a2^5 - 10634268531414157056296795/171261395095631272311751*a2^4 - 19542055240564648377459924/171261395095631272311751*a2^3 + 3322181134719463911820304/171261395095631272311751*a2^2 + 4194889044207177979046011/171261395095631272311751*a2 - 280547494148786284298744/171261395095631272311751, -1063257354607501573315/171261395095631272311751*a2^23 + 5131096048107555838560/171261395095631272311751*a2^22 + 30211796504430793120076/171261395095631272311751*a2^21 - 167301722115100105716386/171261395095631272311751*a2^20 - 347029667276054017403976/171261395095631272311751*a2^19 + 2330984801480687044787544/171261395095631272311751*a2^18 + 2035822258628456818778006/171261395095631272311751*a2^17 - 18191411666119987190263022/171261395095631272311751*a2^16 - 6208446107465990545705752/171261395095631272311751*a2^15 + 87727259461401532569263480/171261395095631272311751*a2^14 + 7950633626153276854814930/171261395095631272311751*a2^13 - 272419022391613160588296698/171261395095631272311751*a2^12 + 2550633406569999292070108/171261395095631272311751*a2^11 + 550317817450757613971893174/171261395095631272311751*a2^10 - 11249909037064520615287860/171261395095631272311751*a2^9 - 710475595977838981554158714/171261395095631272311751*a2^8 - 12502582572788195620320368/171261395095631272311751*a2^7 + 554161125525934628748267765/171261395095631272311751*a2^6 + 39714610005936667929152072/171261395095631272311751*a2^5 - 229721966347444087351006912/171261395095631272311751*a2^4 - 25055356367985381871077926/171261395095631272311751*a2^3 + 37217134448461737218517720/171261395095631272311751*a2^2 + 3118260173142557083581708/171261395095631272311751*a2 - 1023687666442773290860992/171261395095631272311751, 536200684636879460234/171261395095631272311751*a2^23 - 2340569815602960002914/171261395095631272311751*a2^22 - 18595743201303365159783/171261395095631272311751*a2^21 + 87760148293617451018312/171261395095631272311751*a2^20 + 268172600976935021849649/171261395095631272311751*a2^19 - 1410700359693895406866430/171261395095631272311751*a2^18 - 2059277577649944868493615/171261395095631272311751*a2^17 + 12706896985716606835947834/171261395095631272311751*a2^16 + 8837891379785681812956640/171261395095631272311751*a2^15 - 70406150344068089041458938/171261395095631272311751*a2^14 - 19247366008346513354464238/171261395095631272311751*a2^13 + 248202339205881445876888714/171261395095631272311751*a2^12 + 8066957563125602564194918/171261395095631272311751*a2^11 - 557242319060247759769802454/171261395095631272311751*a2^10 + 52788439765439568352253268/171261395095631272311751*a2^9 + 775583290634458769021955758/171261395095631272311751*a2^8 - 111175694875439734695408398/171261395095631272311751*a2^7 - 626809585090777056997607422/171261395095631272311751*a2^6 + 86175589473873005637504256/171261395095631272311751*a2^5 + 255415007910874927176503003/171261395095631272311751*a2^4 - 26306320918998983689607774/171261395095631272311751*a2^3 - 37134685094063345880893051/171261395095631272311751*a2^2 + 2994215997131283169380060/171261395095631272311751*a2 + 876517934786259523266137/171261395095631272311751)" "x^24 - 5*x^23 - 26*x^22 + 160*x^21 + 244*x^20 - 2173*x^19 - 711*x^18 + 16368*x^17 - 4007*x^16 - 75111*x^15 + 42025*x^14 + 217575*x^13 - 160547*x^12 - 399209*x^11 + 331301*x^10 + 452295*x^9 - 388291*x^8 - 296126*x^7 + 247918*x^6 + 96139*x^5 - 75925*x^4 - 9553*x^3 + 8302*x^2 - 342*x - 49"
"77a1" 77 385 7 11348 "(a7, -a7^2 + a7 + 4, 1, -1, -1, a7^3 - 2*a7^2 - 4*a7 + 3)" "x^4 - 2*x^3 - 6*x^2 + 8*x + 7"
"1155i1" 1155 385 7 8 "(a3, a3 - 1, -1, -1, 1, -a3 + 3)" "x^2 - 2*x - 1"
"2310b1" 2310 385 7 8 "(a3, a3 - 1, -1, -1, 1, -a3 + 3)" "x^2 - 2*x - 1"
"None found" "none" 386 7 154544336 "(-1, -a2 - 1, 1/2*a2^5 + 5/2*a2^4 - 1/2*a2^3 - 19/2*a2^2 + 3/2*a2 + 5/2, a2^4 + 5*a2^3 - 15*a2 + 5, -a2^4 - 5*a2^3 - a2^2 + 12*a2 - 2, -1/2*a2^5 - 3*a2^4 - 5/2*a2^3 + 6*a2^2 + 3/2*a2 + 2)" "x^6 + 7*x^5 + 8*x^4 - 25*x^3 - 28*x^2 + 35*x - 1"
"234a1" 234 387 7 8 "(a6, 0, -a6 - 2, -a6 - 2, 2*a6 + 1, -2*a6 + 1)" "x^2 - 2"
"774h1" 774 387 7 8 "(a6, 0, -a6 - 2, -a6 - 2, 2*a6 + 1, -2*a6 + 1)" "x^2 - 2"
"774h1" 774 387 7 8 "(a5, 0, -a5 - 2, 2*a5 + 3, -a5 - 4, -5)" "x^2 + 2*x - 1"
"7353m1" 7353 387 7 8 "(a5, 0, -a5 - 2, 2*a5 + 3, -a5 - 4, -5)" "x^2 + 2*x - 1"
"22116f1" 22116 388 7 49 "(0, -1/2*a0, -1/4*a0^2 + a0 - 1, 1/2*a0^2 - 1/2*a0 - 3, -3/4*a0^2 + 2*a0 + 1, 1/4*a0^2 - a0 - 2)" "x^3 - 4*x^2 - 4*x + 8"
"8558c1" 8558 389 7 8 "(a1, a1 - 2, -1, -2*a1 - 1, -2, 2*a1 + 1)" "x^2 - 2"
"None found" "none" 389 7 8 "(a1, a1 - 2, -1, -2*a1 - 1, -2, 2*a1 + 1)" "x^2 - 2"
"26b1" 26 390 7 8 "(1, 1, 1, -1/2*a7 + 2, a7 - 4, -1)" "x^2 - 8*x - 16"
"2730bc1" 2730 390 7 8 "(1, 1, 1, -1/2*a7 + 2, a7 - 4, -1)" "x^2 - 8*x - 16"
"17a1" 17 391 7 4.03E+021 "(a4, -9/14*a4^11 + 12/7*a4^10 + 19/2*a4^9 - 181/7*a4^8 - 89/2*a4^7 + 888/7*a4^6 + 460/7*a4^5 - 429/2*a4^4 - 30/7*a4^3 + 867/14*a4^2 + 7*a4 + 9/14, -1/14*a4^11 - 9/14*a4^10 + 3*a4^9 + 141/14*a4^8 - 69/2*a4^7 - 368/7*a4^6 + 1084/7*a4^5 + 205/2*a4^4 - 3677/14*a4^3 - 443/7*a4^2 + 201/2*a4 + 379/14, 3/14*a4^11 - 1/14*a4^10 - 9/2*a4^9 + 9/7*a4^8 + 35*a4^7 - 58/7*a4^6 - 851/7*a4^5 + 43/2*a4^4 + 2435/14*a4^3 - 191/14*a4^2 - 60*a4 - 82/7, 13/7*a4^11 - 39/14*a4^10 - 33*a4^9 + 295/7*a4^8 + 425/2*a4^7 - 1464/7*a4^6 - 4230/7*a4^5 + 366*a4^4 + 10195/14*a4^3 - 795/7*a4^2 - 256*a4 - 635/14, 15/7*a4^11 - 40/7*a4^10 - 32*a4^9 + 608/7*a4^8 + 153*a4^7 - 3030/7*a4^6 - 1678/7*a4^5 + 764*a4^4 + 303/7*a4^3 - 2012/7*a4^2 - 22*a4 + 97/7)" "x^12 - 4*x^11 - 12*x^10 + 62*x^9 + 27*x^8 - 321*x^7 + 108*x^6 + 625*x^5 - 362*x^4 - 372*x^3 + 116*x^2 + 97*x + 13"
"782c1" 782 391 7 257 "(a1, -2, -a1^2 + 2, -a1, -a1^2 - a1 + 3, 2*a1^2 - a1 - 6)" "x^3 + x^2 - 4*x - 3"
1.17E+004 1173 391 7 4.03E+021 "(a4, -9/14*a4^11 + 12/7*a4^10 + 19/2*a4^9 - 181/7*a4^8 - 89/2*a4^7 + 888/7*a4^6 + 460/7*a4^5 - 429/2*a4^4 - 30/7*a4^3 + 867/14*a4^2 + 7*a4 + 9/14, -1/14*a4^11 - 9/14*a4^10 + 3*a4^9 + 141/14*a4^8 - 69/2*a4^7 - 368/7*a4^6 + 1084/7*a4^5 + 205/2*a4^4 - 3677/14*a4^3 - 443/7*a4^2 + 201/2*a4 + 379/14, 3/14*a4^11 - 1/14*a4^10 - 9/2*a4^9 + 9/7*a4^8 + 35*a4^7 - 58/7*a4^6 - 851/7*a4^5 + 43/2*a4^4 + 2435/14*a4^3 - 191/14*a4^2 - 60*a4 - 82/7, 13/7*a4^11 - 39/14*a4^10 - 33*a4^9 + 295/7*a4^8 + 425/2*a4^7 - 1464/7*a4^6 - 4230/7*a4^5 + 366*a4^4 + 10195/14*a4^3 - 795/7*a4^2 - 256*a4 - 635/14, 15/7*a4^11 - 40/7*a4^10 - 32*a4^9 + 608/7*a4^8 + 153*a4^7 - 3030/7*a4^6 - 1678/7*a4^5 + 764*a4^4 + 303/7*a4^3 - 2012/7*a4^2 - 22*a4 + 97/7)" "x^12 - 4*x^11 - 12*x^10 + 62*x^9 + 27*x^8 - 321*x^7 + 108*x^6 + 625*x^5 - 362*x^4 - 372*x^3 + 116*x^2 + 97*x + 13"
"1173c1" 1173 391 7 17083750550464 "(a3, -1/4*a3^8 + 1/4*a3^7 + 7/2*a3^6 - 5/2*a3^5 - 33/2*a3^4 + 7*a3^3 + 57/2*a3^2 - 19/4*a3 - 47/4, -1/4*a3^8 + 1/4*a3^7 + 13/4*a3^6 - 11/4*a3^5 - 55/4*a3^4 + 35/4*a3^3 + 85/4*a3^2 - 13/2*a3 - 9, -1/4*a3^7 + 1/4*a3^6 + 13/4*a3^5 - 11/4*a3^4 - 47/4*a3^3 + 31/4*a3^2 + 33/4*a3 - 5/2, 1/4*a3^8 - 15/4*a3^6 + 1/4*a3^5 + 73/4*a3^4 - 9/4*a3^3 - 125/4*a3^2 + 9/2*a3 + 57/4, -a3^8 + 3/2*a3^7 + 12*a3^6 - 16*a3^5 - 43*a3^4 + 47*a3^3 + 43*a3^2 - 26*a3 - 23/2)" "x^9 - 2*x^8 - 12*x^7 + 23*x^6 + 43*x^5 - 79*x^4 - 43*x^3 + 78*x^2 + 11*x - 21"
"392b1" 392 392 7 8 "(0, 1/2*a6, 1/2*a6, 0, -4, -1/2*a6)" "x^2 - 32"
"392c1" 392 392 7 8 "(0, 1/2*a6, 1/2*a6, 0, -4, -1/2*a6)" "x^2 - 32"
3.92E+003 392 392 7 8 "(0, 1/2*a7, a7, 0, 6, -2*a7)" "x^2 - 8"
"392f1" 392 392 7 8 "(0, 1/2*a7, a7, 0, 6, -2*a7)" "x^2 - 8"
"786l1" 786 393 7 12062776 "(a4, 1, -a4^4 + 5*a4^2 - 2, a4^5 - a4^4 - 5*a4^3 + 4*a4^2 + 4*a4 - 1, a4^4 - a4^3 - 5*a4^2 + 3*a4 + 5, -a4^5 + 2*a4^4 + 5*a4^3 - 10*a4^2 - 4*a4 + 7)" "x^6 - x^5 - 7*x^4 + 5*x^3 + 13*x^2 - 4*x - 5"
"786j1" 786 393 7 8 "(a0, -1, -2*a0 - 2, 4, 1, 5)" "x^2 + 2*x - 1"
"105717c1" 105717 393 7 8 "(a0, -1, -2*a0 - 2, 4, 1, 5)" "x^2 + 2*x - 1"
"None found" "none" 393 7 1957 "(a2, -1, -a2^3 - a2^2 + 2*a2 + 1, a2^3 - 3*a2 - 1, 2*a2^3 + a2^2 - 7*a2, -2*a2^3 - 2*a2^2 + 5*a2)" "x^4 + x^3 - 4*x^2 - 2*x + 3"
"1970b1" 1970 394 7 29 "(1, 0, 1/2*a2 - 1/2, 2, -a2 + 5, -1/2*a2 + 7/2)" "x^2 - 8*x - 13"
"19306i1" 19306 394 7 29 "(1, 0, 1/2*a2 - 1/2, 2, -a2 + 5, -1/2*a2 + 7/2)" "x^2 - 8*x - 13"
"20882b1" 20882 394 7 21 "(1, -1/2*a1 + 1/2, 0, 2, -1/2*a1 - 1/2, a1 - 3)" "x^2 - 4*x - 17"
2.37E+004 2370 395 7 49 "(a3, a3^2 + a3 - 2, 1, -2*a3^2 - 3*a3 + 1, -a3^2 - a3 + 2, -a3^2 - a3 - 2)" "x^3 + 2*x^2 - x - 1"
"None found" "none" 397 7 8 "(a0, 0, -2, a0 + 4, -2*a0 - 2, -2*a0 - 6)" "x^2 + 2*x - 1"
"None found" "none" 397 7 8 "(a0, 0, -2, a0 + 4, -2*a0 - 2, -2*a0 - 6)" "x^2 + 2*x - 1"
"None found" "none" 397 7 8 "(a1, -a1 + 3, a1 - 1, -2*a1 + 1, a1 + 1, 3*a1 - 1)" "x^2 - 2*x - 1"
"None found" "none" 397 7 8 "(a1, -a1 + 3, a1 - 1, -2*a1 + 1, a1 + 1, 3*a1 - 1)" "x^2 - 2*x - 1"
"None found" "none" 397 7 8.36E+019 "(a4, -356/1325*a4^12 - 372/265*a4^11 + 358/265*a4^10 + 20873/1325*a4^9 + 7163/1325*a4^8 - 83228/1325*a4^7 - 10893/265*a4^6 + 141118/1325*a4^5 + 90693/1325*a4^4 - 99828/1325*a4^3 - 42657/1325*a4^2 + 25211/1325*a4 + 3304/1325, -181/265*a4^12 - 207/53*a4^11 + 65/53*a4^10 + 10433/265*a4^9 + 9023/265*a4^8 - 35473/265*a4^7 - 8923/53*a4^6 + 45208/265*a4^5 + 67048/265*a4^4 - 17133/265*a4^3 - 29932/265*a4^2 + 2046/265*a4 + 2719/265, 804/1325*a4^12 + 858/265*a4^11 - 612/265*a4^10 - 44907/1325*a4^9 - 22817/1325*a4^8 + 163102/1325*a4^7 + 26727/265*a4^6 - 238237/1325*a4^5 - 200387/1325*a4^4 + 129027/1325*a4^3 + 81063/1325*a4^2 - 26224/1325*a4 - 8236/1325, 1136/1325*a4^12 + 1327/265*a4^11 - 398/265*a4^10 - 68988/1325*a4^9 - 59853/1325*a4^8 + 247493/1325*a4^7 + 60423/265*a4^6 - 357708/1325*a4^5 - 470183/1325*a4^4 + 202518/1325*a4^3 + 225817/1325*a4^2 - 51641/1325*a4 - 23674/1325, -496/1325*a4^12 - 557/265*a4^11 + 338/265*a4^10 + 30868/1325*a4^9 + 19508/1325*a4^8 - 121273/1325*a4^7 - 23228/265*a4^6 + 205338/1325*a4^5 + 198013/1325*a4^4 - 157398/1325*a4^3 - 105837/1325*a4^2 + 52276/1325*a4 + 8489/1325)" "x^13 + 7*x^12 + 5*x^11 - 63*x^10 - 124*x^9 + 157*x^8 + 526*x^7 + 2*x^6 - 794*x^5 - 328*x^4 + 408*x^3 + 203*x^2 - 66*x - 23"
"399c1" 399 399 7 404 "(a4, 1, -a4^2 + 5, -1, -2*a4^2 - 2*a4 + 12, 2*a4^2 + 2*a4 - 10)" "x^3 - x^2 - 7*x + 9"
"81002g1" 81002 401 7 7.61E+041 "(a1, -18286877149/2056085485264*a1^20 - 11127199047/2056085485264*a1^19 + 83946583113/257010685658*a1^18 + 82268698561/514021371316*a1^17 - 10577086239965/2056085485264*a1^16 - 4006759400165/2056085485264*a1^15 + 5820872970774/128505342829*a1^14 + 26143714096043/2056085485264*a1^13 - 31289587591503/128505342829*a1^12 - 100786701349185/2056085485264*a1^11 + 1682873453689943/2056085485264*a1^10 + 122664373913815/1028042742632*a1^9 - 3480210083621745/2056085485264*a1^8 - 413112998448921/2056085485264*a1^7 + 2090208291142399/1028042742632*a1^6 + 521232062879477/2056085485264*a1^5 - 2588114268141401/2056085485264*a1^4 - 216362373657685/1028042742632*a1^3 + 634884906799859/2056085485264*a1^2 + 70645897189647/1028042742632*a1 - 3293700981999/514021371316, -722413535/128505342829*a1^20 + 4850669160/128505342829*a1^19 + 17729132132/128505342829*a1^18 - 616176543847/514021371316*a1^17 - 545133209029/514021371316*a1^16 + 4061635213501/257010685658*a1^15 - 81942846175/257010685658*a1^14 - 28814567024775/257010685658*a1^13 + 6461969206283/128505342829*a1^12 + 59717775138331/128505342829*a1^11 - 160937518187779/514021371316*a1^10 - 294890352574975/257010685658*a1^9 + 459977117780719/514021371316*a1^8 + 853299070638225/514021371316*a1^7 - 673509990918971/514021371316*a1^6 - 695729399878955/514021371316*a1^5 + 119791311761006/128505342829*a1^4 + 302525984112977/514021371316*a1^3 - 68216128320123/257010685658*a1^2 - 28194703453239/257010685658*a1 + 1197867446729/128505342829, 11788227381/1028042742632*a1^20 - 17556105935/1028042742632*a1^19 - 175917004357/514021371316*a1^18 + 277765645839/514021371316*a1^17 + 4221110609895/1028042742632*a1^16 - 7240673316675/1028042742632*a1^15 - 3198938144554/128505342829*a1^14 + 50222989912785/1028042742632*a1^13 + 39080024046237/514021371316*a1^12 - 200432877759707/1028042742632*a1^11 - 80842481868219/1028042742632*a1^10 + 116739845694491/257010685658*a1^9 - 158230419832287/1028042742632*a1^8 - 623823499506267/1028042742632*a1^7 + 63600503938346/128505342829*a1^6 + 471363605727771/1028042742632*a1^5 - 464992827043603/1028042742632*a1^4 - 26823439523891/128505342829*a1^3 + 139429229628541/1028042742632*a1^2 + 26480698676661/514021371316*a1 - 286007594119/257010685658, -65872818475/1028042742632*a1^20 + 24504892221/1028042742632*a1^19 + 275445436750/128505342829*a1^18 - 94128553210/128505342829*a1^17 - 31019594825691/1028042742632*a1^16 + 9424250012195/1028042742632*a1^15 + 29901763784562/128505342829*a1^14 - 61663707257231/1028042742632*a1^13 - 551547004674839/514021371316*a1^12 + 225232260705723/1028042742632*a1^11 + 3120061386536981/1028042742632*a1^10 - 112655572100787/257010685658*a1^9 - 5350818255511181/1028042742632*a1^8 + 422995988582409/1028042742632*a1^7 + 1328612115857249/257010685658*a1^6 - 25831277280967/1028042742632*a1^5 - 2767570136776731/1028042742632*a1^4 - 58048134220281/257010685658*a1^3 + 593287325531071/1028042742632*a1^2 + 53353117310705/514021371316*a1 - 2788481204299/257010685658, 5922142461/514021371316*a1^20 - 4388103687/257010685658*a1^19 - 190854757593/514021371316*a1^18 + 282772054063/514021371316*a1^17 + 1293881759277/257010685658*a1^16 - 3745952572257/514021371316*a1^15 - 9667642818631/257010685658*a1^14 + 26267034142439/514021371316*a1^13 + 88028827271723/514021371316*a1^12 - 104417140872075/514021371316*a1^11 - 256484825359039/514021371316*a1^10 + 232486914297775/514021371316*a1^9 + 489257916738043/514021371316*a1^8 - 261224184161481/514021371316*a1^7 - 601810751729847/514021371316*a1^6 + 96962568271683/514021371316*a1^5 + 430021502626571/514021371316*a1^4 + 37497517466363/514021371316*a1^3 - 129911109286611/514021371316*a1^2 - 5918147205798/128505342829*a1 + 1164757232946/128505342829)" "x^21 - 35*x^19 + 521*x^17 + 2*x^16 - 4305*x^15 - 51*x^14 + 21617*x^13 + 519*x^12 - 67876*x^11 - 2749*x^10 + 132085*x^9 + 8292*x^8 - 152221*x^7 - 14353*x^6 + 93934*x^5 + 12831*x^4 - 24699*x^3 - 4111*x^2 + 1058*x - 44"
"None found" "none" 401 7 8.48E+016 "(a0, -2*a0^11 - 4*a0^10 + 21*a0^9 + 43*a0^8 - 66*a0^7 - 151*a0^6 + 63*a0^5 + 211*a0^4 + 5*a0^3 - 114*a0^2 - 17*a0 + 13, 11/2*a0^11 + 23/2*a0^10 - 60*a0^9 - 124*a0^8 + 417/2*a0^7 + 863/2*a0^6 - 274*a0^5 - 1151/2*a0^4 + 231/2*a0^3 + 265*a0^2 + 25/2*a0 - 23, -2*a0^11 - 4*a0^10 + 23*a0^9 + 43*a0^8 - 89*a0^7 - 147*a0^6 + 145*a0^5 + 183*a0^4 - 94*a0^3 - 64*a0^2 + 5*a0 + 1, -11/2*a0^11 - 11/2*a0^10 + 70*a0^9 + 53*a0^8 - 629/2*a0^7 - 289/2*a0^6 + 630*a0^5 + 151/2*a0^4 - 1093/2*a0^3 + 101*a0^2 + 253/2*a0 - 36, 11/2*a0^11 + 15/2*a0^10 - 65*a0^9 - 76*a0^8 + 521/2*a0^7 + 473/2*a0^6 - 446*a0^5 - 487/2*a0^4 + 643/2*a0^3 + 41*a0^2 - 111/2*a0 + 7)" "x^12 + 3*x^11 - 10*x^10 - 34*x^9 + 29*x^8 + 129*x^7 - 24*x^6 - 203*x^5 + x^4 + 130*x^3 - 5*x^2 - 22*x + 4"
"26b1" 26 403 7 1571281045 "(a2, a2^5 - 3*a2^4 - 3*a2^3 + 13*a2^2 - 6*a2, -a2^5 + 2*a2^4 + 5*a2^3 - 9*a2^2 - 2*a2 + 4, a2^4 - 2*a2^3 - 5*a2^2 + 8*a2 + 2, -a2^6 + 3*a2^5 + 3*a2^4 - 14*a2^3 + 7*a2^2 + 5*a2 - 1, -1)" "x^7 - 2*x^6 - 9*x^5 + 17*x^4 + 20*x^3 - 37*x^2 + x + 4"
"None found" "none" 403 7 5748973 "(a1, -a1^5 - 3*a1^4 + 5*a1^3 + 19*a1^2 + 6*a1 - 8, 3*a1^5 + 8*a1^4 - 17*a1^3 - 51*a1^2 - 8*a1 + 18, -2*a1^5 - 5*a1^4 + 12*a1^3 + 31*a1^2 - 10, 5*a1^5 + 12*a1^4 - 29*a1^3 - 75*a1^2 - 8*a1 + 24, 1)" "x^6 + 2*x^5 - 7*x^4 - 13*x^3 + 6*x^2 + 7*x - 3"
"26b1" 26 406 7 11348 "(1, -1/2*a6 + 1/2, -1/32*a6^3 - 3/32*a6^2 + 41/32*a6 + 59/32, 1, 1/2*a6 + 3/2, 3/32*a6^3 - 7/32*a6^2 - 91/32*a6 + 63/32)" "x^4 - 2*x^3 - 40*x^2 + 50*x + 119"
"11a1" 11 407 7 1957 "(a1, -a1^3 + a1^2 + 2*a1 - 2, a1^3 - a1^2 - 3*a1, -a1^2 + 2, 1, -a1^3 + a1^2 + 2*a1 - 4)" "x^4 - x^3 - 4*x^2 + 2*x + 3"
"37a1" 37 407 7 1957 "(a0, a0^3 + a0^2 - 4*a0, -a0^3 - a0^2 + 3*a0, -2*a0^3 - 3*a0^2 + 6*a0, -1, a0^3 + a0^2 - 2*a0 - 2)" "x^4 + x^3 - 4*x^2 + 1"
"2040q1" 2040 408 7 57 "(0, 1, a5 - 2, 4, -a5, -a5 + 2)" "x^2 - 3*x - 12"
"4488j1" 4488 408 7 57 "(0, 1, a5 - 2, 4, -a5, -a5 + 2)" "x^2 - 3*x - 12"
"246a1" 246 410 7 404 "(1, -1/2*a8 + 1/2, -1, 2, -1/4*a8^2 + 1/2*a8 + 15/4, -1/4*a8^2 + 3/2*a8 + 27/4)" "x^3 - 3*x^2 - 29*x - 1"
"2055d1" 2055 411 7 352588 "(a3, 1, -a3^4 - a3^3 + 7*a3^2 + 9*a3 + 1, -a3^4 + 6*a3^2 + 4*a3, a3^4 + a3^3 - 7*a3^2 - 11*a3, 2*a3^4 - a3^3 - 13*a3^2 - 3*a3 + 5)" "x^5 + x^4 - 7*x^3 - 10*x^2 + 1"
"66171a1" 66171 411 7 49 "(a1, -1, -a1^2 + 1, -a1^2 - a1 + 1, a1^2 - 2*a1 - 2, a1 - 4)" "x^3 - x^2 - 2*x + 1"
"4532b1" 4532 412 7 21 "(0, -1, -a1 - 2, 2*a1 + 3, -a1 - 3, a1 - 2)" "x^2 + 3*x - 3"
"3835a1" 3835 413 7 229 "(-1, -1/2*a1 - 1/2, -a1 - 3, -1, -1/2*a1 - 1/2, -3/4*a1^2 - 7/2*a1 + 13/4)" "x^3 + 9*x^2 + 11*x - 29"
"2070j1" 2070 414 7 28 "(1, 0, 1/2*a6 - 1/2, 2, -1/2*a6 + 1/2, -a6 + 3)" "x^2 - 6*x - 19"
"2070c1" 2070 414 7 28 "(-1, 0, 1/2*a4 + 1/2, 2, -1/2*a4 - 1/2, a4 + 3)" "x^2 + 6*x - 19"
"26b1" 26 415 7 5.84E+019 "(a4, -a4^10 - 7/4*a4^9 + 65/4*a4^8 + 119/4*a4^7 - 83*a4^6 - 164*a4^5 + 483/4*a4^4 + 1195/4*a4^3 + 213/4*a4^2 - 93/2*a4 - 6, 1, 1/4*a4^9 - 1/4*a4^8 - 15/4*a4^7 + 7/2*a4^6 + 18*a4^5 - 61/4*a4^4 - 115/4*a4^3 + 83/4*a4^2 + 7*a4 - 4, 3/4*a4^10 + 9/4*a4^9 - 51/4*a4^8 - 37*a4^7 + 137/2*a4^6 + 789/4*a4^5 - 425/4*a4^4 - 1401/4*a4^3 - 91/2*a4^2 + 133/2*a4 + 6, -a4^3 - a4^2 + 6*a4 + 4)" "x^11 - 20*x^9 - x^8 + 146*x^7 + 15*x^6 - 464*x^5 - 76*x^4 + 567*x^3 + 136*x^2 - 100*x - 8"
"415a1" 415 415 7 5.84E+019 "(a4, -a4^10 - 7/4*a4^9 + 65/4*a4^8 + 119/4*a4^7 - 83*a4^6 - 164*a4^5 + 483/4*a4^4 + 1195/4*a4^3 + 213/4*a4^2 - 93/2*a4 - 6, 1, 1/4*a4^9 - 1/4*a4^8 - 15/4*a4^7 + 7/2*a4^6 + 18*a4^5 - 61/4*a4^4 - 115/4*a4^3 + 83/4*a4^2 + 7*a4 - 4, 3/4*a4^10 + 9/4*a4^9 - 51/4*a4^8 - 37*a4^7 + 137/2*a4^6 + 789/4*a4^5 - 425/4*a4^4 - 1401/4*a4^3 - 91/2*a4^2 + 133/2*a4 + 6, -a4^3 - a4^2 + 6*a4 + 4)" "x^11 - 20*x^9 - x^8 + 146*x^7 + 15*x^6 - 464*x^5 - 76*x^4 + 567*x^3 + 136*x^2 - 100*x - 8"
"2905c1" 2905 415 7 7783241 "(a2, -a2^4 + a2^3 + 5*a2^2 - 3*a2 - 3, -1, a2^5 - a2^4 - 5*a2^3 + 3*a2^2 + 5*a2, 2*a2^5 - 3*a2^4 - 10*a2^3 + 12*a2^2 + 9*a2 - 4, -a2^3 + a2^2 + 2*a2)" "x^6 - 2*x^5 - 5*x^4 + 9*x^3 + 5*x^2 - 6*x - 1"
"26b1" 26 417 7 229 "(a3, 1, -a3^2 - a3 + 4, a3^2 - 1, -a3^2 + a3 + 4, 2*a3^2 - 4)" "x^3 - 4*x - 1"
"834f1" 834 417 7 229 "(a2, -1, a2^2 - a2 - 2, a2^2 - 1, 1, -a2^2 + a2 + 1)" "x^3 - 4*x - 1"
"834a1" 834 417 7 4493904352 "(a5, 1, -1/2*a5^3 + 7/2*a5 - 1, 1/4*a5^6 - 5/2*a5^4 + 21/4*a5^2 + 1, -1/4*a5^6 - 1/2*a5^5 + 3*a5^4 + 4*a5^3 - 39/4*a5^2 - 11/2*a5 + 4, -1/4*a5^6 + 5/2*a5^4 - 1/2*a5^3 - 25/4*a5^2 + 3/2*a5 + 4)" "x^7 - 14*x^5 + 2*x^4 + 57*x^3 - 14*x^2 - 56*x + 8"
"38b1" 38 418 7 469 "(1, 1/2*a7 - 1/2, -1/2*a7 + 5/2, -1/4*a7^2 + 1/2*a7 + 15/4, -1, 1/4*a7^2 - 1/2*a7 - 7/4)" "x^3 - 5*x^2 - 13*x + 49"
"418c1" 418 418 7 21 "(1, -1/2*a5 + 1/2, -1/2*a5 + 5/2, 1/2*a5 - 7/2, 1, 1/2*a5 + 5/2)" "x^2 - 4*x - 17"
"1254f1" 1254 418 7 469 "(1, 1/2*a7 - 1/2, -1/2*a7 + 5/2, -1/4*a7^2 + 1/2*a7 + 15/4, -1, 1/4*a7^2 - 1/2*a7 - 7/4)" "x^3 - 5*x^2 - 13*x + 49"
"9614a1" 9614 418 7 621 "(-1, 1/2*a6 + 1/2, -1/4*a6^2 - 1/2*a6 + 11/4, 1/4*a6^2 - 1/2*a6 - 27/4, -1, 1/4*a6^2 - 1/2*a6 - 19/4)" "x^3 + 3*x^2 - 21*x - 47"
"26b1" 26 421 7 2.51E+036 "(a1, 1430551/9117529*a1^18 - 2454755/9117529*a1^17 - 38550465/9117529*a1^16 + 61521646/9117529*a1^15 + 433188182/9117529*a1^14 - 634476014/9117529*a1^13 - 2625122576/9117529*a1^12 + 3471841595/9117529*a1^11 + 9256149754/9117529*a1^10 - 10815766925/9117529*a1^9 - 19082230913/9117529*a1^8 + 19034855015/9117529*a1^7 + 21961332366/9117529*a1^6 - 17464171573/9117529*a1^5 - 12883617829/9117529*a1^4 + 6876539232/9117529*a1^3 + 3602610333/9117529*a1^2 - 873971523/9117529*a1 - 365040381/9117529, 878109/9117529*a1^18 - 3976489/18235058*a1^17 - 21432487/9117529*a1^16 + 93225979/18235058*a1^15 + 430254627/18235058*a1^14 - 443104396/9117529*a1^13 - 2297447469/18235058*a1^12 + 2196150081/9117529*a1^11 + 3529600990/9117529*a1^10 - 12170815053/18235058*a1^9 - 12628043807/18235058*a1^8 + 9426980563/9117529*a1^7 + 6363626036/9117529*a1^6 - 15616138215/18235058*a1^5 - 3338288148/9117529*a1^4 + 6319228471/18235058*a1^3 + 808920540/9117529*a1^2 - 881163033/18235058*a1 - 131854079/18235058, -3123478/9117529*a1^18 + 10913861/9117529*a1^17 + 62919987/9117529*a1^16 - 243654208/9117529*a1^15 - 465583763/9117529*a1^14 + 2157201832/9117529*a1^13 + 1401909094/9117529*a1^12 - 9590529875/9117529*a1^11 - 392497374/9117529*a1^10 + 22254628727/9117529*a1^9 - 6746201733/9117529*a1^8 - 25130945901/9117529*a1^7 + 12798978544/9117529*a1^6 + 11178019495/9117529*a1^5 - 7155824038/9117529*a1^4 - 1582051080/9117529*a1^3 + 1443353266/9117529*a1^2 + 25568693/9117529*a1 - 93458019/9117529, -2511386/9117529*a1^18 + 11518462/9117529*a1^17 + 43831365/9117529*a1^16 - 259192754/9117529*a1^15 - 222042511/9117529*a1^14 + 2323024199/9117529*a1^13 - 240681170/9117529*a1^12 - 10539230756/9117529*a1^11 + 5909574641/9117529*a1^10 + 25384240468/9117529*a1^9 - 20487342529/9117529*a1^8 - 31070335861/9117529*a1^7 + 28829195477/9117529*a1^6 + 17231982875/9117529*a1^5 - 15964886849/9117529*a1^4 - 4333558975/9117529*a1^3 + 3475081261/9117529*a1^2 + 391178212/9117529*a1 - 233236203/9117529, -3069490/9117529*a1^18 + 11917235/9117529*a1^17 + 58364913/9117529*a1^16 - 267836413/9117529*a1^15 - 373504203/9117529*a1^14 + 2394578183/9117529*a1^13 + 544241389/9117529*a1^12 - 10808158877/9117529*a1^11 + 3973912107/9117529*a1^10 + 25728350239/9117529*a1^9 - 19534553843/9117529*a1^8 - 30517753704/9117529*a1^7 + 34046371348/9117529*a1^6 + 15211847262/9117529*a1^5 - 25581601586/9117529*a1^4 - 2596994859/9117529*a1^3 + 8234394600/9117529*a1^2 + 32311354/9117529*a1 - 879264013/9117529)" "x^19 - 4*x^18 - 20*x^17 + 93*x^16 + 145*x^15 - 874*x^14 - 402*x^13 + 4263*x^12 - 159*x^11 - 11551*x^10 + 3133*x^9 + 17375*x^8 - 5935*x^7 - 14018*x^6 + 4016*x^5 + 5896*x^4 - 1088*x^3 - 1185*x^2 + 101*x + 89"
"2110g1" 2110 422 7 49 "(1, -a4 + 1, a4^2 - 4*a4 + 1, -2*a4^2 + 11*a4 - 15, -3*a4^2 + 17*a4 - 21, 2*a4^2 - 13*a4 + 15)" "x^3 - 8*x^2 + 19*x - 13"
"24898d1" 24898 422 7 257 "(-1, a2 + 1, -1/3*a2^2 - 4/3*a2 - 1, -a2 - 3, 1/3*a2^2 + 1/3*a2 + 1, -2/3*a2^2 - 5/3*a2 - 1)" "x^3 + 4*x^2 - 3*x - 9"
"42622c1" 42622 422 7 43983893 "(1, -a5 + 1, 4*a5^5 - 10*a5^4 - 31*a5^3 + 47*a5^2 + 57*a5 + 10, -3*a5^5 + 8*a5^4 + 22*a5^3 - 39*a5^2 - 36*a5 - 2, -2*a5^5 + 4*a5^4 + 18*a5^3 - 17*a5^2 - 39*a5 - 11, -6*a5^5 + 15*a5^4 + 46*a5^3 - 71*a5^2 - 80*a5 - 11)" "x^6 - 2*x^5 - 9*x^4 + 8*x^3 + 20*x^2 + 9*x + 1"
4.23E+003 423 423 7 1957 "(a10, 0, -4*a10^3 - 2*a10^2 + 20*a10 + 10, -3*a10^3 - a10^2 + 16*a10 + 7, 2*a10^3 + 2*a10^2 - 10*a10 - 6, 4*a10^3 + 2*a10^2 - 22*a10 - 8)" "x^4 + x^3 - 5*x^2 - 5*x - 1"
6.23E+005 62328 424 7 8 "(0, -a0, -2, 2*a0, 2*a0 - 4, -2*a0 - 1)" "x^2 - 2*x - 1"
"None found" "none" 424 7 8 "(0, -a0, -2, 2*a0, 2*a0 - 4, -2*a0 - 1)" "x^2 - 2*x - 1"
"850l1" 850 425 7 6224 "(a7, -a7^3 + a7^2 + 4*a7 - 2, 0, -a7 + 3, a7^2 + a7 - 4, 3*a7^3 - 2*a7^2 - 13*a7 + 8)" "x^4 - 2*x^3 - 4*x^2 + 8*x - 1"
"850a1" 850 425 7 8 "(a5, -a5 + 3, 0, a5 + 1, -a5 - 3, -2*a5 + 2)" "x^2 - 2*x - 1"
"850c1" 850 425 7 6224 "(a6, -a6^3 - a6^2 + 4*a6 + 2, 0, -a6 - 3, a6^2 - a6 - 4, 3*a6^3 + 2*a6^2 - 13*a6 - 8)" "x^4 + 2*x^3 - 4*x^2 - 8*x - 1"
"2975b1" 2975 425 7 8 "(a5, -a5 + 3, 0, a5 + 1, -a5 - 3, -2*a5 + 2)" "x^2 - 2*x - 1"
"26b1" 26 426 7 469 "(1, 1, -a6 - 1, a6 + 1, 1/2*a6^2 + 3/2*a6 - 2, -1/2*a6^2 - 1/2*a6 + 7)" "x^3 + 4*x^2 - 7*x - 14"
1.42E+003 142 426 7 8 "(-1, -1, a3 + 3, 3/2*a3 + 2, -1/2*a3 + 4, -a3 - 6)" "x^2 + 4*x - 4"
"142a1" 142 426 7 469 "(1, 1, -a6 - 1, a6 + 1, 1/2*a6^2 + 3/2*a6 - 2, -1/2*a6^2 - 1/2*a6 + 7)" "x^3 + 4*x^2 - 7*x - 14"
"2982a1" 2982 426 7 8 "(-1, -1, a3 + 3, 3/2*a3 + 2, -1/2*a3 + 4, -a3 - 6)" "x^2 + 4*x - 4"
"61a1" 61 427 7 761860861 "(a5, -2*a5^6 + 5*a5^5 + 13*a5^4 - 31*a5^3 - 21*a5^2 + 38*a5 + 13, a5^6 - 2*a5^5 - 7*a5^4 + 12*a5^3 + 13*a5^2 - 14*a5 - 7, 1, -a5^6 + 2*a5^5 + 7*a5^4 - 13*a5^3 - 13*a5^2 + 18*a5 + 9, a5^6 - 4*a5^5 - 6*a5^4 + 26*a5^3 + 10*a5^2 - 34*a5 - 9)" "x^7 - 4*x^6 - 3*x^5 + 26*x^4 - 12*x^3 - 38*x^2 + 23*x + 11"
"427b1" 427 427 7 4733829 "(a3, -1/3*a3^5 - 5/3*a3^4 + 1/3*a3^3 + 25/3*a3^2 + 4*a3 - 5, a3^5 + 3*a3^4 - 4*a3^3 - 15*a3^2 - 2*a3 + 6, 1, -5/3*a3^5 - 13/3*a3^4 + 23/3*a3^3 + 59/3*a3^2 - 2*a3 - 6, -a3^5 - 4*a3^4 + 2*a3^3 + 20*a3^2 + 10*a3 - 10)" "x^6 + 5*x^5 + 2*x^4 - 22*x^3 - 30*x^2 + 9"
"1281a1" 1281 427 7 7735165 "(a4, a4^5 + 3*a4^4 - 3*a4^3 - 9*a4^2 + 4*a4 + 3, -a4^5 - 3*a4^4 + 2*a4^3 + 7*a4^2 - 2*a4 - 2, -1, -a4^5 - 3*a4^4 + 3*a4^3 + 9*a4^2 - 4*a4 - 4, -a4^5 - 2*a4^4 + 8*a4^3 + 12*a4^2 - 14*a4 - 10)" "x^6 + 5*x^5 + 2*x^4 - 18*x^3 - 12*x^2 + 18*x + 5"
"195c1" 195 429 7 8 "(a2, 1, a2 - 1, -2*a2 - 4, 1, -1)" "x^2 + 2*x - 1"
"858l1" 858 429 7 8 "(a2, 1, a2 - 1, -2*a2 - 4, 1, -1)" "x^2 + 2*x - 1"
"26b1" 26 430 7 8 "(1, 1/2*a6 - 1/2, 1, 1, -1/2*a6 + 5/2, -a6 + 2)" "x^2 - 2*x - 7"
"21930bc1" 21930 430 7 8 "(1, 1/2*a6 - 1/2, 1, 1, -1/2*a6 + 5/2, -a6 + 2)" "x^2 - 2*x - 7"
"None found" "none" 431 7 257 "(a3, -a3, -a3^2 + 2, -2, 0, -2)" "x^3 - x^2 - 4*x + 3"
"433a1" 433 433 7 6.78E+028 "(a3, 3364/49429*a3^15 - 28373/98858*a3^14 - 107815/98858*a3^13 + 258788/49429*a3^12 + 350948/49429*a3^11 - 3787471/98858*a3^10 - 2600707/98858*a3^9 + 7085854/49429*a3^8 + 3337167/49429*a3^7 - 14044214/49429*a3^6 - 12055899/98858*a3^5 + 13153828/49429*a3^4 + 12276925/98858*a3^3 - 7391141/98858*a3^2 - 1965284/49429*a3 - 162529/98858, 7937/49429*a3^15 - 80035/98858*a3^14 - 239229/98858*a3^13 + 793664/49429*a3^12 + 600510/49429*a3^11 - 12594013/98858*a3^10 - 2013751/98858*a3^9 + 25390228/49429*a3^8 + 503083/49429*a3^7 - 54050496/49429*a3^6 - 10121395/98858*a3^5 + 54992077/49429*a3^4 + 28175043/98858*a3^3 - 33332341/98858*a3^2 - 5344871/49429*a3 - 82767/98858, 13927/49429*a3^15 - 65146/49429*a3^14 - 451983/98858*a3^13 + 1307187/49429*a3^12 + 1299411/49429*a3^11 - 10432928/49429*a3^10 - 6129257/98858*a3^9 + 41960809/49429*a3^8 + 3228040/49429*a3^7 - 88189139/49429*a3^6 - 7409068/49429*a3^5 + 176059573/98858*a3^4 + 34422491/98858*a3^3 - 26963958/49429*a3^2 - 13190897/98858*a3 + 179455/98858, -68823/98858*a3^15 + 319749/98858*a3^14 + 555916/49429*a3^13 - 3177931/49429*a3^12 - 6425979/98858*a3^11 + 50230627/98858*a3^10 + 7934153/49429*a3^9 - 99992803/49429*a3^8 - 10277701/49429*a3^7 + 416113753/98858*a3^6 + 23198686/49429*a3^5 - 411857973/98858*a3^4 - 91203129/98858*a3^3 + 63067083/49429*a3^2 + 34013857/98858*a3 - 95214/49429, -182691/197716*a3^15 + 213527/49429*a3^14 + 2938339/197716*a3^13 - 8509457/98858*a3^12 - 16723251/197716*a3^11 + 67437849/98858*a3^10 + 39072321/197716*a3^9 - 134692546/49429*a3^8 - 21136039/98858*a3^7 + 1125412803/197716*a3^6 + 102144287/197716*a3^5 - 1117812989/197716*a3^4 - 57707857/49429*a3^3 + 340584749/197716*a3^2 + 87448217/197716*a3 - 555115/197716)" "x^16 - 7*x^15 - 5*x^14 + 129*x^13 - 125*x^12 - 929*x^11 + 1471*x^10 + 3333*x^9 - 6394*x^8 - 6443*x^7 + 13118*x^6 + 7162*x^5 - 12217*x^4 - 4691*x^3 + 3598*x^2 + 1114*x - 3"
"None found" "none" 433 7 6.78E+028 "(a3, 3364/49429*a3^15 - 28373/98858*a3^14 - 107815/98858*a3^13 + 258788/49429*a3^12 + 350948/49429*a3^11 - 3787471/98858*a3^10 - 2600707/98858*a3^9 + 7085854/49429*a3^8 + 3337167/49429*a3^7 - 14044214/49429*a3^6 - 12055899/98858*a3^5 + 13153828/49429*a3^4 + 12276925/98858*a3^3 - 7391141/98858*a3^2 - 1965284/49429*a3 - 162529/98858, 7937/49429*a3^15 - 80035/98858*a3^14 - 239229/98858*a3^13 + 793664/49429*a3^12 + 600510/49429*a3^11 - 12594013/98858*a3^10 - 2013751/98858*a3^9 + 25390228/49429*a3^8 + 503083/49429*a3^7 - 54050496/49429*a3^6 - 10121395/98858*a3^5 + 54992077/49429*a3^4 + 28175043/98858*a3^3 - 33332341/98858*a3^2 - 5344871/49429*a3 - 82767/98858, 13927/49429*a3^15 - 65146/49429*a3^14 - 451983/98858*a3^13 + 1307187/49429*a3^12 + 1299411/49429*a3^11 - 10432928/49429*a3^10 - 6129257/98858*a3^9 + 41960809/49429*a3^8 + 3228040/49429*a3^7 - 88189139/49429*a3^6 - 7409068/49429*a3^5 + 176059573/98858*a3^4 + 34422491/98858*a3^3 - 26963958/49429*a3^2 - 13190897/98858*a3 + 179455/98858, -68823/98858*a3^15 + 319749/98858*a3^14 + 555916/49429*a3^13 - 3177931/49429*a3^12 - 6425979/98858*a3^11 + 50230627/98858*a3^10 + 7934153/49429*a3^9 - 99992803/49429*a3^8 - 10277701/49429*a3^7 + 416113753/98858*a3^6 + 23198686/49429*a3^5 - 411857973/98858*a3^4 - 91203129/98858*a3^3 + 63067083/49429*a3^2 + 34013857/98858*a3 - 95214/49429, -182691/197716*a3^15 + 213527/49429*a3^14 + 2938339/197716*a3^13 - 8509457/98858*a3^12 - 16723251/197716*a3^11 + 67437849/98858*a3^10 + 39072321/197716*a3^9 - 134692546/49429*a3^8 - 21136039/98858*a3^7 + 1125412803/197716*a3^6 + 102144287/197716*a3^5 - 1117812989/197716*a3^4 - 57707857/49429*a3^3 + 340584749/197716*a3^2 + 87448217/197716*a3 - 555115/197716)" "x^16 - 7*x^15 - 5*x^14 + 129*x^13 - 125*x^12 - 929*x^11 + 1471*x^10 + 3333*x^9 - 6394*x^8 - 6443*x^7 + 13118*x^6 + 7162*x^5 - 12217*x^4 - 4691*x^3 + 3598*x^2 + 1114*x - 3"
"None found" "none" 433 7 404 "(1, a1 - 1, a1 - 1, -1/2*a1^2 + a1 + 9/2, -a1 + 3, -a1^2 + 8)" "x^3 - 3*x^2 - 5*x + 11"
"14a1" 14 434 7 8 "(-1, -1/2*a5 - 1/2, -a5 - 4, 1, 0, a5 + 7)" "x^2 + 6*x + 1"
"1302f1" 1302 434 7 8 "(-1, -1/2*a5 - 1/2, -a5 - 4, 1, 0, a5 + 7)" "x^2 + 6*x + 1"
"15a1" 15 435 7 469 "(a8, -1, 1, -a8^2 + a8 + 2, 3, a8^2 + a8 - 2)" "x^3 - x^2 - 5*x + 4"
"26b1" 26 435 7 21 "(a5, 1, 1, 1, 5, -2*a5 - 1)" "x^2 + x - 5"
"870f1" 870 435 7 469 "(a8, -1, 1, -a8^2 + a8 + 2, 3, a8^2 + a8 - 2)" "x^3 - x^2 - 5*x + 4"
"16132a1" 16132 436 7 8 "(0, -a0, -a0 + 1, -2, 1/2*a0 - 3, 0)" "x^2 - 8"
"21364c1" 21364 436 7 8 "(0, -a0, -a0 + 1, -2, 1/2*a0 - 3, 0)" "x^2 - 8"
"874f1" 874 437 7 8 "(a3, a3 - 2, -a3 - 1, a3 - 1, a3 + 1, -4*a3)" "x^2 - 2"
"None found" "none" 437 7 1.54E+021 "(a7, -47/244*a7^11 + 91/244*a7^10 + 391/122*a7^9 - 23/4*a7^8 - 1137/61*a7^7 + 117/4*a7^6 + 5647/122*a7^5 - 13993/244*a7^4 - 10833/244*a7^3 + 2207/61*a7^2 + 299/61*a7 - 140/61, -6/61*a7^11 + 22/61*a7^10 + 175/122*a7^9 - 6*a7^8 - 395/61*a7^7 + 69/2*a7^6 + 1099/122*a7^5 - 5044/61*a7^4 + 120/61*a7^3 + 9121/122*a7^2 - 408/61*a7 - 675/61, 5/244*a7^11 + 63/244*a7^10 - 50/61*a7^9 - 17/4*a7^8 + 1105/122*a7^7 + 97/4*a7^6 - 2327/61*a7^5 - 14239/244*a7^4 + 14601/244*a7^3 + 3311/61*a7^2 - 1379/61*a7 - 355/61, 7/122*a7^11 + 15/122*a7^10 - 79/61*a7^9 - 5/2*a7^8 + 1325/122*a7^7 + 37/2*a7^6 - 4967/122*a7^5 - 3605/61*a7^4 + 7607/122*a7^3 + 8623/122*a7^2 - 1348/61*a7 - 567/61, -13/122*a7^11 + 7/122*a7^10 + 215/122*a7^9 - 1/2*a7^8 - 616/61*a7^7 - a7^6 + 2985/122*a7^5 + 1861/122*a7^4 - 2973/122*a7^3 - 3605/122*a7^2 + 473/61*a7 + 626/61)" "x^12 - 2*x^11 - 19*x^10 + 35*x^9 + 137*x^8 - 219*x^7 - 483*x^6 + 605*x^5 + 866*x^4 - 707*x^3 - 682*x^2 + 236*x + 96"
"None found" "none" 437 7 8 "(a3, a3 - 2, -a3 - 1, a3 - 1, a3 + 1, -4*a3)" "x^2 - 2"
"730c1" 730 438 7 8 "(-1, -1, -1/2*a7 - 3/2, -1/2*a7 - 3/2, -2, 1/2*a7 + 11/2)" "x^2 + 6*x - 23"
"2190b1" 2190 438 7 8 "(-1, -1, -1/2*a7 - 3/2, -1/2*a7 - 3/2, -2, 1/2*a7 + 11/2)" "x^2 + 6*x - 23"
"None found" "none" 439 7 6.41E+053 "(a2, -4701618266782388979/28439477794057307596*a2^24 + 11170291270990503687/28439477794057307596*a2^23 + 80691352900513829125/14219738897028653798*a2^22 - 95756906909083668938/7109869448514326899*a2^21 - 2360014104287415004231/28439477794057307596*a2^20 + 5603526973553122914217/28439477794057307596*a2^19 + 9606353419503600675959/14219738897028653798*a2^18 - 11443242660642603218230/7109869448514326899*a2^17 - 47657446939209209379161/14219738897028653798*a2^16 + 229252186441017254442939/28439477794057307596*a2^15 + 147814175331208886241791/14219738897028653798*a2^14 - 181746471101382290275787/7109869448514326899*a2^13 - 281339988371005892185739/14219738897028653798*a2^12 + 726870045488517750893127/14219738897028653798*a2^11 + 305723654765418162524595/14219738897028653798*a2^10 - 1768345960680669148360317/28439477794057307596*a2^9 - 315741691603864767432427/28439477794057307596*a2^8 + 608059283868001121353591/14219738897028653798*a2^7 + 9358948221177614751930/7109869448514326899*a2^6 - 419149212373168286417085/28439477794057307596*a2^5 + 11708709882927074613999/28439477794057307596*a2^4 + 29556806794776585249309/14219738897028653798*a2^3 - 137000895117974247488/7109869448514326899*a2^2 - 540274369868061400757/7109869448514326899*a2 + 76528473298370282193/28439477794057307596, 1647367022276221005/28439477794057307596*a2^24 + 52969329716665563/28439477794057307596*a2^23 - 31872281549317535945/14219738897028653798*a2^22 - 1642972826875068120/7109869448514326899*a2^21 + 1072871156604689252509/28439477794057307596*a2^20 + 183875091502160176397/28439477794057307596*a2^19 - 5155563190781254517255/14219738897028653798*a2^18 - 604373366542309006201/7109869448514326899*a2^17 + 31201776691348939943627/14219738897028653798*a2^16 + 18077597347358541178579/28439477794057307596*a2^15 - 123554336497637077062051/14219738897028653798*a2^14 - 20667802391969160715848/7109869448514326899*a2^13 + 321832665686801890019843/14219738897028653798*a2^12 + 118077274906464419327349/14219738897028653798*a2^11 - 539702315085517771538619/14219738897028653798*a2^10 - 416229740572805534350269/28439477794057307596*a2^9 + 1105702149650154520677205/28439477794057307596*a2^8 + 216973001423995103443715/14219738897028653798*a2^7 - 156181140411469097098958/7109869448514326899*a2^6 - 246739270965029172348165/28439477794057307596*a2^5 + 156220049353768141791119/28439477794057307596*a2^4 + 31071838535063740568881/14219738897028653798*a2^3 - 2021446512334916558334/7109869448514326899*a2^2 - 625462724675585184804/7109869448514326899*a2 + 208500022795250045061/28439477794057307596, 760866391961395702/7109869448514326899*a2^24 - 352947250668737963/7109869448514326899*a2^23 - 28911603799610402491/7109869448514326899*a2^22 + 10718205292913323729/7109869448514326899*a2^21 + 477014484506977132871/7109869448514326899*a2^20 - 131199993891360344735/7109869448514326899*a2^19 - 4486054275057122572442/7109869448514326899*a2^18 + 805170713552169373211/7109869448514326899*a2^17 + 26516169424210896070583/7109869448514326899*a2^16 - 2312555926413511583715/7109869448514326899*a2^15 - 102331510399834199995606/7109869448514326899*a2^14 + 196576008060484108694/7109869448514326899*a2^13 + 259143820675389522123340/7109869448514326899*a2^12 + 18748155772308558490129/7109869448514326899*a2^11 - 421333352861918615161012/7109869448514326899*a2^10 - 55490566740836759100524/7109869448514326899*a2^9 + 417334664371244123502005/7109869448514326899*a2^8 + 72629202470138982951061/7109869448514326899*a2^7 - 227656793838545820646001/7109869448514326899*a2^6 - 46079118638285359685507/7109869448514326899*a2^5 + 54716583394085341357436/7109869448514326899*a2^4 + 11925384749079586124000/7109869448514326899*a2^3 - 2504671078478899488351/7109869448514326899*a2^2 - 290182666330441546285/7109869448514326899*a2 + 27543920540087016679/7109869448514326899, -5363965716272303177/42659216691085961394*a2^24 + 8362916483887599729/14219738897028653798*a2^23 + 81748757523398717794/21329608345542980697*a2^22 - 435835051599899278496/21329608345542980697*a2^21 - 2000599468066668784445/42659216691085961394*a2^20 + 12956295889723099186417/42659216691085961394*a2^19 + 6034729371051101100070/21329608345542980697*a2^18 - 53936227689685691545243/21329608345542980697*a2^17 - 15507685734981108378935/21329608345542980697*a2^16 + 184218068452856337363945/14219738897028653798*a2^15 - 17555249143191892565851/21329608345542980697*a2^14 - 299904365681798076441792/7109869448514326899*a2^13 + 236105536692116579700907/21329608345542980697*a2^12 + 1853525264223744210576209/21329608345542980697*a2^11 - 681188847885915118289719/21329608345542980697*a2^10 - 1551579332027340548981117/14219738897028653798*a2^9 + 1882255392142895617760359/42659216691085961394*a2^8 + 1651410310945964679198761/21329608345542980697*a2^7 - 626708241731951246677726/21329608345542980697*a2^6 - 392000575123645713296741/14219738897028653798*a2^5 + 330147732666917122472443/42659216691085961394*a2^4 + 28701110130063012328168/7109869448514326899*a2^3 - 2554082151194212341587/7109869448514326899*a2^2 - 2529139964115426826100/21329608345542980697*a2 + 271668394370923929241/42659216691085961394, 6613357520299680839/28439477794057307596*a2^24 - 9833442203461204495/28439477794057307596*a2^23 - 117724620440653710961/14219738897028653798*a2^22 + 81677913144810050904/7109869448514326899*a2^21 + 3605600648398840021523/28439477794057307596*a2^20 - 4588604515291107442053/28439477794057307596*a2^19 - 15567967436961357261281/14219738897028653798*a2^18 + 8879652626901733178740/7109869448514326899*a2^17 + 83422143063537676010267/14219738897028653798*a2^16 - 165338046129390363918831/28439477794057307596*a2^15 - 287221865668277214026127/14219738897028653798*a2^14 + 118096010348039284701203/7109869448514326899*a2^13 + 635206950910049520286659/14219738897028653798*a2^12 - 402309916886326694754431/14219738897028653798*a2^11 - 875767943170837703868969/14219738897028653798*a2^10 + 736337225586306308313841/28439477794057307596*a2^9 + 1414777578604531766824739/28439477794057307596*a2^8 - 123575013100995224756511/14219738897028653798*a2^7 - 150688435350637604164938/7109869448514326899*a2^6 - 71569823462051688820691/28439477794057307596*a2^5 + 103916136653166581564709/28439477794057307596*a2^4 + 24902518212364000960745/14219738897028653798*a2^3 + 356843772345627785988/7109869448514326899*a2^2 - 448726188893907291986/7109869448514326899*a2 - 8209749510389125421/28439477794057307596)" "x^25 - 4*x^24 - 31*x^23 + 138*x^22 + 389*x^21 - 2034*x^20 - 2453*x^19 + 16766*x^18 + 7126*x^17 - 84887*x^16 + 1717*x^15 + 272618*x^14 - 79978*x^13 - 552928*x^12 + 255108*x^11 + 682589*x^10 - 376568*x^9 - 476301*x^8 + 270078*x^7 + 167567*x^6 - 81530*x^5 - 24739*x^4 + 6834*x^3 + 740*x^2 - 187*x + 5"
"234a1" 234 441 7 8 "(a8, 0, a8 - 3, 0, 2, a8 + 3)" "x^2 - 2*x - 1"
"441a1" 441 441 7 28 "(a7, 0, 0, 0, -2*a7, 0)" "x^2 - 7"
"441f1" 441 441 7 8 "(a9, 0, -a9 + 3, 0, 2, -a9 - 3)" "x^2 - 2*x - 1"
4.41E+003 441 441 7 8 "(a8, 0, a8 - 3, 0, 2, a8 + 3)" "x^2 - 2*x - 1"
"882c1" 882 441 7 8 "(a9, 0, -a9 + 3, 0, 2, -a9 - 3)" "x^2 - 2*x - 1"
"26a1" 26 442 7 8 "(-1, a5 + 1, -a5 - 3, 2*a5 + 6, -2*a5 - 8, 1)" "x^2 + 6*x + 7"
"3094c1" 3094 442 7 8 "(-1, a5 + 1, -a5 - 3, 2*a5 + 6, -2*a5 - 8, 1)" "x^2 + 6*x + 7"
"443b1" 443 443 7 7.76E+017 "(a3, -953/3391*a3^11 - 2407/3391*a3^10 + 12118/3391*a3^9 + 28943/3391*a3^8 - 54989/3391*a3^7 - 118907/3391*a3^6 + 107898/3391*a3^5 + 192792/3391*a3^4 - 89082/3391*a3^3 - 106533/3391*a3^2 + 22942/3391*a3 + 7855/3391, 1928/10173*a3^11 + 5446/10173*a3^10 - 7892/3391*a3^9 - 22794/3391*a3^8 + 101843/10173*a3^7 + 100645/3391*a3^6 - 64436/3391*a3^5 - 184296/3391*a3^4 + 197453/10173*a3^3 + 360922/10173*a3^2 - 126538/10173*a3 - 5494/3391, 2606/10173*a3^11 + 10126/10173*a3^10 - 8613/3391*a3^9 - 41834/3391*a3^8 + 70319/10173*a3^7 + 182256/3391*a3^6 - 4206/3391*a3^5 - 331390/3391*a3^4 - 88522/10173*a3^3 + 670810/10173*a3^2 - 16183/10173*a3 - 19590/3391, -2324/10173*a3^11 - 6649/10173*a3^10 + 7923/3391*a3^9 + 24732/3391*a3^8 - 67316/10173*a3^7 - 92015/3391*a3^6 + 4110/3391*a3^5 + 130128/3391*a3^4 + 116590/10173*a3^3 - 173890/10173*a3^2 - 59543/10173*a3 - 3438/3391, -1705/10173*a3^11 - 8288/10173*a3^10 + 4749/3391*a3^9 + 34907/3391*a3^8 - 15523/10173*a3^7 - 153681/3391*a3^6 - 34989/3391*a3^5 + 273166/3391*a3^4 + 202298/10173*a3^3 - 485564/10173*a3^2 - 26056/10173*a3 - 8315/3391)" "x^12 + 3*x^11 - 13*x^10 - 39*x^9 + 64*x^8 + 181*x^7 - 159*x^6 - 357*x^5 + 226*x^4 + 264*x^3 - 156*x^2 - 20*x + 6"
"89a1" 89 445 7 8069 "(a4, a4^3 - 5*a4 + 2, 1, 3, -a4^3 + 3*a4, -a4^3 - a4^2 + 5*a4)" "x^4 - x^3 - 5*x^2 + 5*x + 1"
"41830f1" 41830 445 7 8 "(a2, -a2 + 1, 1, a2 - 1, 4, -2*a2 + 4)" "x^2 - 2*x - 1"
"41830f1" 41830 445 7 8069 "(a4, a4^3 - 5*a4 + 2, 1, 3, -a4^3 + 3*a4, -a4^3 - a4^2 + 5*a4)" "x^4 - x^3 - 5*x^2 + 5*x + 1"
"None found" "none" 445 7 8 "(a2, -a2 + 1, 1, a2 - 1, 4, -2*a2 + 4)" "x^2 - 2*x - 1"
"26b1" 26 446 7 12638384896 "(1, 1/2*a4 - 1/2, -3/7648*a4^6 + 55/7648*a4^5 - 23/3824*a4^4 - 929/3824*a4^3 + 1137/7648*a4^2 + 14475/7648*a4 + 428/239, -41/15296*a4^6 + 97/7648*a4^5 + 1841/15296*a4^4 - 1369/3824*a4^3 - 24135/15296*a4^2 + 12753/7648*a4 + 86719/15296, 9/3824*a4^6 - 91/7648*a4^5 - 919/7648*a4^4 + 1511/3824*a4^3 + 459/239*a4^2 - 21603/7648*a4 - 37483/7648, 1/239*a4^6 - 67/1912*a4^5 - 49/478*a4^4 + 2007/1912*a4^3 + 553/1912*a4^2 - 2719/478*a4 + 363/1912)" "x^7 - 9*x^6 - 23*x^5 + 311*x^4 - 69*x^3 - 2467*x^2 + 1627*x + 2933"
"1338a1" 1338 446 7 4851886067712 "(-1, -a5 - 1, 1/33*a5^7 + 7/33*a5^6 + 2/33*a5^5 - 58/33*a5^4 - 31/33*a5^3 + 193/33*a5^2 + 17/11*a5 - 43/11, 4/33*a5^6 + 26/33*a5^5 - 5/33*a5^4 - 82/11*a5^3 - 166/33*a5^2 + 164/11*a5 + 85/11, -2/33*a5^7 - 20/33*a5^6 - 43/33*a5^5 + 107/33*a5^4 + 365/33*a5^3 - 71/33*a5^2 - 203/11*a5 - 47/11, 2/33*a5^7 + 6/11*a5^6 + 10/11*a5^5 - 8/3*a5^4 - 13/3*a5^3 + 17/3*a5^2 + 10/11)" "x^8 + 12*x^7 + 44*x^6 + 14*x^5 - 206*x^4 - 244*x^3 + 214*x^2 + 294*x + 57"
"6690h1" 6690 446 7 12638384896 "(1, 1/2*a4 - 1/2, -3/7648*a4^6 + 55/7648*a4^5 - 23/3824*a4^4 - 929/3824*a4^3 + 1137/7648*a4^2 + 14475/7648*a4 + 428/239, -41/15296*a4^6 + 97/7648*a4^5 + 1841/15296*a4^4 - 1369/3824*a4^3 - 24135/15296*a4^2 + 12753/7648*a4 + 86719/15296, 9/3824*a4^6 - 91/7648*a4^5 - 919/7648*a4^4 + 1511/3824*a4^3 + 459/239*a4^2 - 21603/7648*a4 - 37483/7648, 1/239*a4^6 - 67/1912*a4^5 - 49/478*a4^4 + 2007/1912*a4^3 + 553/1912*a4^2 - 2719/478*a4 + 363/1912)" "x^7 - 9*x^6 - 23*x^5 + 311*x^4 - 69*x^3 - 2467*x^2 + 1627*x + 2933"
"4917b1" 4917 447 7 2.52E+016 "(a3, -1, -135/647*a3^9 + 358/647*a3^8 + 1898/647*a3^7 - 4732/647*a3^6 - 8776/647*a3^5 + 19642/647*a3^4 + 14058/647*a3^3 - 26097/647*a3^2 - 2602/647*a3 + 2962/647, 29/647*a3^9 - 144/647*a3^8 - 355/647*a3^7 + 1860/647*a3^6 + 1636/647*a3^5 - 7579/647*a3^4 - 4357/647*a3^3 + 10667/647*a3^2 + 5572/647*a3 - 1983/647, -51/647*a3^9 + 164/647*a3^8 + 602/647*a3^7 - 2334/647*a3^6 - 2007/647*a3^5 + 10986/647*a3^4 + 1170/647*a3^3 - 17666/647*a3^2 + 2784/647*a3 + 2528/647, 270/647*a3^9 - 716/647*a3^8 - 3149/647*a3^7 + 8170/647*a3^6 + 11082/647*a3^5 - 27638/647*a3^4 - 12588/647*a3^3 + 28902/647*a3^2 + 1322/647*a3 - 1395/647)" "x^10 - 3*x^9 - 12*x^8 + 37*x^7 + 44*x^6 - 142*x^5 - 50*x^4 + 181*x^3 - 5*x^2 - 30*x + 1"
"6258i1" 6258 447 7 25422298296832 "(a2, 1, 2*a2^8 - 4*a2^7 - 21*a2^6 + 35*a2^5 + 71*a2^4 - 83*a2^3 - 79*a2^2 + 31*a2 + 19, -4*a2^8 + 9*a2^7 + 39*a2^6 - 77*a2^5 - 120*a2^4 + 178*a2^3 + 117*a2^2 - 63*a2 - 26, -2*a2^8 + 4*a2^7 + 21*a2^6 - 34*a2^5 - 73*a2^4 + 77*a2^3 + 88*a2^2 - 25*a2 - 19, 6*a2^8 - 13*a2^7 - 60*a2^6 + 112*a2^5 + 192*a2^4 - 262*a2^3 - 202*a2^2 + 98*a2 + 49)" "x^9 - 4*x^8 - 6*x^7 + 37*x^6 - 3*x^5 - 101*x^4 + 49*x^3 + 72*x^2 - 21*x - 13"
"None found" "none" 447 7 49 "(a1, -1, 0, -2*a1^2 - a1 + 2, a1^2 - a1 - 1, 2*a1^2 - 6)" "x^3 + x^2 - 2*x - 1"
"26b1" 26 449 7 6.86E+048 "(a1, 3587401463/505414861488*a1^22 - 7650779429/336943240992*a1^21 - 150864645115/505414861488*a1^20 + 825392841079/1010829722976*a1^19 + 5450047860893/1010829722976*a1^18 - 6344315242307/505414861488*a1^17 - 27696702887935/505414861488*a1^16 + 108892865144615/1010829722976*a1^15 + 6012670597195/17428098672*a1^14 - 71421083468347/126353715372*a1^13 - 470356381031857/336943240992*a1^12 + 943155604067327/505414861488*a1^11 + 1228712346186743/336943240992*a1^10 - 1940384255679473/505414861488*a1^9 - 3041227590875047/505414861488*a1^8 + 43884038119555/9359534472*a1^7 + 6017749368007493/1010829722976*a1^6 - 1532894924053417/505414861488*a1^5 - 809680458782215/252707430744*a1^4 + 194797323522557/252707430744*a1^3 + 86827452979241/112314413664*a1^2 - 1239867085561/336943240992*a1 - 4509261066899/112314413664, 36207620017/1516244584464*a1^22 - 392715416/31588428843*a1^21 - 347942083499/379061146116*a1^20 + 326631794837/758122292232*a1^19 + 11567268044365/758122292232*a1^18 - 9606455528161/1516244584464*a1^17 - 108957607448593/758122292232*a1^16 + 78030276152777/1516244584464*a1^15 + 2760254289026/3267768501*a1^14 - 381574682954333/1516244584464*a1^13 - 812551049946659/252707430744*a1^12 + 286698557455579/379061146116*a1^11 + 4027851952874915/505414861488*a1^10 - 1032782020658657/758122292232*a1^9 - 9557529760524427/758122292232*a1^8 + 75413531184863/56157206832*a1^7 + 9196221796045171/758122292232*a1^6 - 791176870326971/1516244584464*a1^5 - 9824972033892583/1516244584464*a1^4 - 24143673588209/189530573058*a1^3 + 133443099270145/84235810248*a1^2 + 55513767426557/505414861488*a1 - 15548291459519/168471620496, -3203239213/379061146116*a1^22 - 595819192/31588428843*a1^21 + 131419749017/379061146116*a1^20 + 135495968281/189530573058*a1^19 - 578128330394/94765286529*a1^18 - 2208746478799/189530573058*a1^17 + 11406429012787/189530573058*a1^16 + 10118781621100/94765286529*a1^15 - 4772077428473/13071074004*a1^14 - 57120718814416/94765286529*a1^13 + 177572889554965/126353715372*a1^12 + 204603006231941/94765286529*a1^11 - 108026982272480/31588428843*a1^10 - 1843832442646961/379061146116*a1^9 + 1928985934508705/379061146116*a1^8 + 46197173442761/7019650854*a1^7 - 1647721213925357/379061146116*a1^6 - 1835788779751429/379061146116*a1^5 + 369514164098459/189530573058*a1^4 + 151311038776075/94765286529*a1^3 - 17053794357965/42117905124*a1^2 - 4474501036763/31588428843*a1 + 1456347043919/42117905124, 1316367895/13071074004*a1^22 + 143938909/4357024668*a1^21 - 98901947617/26142148008*a1^20 - 31767174607/26142148008*a1^19 + 800451361073/13071074004*a1^18 + 504571904809/26142148008*a1^17 - 14614387602187/26142148008*a1^16 - 4536403667465/26142148008*a1^15 + 10335990602869/3267768501*a1^14 + 12686579651077/13071074004*a1^13 - 50010652113031/4357024668*a1^12 - 91081664277415/26142148008*a1^11 + 232891347633433/8714049336*a1^10 + 104039493898811/13071074004*a1^9 - 507807968945921/13071074004*a1^8 - 1338455500426/121028463*a1^7 + 217470996651883/6535537002*a1^6 + 223508416742801/26142148008*a1^5 - 398585214435515/26142148008*a1^4 - 83332756026185/26142148008*a1^3 + 9178192928377/2904683112*a1^2 + 450488942858/1089256167*a1 - 550385323477/2904683112, 195233617/42117905124*a1^22 - 414868283/14039301708*a1^21 - 15796492285/84235810248*a1^20 + 86437170467/84235810248*a1^19 + 135808599155/42117905124*a1^18 - 1277406335507/84235810248*a1^17 - 2585591022709/84235810248*a1^16 + 10490165145163/84235810248*a1^15 + 256148401301/1452341556*a1^14 - 6555531117833/10529476281*a1^13 - 2189147016799/3509825427*a1^12 + 164502933796967/84235810248*a1^11 + 36917895584197/28078603416*a1^10 - 40262902255258/10529476281*a1^9 - 30931084418797/21058952562*a1^8 + 21094288477639/4679767236*a1^7 + 22239202918745/42117905124*a1^6 - 248588646677557/84235810248*a1^5 + 28578818562373/84235810248*a1^4 + 74722840056937/84235810248*a1^3 - 2281389091951/9359534472*a1^2 - 1034343318067/14039301708*a1 + 227399339381/9359534472)" "x^23 - 38*x^21 + x^20 + 623*x^19 - 31*x^18 - 5771*x^17 + 398*x^16 + 33229*x^15 - 2753*x^14 - 123306*x^13 + 11230*x^12 + 296022*x^11 - 28009*x^10 - 450008*x^9 + 43215*x^8 + 412760*x^7 - 40559*x^6 - 210040*x^5 + 21311*x^4 + 50781*x^3 - 5664*x^2 - 3789*x + 621"
"898a1" 898 449 7 1.43E+021 "(a0, 1367/581*a0^13 + 2544/581*a0^12 - 21440/581*a0^11 - 35460/581*a0^10 + 130273/581*a0^9 + 25269/83*a0^8 - 397316/581*a0^7 - 387181/581*a0^6 + 91749/83*a0^5 + 359615/581*a0^4 - 504323/581*a0^3 - 105389/581*a0^2 + 145130/581*a0 - 6416/581, -689/581*a0^13 - 1037/581*a0^12 + 11692/581*a0^11 + 15082/581*a0^10 - 77477/581*a0^9 - 11333/83*a0^8 + 255690/581*a0^7 + 183819/581*a0^6 - 62325/83*a0^5 - 177694/581*a0^4 + 352434/581*a0^3 + 49678/581*a0^2 - 102958/581*a0 + 5809/581, 291/581*a0^13 + 1035/581*a0^12 - 3099/581*a0^11 - 13492/581*a0^10 + 8490/581*a0^9 + 8691/83*a0^8 + 3319/581*a0^7 - 115074/581*a0^6 - 4771/83*a0^5 + 87935/581*a0^4 + 28887/581*a0^3 - 19559/581*a0^2 - 5371/581*a0 - 1821/581, -1275/581*a0^13 - 2672/581*a0^12 + 18861/581*a0^11 + 36126/581*a0^10 - 106601/581*a0^9 - 24622/83*a0^8 + 302097/581*a0^7 + 354412/581*a0^6 - 66075/83*a0^5 - 303487/581*a0^4 + 350578/581*a0^3 + 81426/581*a0^2 - 98052/581*a0 + 3684/581, -1506/581*a0^13 - 3260/581*a0^12 + 21920/581*a0^11 + 44015/581*a0^10 - 121175/581*a0^9 - 29968/83*a0^8 + 335676/581*a0^7 + 432049/581*a0^6 - 72910/83*a0^5 - 373914/581*a0^4 + 397996/581*a0^3 + 102307/581*a0^2 - 118436/581*a0 + 5441/581)" "x^14 + 3*x^13 - 13*x^12 - 42*x^11 + 59*x^10 + 214*x^9 - 117*x^8 - 503*x^7 + 109*x^6 + 576*x^5 - 50*x^4 - 309*x^3 + 14*x^2 + 62*x - 3"
"898b1" 898 449 7 6.86E+048 "(a1, 3587401463/505414861488*a1^22 - 7650779429/336943240992*a1^21 - 150864645115/505414861488*a1^20 + 825392841079/1010829722976*a1^19 + 5450047860893/1010829722976*a1^18 - 6344315242307/505414861488*a1^17 - 27696702887935/505414861488*a1^16 + 108892865144615/1010829722976*a1^15 + 6012670597195/17428098672*a1^14 - 71421083468347/126353715372*a1^13 - 470356381031857/336943240992*a1^12 + 943155604067327/505414861488*a1^11 + 1228712346186743/336943240992*a1^10 - 1940384255679473/505414861488*a1^9 - 3041227590875047/505414861488*a1^8 + 43884038119555/9359534472*a1^7 + 6017749368007493/1010829722976*a1^6 - 1532894924053417/505414861488*a1^5 - 809680458782215/252707430744*a1^4 + 194797323522557/252707430744*a1^3 + 86827452979241/112314413664*a1^2 - 1239867085561/336943240992*a1 - 4509261066899/112314413664, 36207620017/1516244584464*a1^22 - 392715416/31588428843*a1^21 - 347942083499/379061146116*a1^20 + 326631794837/758122292232*a1^19 + 11567268044365/758122292232*a1^18 - 9606455528161/1516244584464*a1^17 - 108957607448593/758122292232*a1^16 + 78030276152777/1516244584464*a1^15 + 2760254289026/3267768501*a1^14 - 381574682954333/1516244584464*a1^13 - 812551049946659/252707430744*a1^12 + 286698557455579/379061146116*a1^11 + 4027851952874915/505414861488*a1^10 - 1032782020658657/758122292232*a1^9 - 9557529760524427/758122292232*a1^8 + 75413531184863/56157206832*a1^7 + 9196221796045171/758122292232*a1^6 - 791176870326971/1516244584464*a1^5 - 9824972033892583/1516244584464*a1^4 - 24143673588209/189530573058*a1^3 + 133443099270145/84235810248*a1^2 + 55513767426557/505414861488*a1 - 15548291459519/168471620496, -3203239213/379061146116*a1^22 - 595819192/31588428843*a1^21 + 131419749017/379061146116*a1^20 + 135495968281/189530573058*a1^19 - 578128330394/94765286529*a1^18 - 2208746478799/189530573058*a1^17 + 11406429012787/189530573058*a1^16 + 10118781621100/94765286529*a1^15 - 4772077428473/13071074004*a1^14 - 57120718814416/94765286529*a1^13 + 177572889554965/126353715372*a1^12 + 204603006231941/94765286529*a1^11 - 108026982272480/31588428843*a1^10 - 1843832442646961/379061146116*a1^9 + 1928985934508705/379061146116*a1^8 + 46197173442761/7019650854*a1^7 - 1647721213925357/379061146116*a1^6 - 1835788779751429/379061146116*a1^5 + 369514164098459/189530573058*a1^4 + 151311038776075/94765286529*a1^3 - 17053794357965/42117905124*a1^2 - 4474501036763/31588428843*a1 + 1456347043919/42117905124, 1316367895/13071074004*a1^22 + 143938909/4357024668*a1^21 - 98901947617/26142148008*a1^20 - 31767174607/26142148008*a1^19 + 800451361073/13071074004*a1^18 + 504571904809/26142148008*a1^17 - 14614387602187/26142148008*a1^16 - 4536403667465/26142148008*a1^15 + 10335990602869/3267768501*a1^14 + 12686579651077/13071074004*a1^13 - 50010652113031/4357024668*a1^12 - 91081664277415/26142148008*a1^11 + 232891347633433/8714049336*a1^10 + 104039493898811/13071074004*a1^9 - 507807968945921/13071074004*a1^8 - 1338455500426/121028463*a1^7 + 217470996651883/6535537002*a1^6 + 223508416742801/26142148008*a1^5 - 398585214435515/26142148008*a1^4 - 83332756026185/26142148008*a1^3 + 9178192928377/2904683112*a1^2 + 450488942858/1089256167*a1 - 550385323477/2904683112, 195233617/42117905124*a1^22 - 414868283/14039301708*a1^21 - 15796492285/84235810248*a1^20 + 86437170467/84235810248*a1^19 + 135808599155/42117905124*a1^18 - 1277406335507/84235810248*a1^17 - 2585591022709/84235810248*a1^16 + 10490165145163/84235810248*a1^15 + 256148401301/1452341556*a1^14 - 6555531117833/10529476281*a1^13 - 2189147016799/3509825427*a1^12 + 164502933796967/84235810248*a1^11 + 36917895584197/28078603416*a1^10 - 40262902255258/10529476281*a1^9 - 30931084418797/21058952562*a1^8 + 21094288477639/4679767236*a1^7 + 22239202918745/42117905124*a1^6 - 248588646677557/84235810248*a1^5 + 28578818562373/84235810248*a1^4 + 74722840056937/84235810248*a1^3 - 2281389091951/9359534472*a1^2 - 1034343318067/14039301708*a1 + 227399339381/9359534472)" "x^23 - 38*x^21 + x^20 + 623*x^19 - 31*x^18 - 5771*x^17 + 398*x^16 + 33229*x^15 - 2753*x^14 - 123306*x^13 + 11230*x^12 + 296022*x^11 - 28009*x^10 - 450008*x^9 + 43215*x^8 + 412760*x^7 - 40559*x^6 - 210040*x^5 + 21311*x^4 + 50781*x^3 - 5664*x^2 - 3789*x + 621"
"1347a1" 1347 449 7 6.86E+048 "(a1, 3587401463/505414861488*a1^22 - 7650779429/336943240992*a1^21 - 150864645115/505414861488*a1^20 + 825392841079/1010829722976*a1^19 + 5450047860893/1010829722976*a1^18 - 6344315242307/505414861488*a1^17 - 27696702887935/505414861488*a1^16 + 108892865144615/1010829722976*a1^15 + 6012670597195/17428098672*a1^14 - 71421083468347/126353715372*a1^13 - 470356381031857/336943240992*a1^12 + 943155604067327/505414861488*a1^11 + 1228712346186743/336943240992*a1^10 - 1940384255679473/505414861488*a1^9 - 3041227590875047/505414861488*a1^8 + 43884038119555/9359534472*a1^7 + 6017749368007493/1010829722976*a1^6 - 1532894924053417/505414861488*a1^5 - 809680458782215/252707430744*a1^4 + 194797323522557/252707430744*a1^3 + 86827452979241/112314413664*a1^2 - 1239867085561/336943240992*a1 - 4509261066899/112314413664, 36207620017/1516244584464*a1^22 - 392715416/31588428843*a1^21 - 347942083499/379061146116*a1^20 + 326631794837/758122292232*a1^19 + 11567268044365/758122292232*a1^18 - 9606455528161/1516244584464*a1^17 - 108957607448593/758122292232*a1^16 + 78030276152777/1516244584464*a1^15 + 2760254289026/3267768501*a1^14 - 381574682954333/1516244584464*a1^13 - 812551049946659/252707430744*a1^12 + 286698557455579/379061146116*a1^11 + 4027851952874915/505414861488*a1^10 - 1032782020658657/758122292232*a1^9 - 9557529760524427/758122292232*a1^8 + 75413531184863/56157206832*a1^7 + 9196221796045171/758122292232*a1^6 - 791176870326971/1516244584464*a1^5 - 9824972033892583/1516244584464*a1^4 - 24143673588209/189530573058*a1^3 + 133443099270145/84235810248*a1^2 + 55513767426557/505414861488*a1 - 15548291459519/168471620496, -3203239213/379061146116*a1^22 - 595819192/31588428843*a1^21 + 131419749017/379061146116*a1^20 + 135495968281/189530573058*a1^19 - 578128330394/94765286529*a1^18 - 2208746478799/189530573058*a1^17 + 11406429012787/189530573058*a1^16 + 10118781621100/94765286529*a1^15 - 4772077428473/13071074004*a1^14 - 57120718814416/94765286529*a1^13 + 177572889554965/126353715372*a1^12 + 204603006231941/94765286529*a1^11 - 108026982272480/31588428843*a1^10 - 1843832442646961/379061146116*a1^9 + 1928985934508705/379061146116*a1^8 + 46197173442761/7019650854*a1^7 - 1647721213925357/379061146116*a1^6 - 1835788779751429/379061146116*a1^5 + 369514164098459/189530573058*a1^4 + 151311038776075/94765286529*a1^3 - 17053794357965/42117905124*a1^2 - 4474501036763/31588428843*a1 + 1456347043919/42117905124, 1316367895/13071074004*a1^22 + 143938909/4357024668*a1^21 - 98901947617/26142148008*a1^20 - 31767174607/26142148008*a1^19 + 800451361073/13071074004*a1^18 + 504571904809/26142148008*a1^17 - 14614387602187/26142148008*a1^16 - 4536403667465/26142148008*a1^15 + 10335990602869/3267768501*a1^14 + 12686579651077/13071074004*a1^13 - 50010652113031/4357024668*a1^12 - 91081664277415/26142148008*a1^11 + 232891347633433/8714049336*a1^10 + 104039493898811/13071074004*a1^9 - 507807968945921/13071074004*a1^8 - 1338455500426/121028463*a1^7 + 217470996651883/6535537002*a1^6 + 223508416742801/26142148008*a1^5 - 398585214435515/26142148008*a1^4 - 83332756026185/26142148008*a1^3 + 9178192928377/2904683112*a1^2 + 450488942858/1089256167*a1 - 550385323477/2904683112, 195233617/42117905124*a1^22 - 414868283/14039301708*a1^21 - 15796492285/84235810248*a1^20 + 86437170467/84235810248*a1^19 + 135808599155/42117905124*a1^18 - 1277406335507/84235810248*a1^17 - 2585591022709/84235810248*a1^16 + 10490165145163/84235810248*a1^15 + 256148401301/1452341556*a1^14 - 6555531117833/10529476281*a1^13 - 2189147016799/3509825427*a1^12 + 164502933796967/84235810248*a1^11 + 36917895584197/28078603416*a1^10 - 40262902255258/10529476281*a1^9 - 30931084418797/21058952562*a1^8 + 21094288477639/4679767236*a1^7 + 22239202918745/42117905124*a1^6 - 248588646677557/84235810248*a1^5 + 28578818562373/84235810248*a1^4 + 74722840056937/84235810248*a1^3 - 2281389091951/9359534472*a1^2 - 1034343318067/14039301708*a1 + 227399339381/9359534472)" "x^23 - 38*x^21 + x^20 + 623*x^19 - 31*x^18 - 5771*x^17 + 398*x^16 + 33229*x^15 - 2753*x^14 - 123306*x^13 + 11230*x^12 + 296022*x^11 - 28009*x^10 - 450008*x^9 + 43215*x^8 + 412760*x^7 - 40559*x^6 - 210040*x^5 + 21311*x^4 + 50781*x^3 - 5664*x^2 - 3789*x + 621"
"4939a1" 4939 449 7 1.43E+021 "(a0, 1367/581*a0^13 + 2544/581*a0^12 - 21440/581*a0^11 - 35460/581*a0^10 + 130273/581*a0^9 + 25269/83*a0^8 - 397316/581*a0^7 - 387181/581*a0^6 + 91749/83*a0^5 + 359615/581*a0^4 - 504323/581*a0^3 - 105389/581*a0^2 + 145130/581*a0 - 6416/581, -689/581*a0^13 - 1037/581*a0^12 + 11692/581*a0^11 + 15082/581*a0^10 - 77477/581*a0^9 - 11333/83*a0^8 + 255690/581*a0^7 + 183819/581*a0^6 - 62325/83*a0^5 - 177694/581*a0^4 + 352434/581*a0^3 + 49678/581*a0^2 - 102958/581*a0 + 5809/581, 291/581*a0^13 + 1035/581*a0^12 - 3099/581*a0^11 - 13492/581*a0^10 + 8490/581*a0^9 + 8691/83*a0^8 + 3319/581*a0^7 - 115074/581*a0^6 - 4771/83*a0^5 + 87935/581*a0^4 + 28887/581*a0^3 - 19559/581*a0^2 - 5371/581*a0 - 1821/581, -1275/581*a0^13 - 2672/581*a0^12 + 18861/581*a0^11 + 36126/581*a0^10 - 106601/581*a0^9 - 24622/83*a0^8 + 302097/581*a0^7 + 354412/581*a0^6 - 66075/83*a0^5 - 303487/581*a0^4 + 350578/581*a0^3 + 81426/581*a0^2 - 98052/581*a0 + 3684/581, -1506/581*a0^13 - 3260/581*a0^12 + 21920/581*a0^11 + 44015/581*a0^10 - 121175/581*a0^9 - 29968/83*a0^8 + 335676/581*a0^7 + 432049/581*a0^6 - 72910/83*a0^5 - 373914/581*a0^4 + 397996/581*a0^3 + 102307/581*a0^2 - 118436/581*a0 + 5441/581)" "x^14 + 3*x^13 - 13*x^12 - 42*x^11 + 59*x^10 + 214*x^9 - 117*x^8 - 503*x^7 + 109*x^6 + 576*x^5 - 50*x^4 - 309*x^3 + 14*x^2 + 62*x - 3"
"None found" "none" 449 7 1.43E+021 "(a0, 1367/581*a0^13 + 2544/581*a0^12 - 21440/581*a0^11 - 35460/581*a0^10 + 130273/581*a0^9 + 25269/83*a0^8 - 397316/581*a0^7 - 387181/581*a0^6 + 91749/83*a0^5 + 359615/581*a0^4 - 504323/581*a0^3 - 105389/581*a0^2 + 145130/581*a0 - 6416/581, -689/581*a0^13 - 1037/581*a0^12 + 11692/581*a0^11 + 15082/581*a0^10 - 77477/581*a0^9 - 11333/83*a0^8 + 255690/581*a0^7 + 183819/581*a0^6 - 62325/83*a0^5 - 177694/581*a0^4 + 352434/581*a0^3 + 49678/581*a0^2 - 102958/581*a0 + 5809/581, 291/581*a0^13 + 1035/581*a0^12 - 3099/581*a0^11 - 13492/581*a0^10 + 8490/581*a0^9 + 8691/83*a0^8 + 3319/581*a0^7 - 115074/581*a0^6 - 4771/83*a0^5 + 87935/581*a0^4 + 28887/581*a0^3 - 19559/581*a0^2 - 5371/581*a0 - 1821/581, -1275/581*a0^13 - 2672/581*a0^12 + 18861/581*a0^11 + 36126/581*a0^10 - 106601/581*a0^9 - 24622/83*a0^8 + 302097/581*a0^7 + 354412/581*a0^6 - 66075/83*a0^5 - 303487/581*a0^4 + 350578/581*a0^3 + 81426/581*a0^2 - 98052/581*a0 + 3684/581, -1506/581*a0^13 - 3260/581*a0^12 + 21920/581*a0^11 + 44015/581*a0^10 - 121175/581*a0^9 - 29968/83*a0^8 + 335676/581*a0^7 + 432049/581*a0^6 - 72910/83*a0^5 - 373914/581*a0^4 + 397996/581*a0^3 + 102307/581*a0^2 - 118436/581*a0 + 5441/581)" "x^14 + 3*x^13 - 13*x^12 - 42*x^11 + 59*x^10 + 214*x^9 - 117*x^8 - 503*x^7 + 109*x^6 + 576*x^5 - 50*x^4 - 309*x^3 + 14*x^2 + 62*x - 3"
"26b1" 26 451 7 4.80E+015 "(a3, 7/2*a3^9 - 12*a3^8 - 28*a3^7 + 117*a3^6 + 89/2*a3^5 - 685/2*a3^4 + 54*a3^3 + 605/2*a3^2 - 74*a3 - 44, 1/4*a3^9 - a3^8 - 3/2*a3^7 + 19/2*a3^6 - 7/4*a3^5 - 105/4*a3^4 + 35/2*a3^3 + 81/4*a3^2 - 27/2*a3 - 2, 5/2*a3^9 - 17/2*a3^8 - 20*a3^7 + 83*a3^6 + 63/2*a3^5 - 244*a3^4 + 79/2*a3^3 + 437/2*a3^2 - 105/2*a3 - 33, 1, 5/2*a3^9 - 8*a3^8 - 21*a3^7 + 77*a3^6 + 81/2*a3^5 - 439/2*a3^4 + 18*a3^3 + 365/2*a3^2 - 40*a3 - 23)" "x^10 - 4*x^9 - 6*x^8 + 38*x^7 - 7*x^6 - 105*x^5 + 74*x^4 + 77*x^3 - 74*x^2 + 8"
"1356a1" 1356 452 7 68931919168 "(0, a1, a1^6 - 2*a1^5 - 13*a1^4 + 16*a1^3 + 52*a1^2 - 22*a1 - 44, -3*a1^6 + 5*a1^5 + 44*a1^4 - 46*a1^3 - 188*a1^2 + 82*a1 + 156, 4*a1^6 - 7*a1^5 - 58*a1^4 + 64*a1^3 + 246*a1^2 - 112*a1 - 200, -2*a1^6 + 4*a1^5 + 27*a1^4 - 34*a1^3 - 111*a1^2 + 52*a1 + 96)" "x^7 - 3*x^6 - 12*x^5 + 33*x^4 + 40*x^3 - 98*x^2 - 16*x + 58"
"2265a1" 2265 453 7 49 "(a4, -1, -2*a4^2 - a4 + 2, 2*a4^2 + 2*a4 - 2, -a4^2 - 3*a4 + 1, -2*a4 - 2)" "x^3 + x^2 - 2*x - 1"
"None found" "none" 453 7 1190005 "(a5, -1, -a5^4 - a5^3 + 6*a5^2 + 2*a5 - 6, a5^4 + a5^3 - 7*a5^2 - 4*a5 + 7, a5^4 - 7*a5^2 + 2*a5 + 3, -a5^4 + a5^3 + 9*a5^2 - 6*a5 - 11)" "x^5 + 3*x^4 - 6*x^3 - 18*x^2 + 8*x + 19"
"1362d1" 1362 454 7 6095165776 "(1, -1/2*a3 + 1/2, -1/256*a3^6 - 1/128*a3^5 + 61/256*a3^4 + 37/64*a3^3 - 663/256*a3^2 - 441/128*a3 + 1595/256, -3/128*a3^6 + 1/32*a3^5 + 181/128*a3^4 - 7/16*a3^3 - 2593/128*a3^2 + 173/32*a3 + 9327/128, 1/32*a3^6 - 1/32*a3^5 - 31/16*a3^4 + 3/16*a3^3 + 909/32*a3^2 - 149/32*a3 - 100, 5/256*a3^6 - 1/128*a3^5 - 293/256*a3^4 - 43/64*a3^3 + 3579/256*a3^2 + 551/128*a3 - 10107/256)" "x^7 + x^6 - 63*x^5 - 119*x^4 + 875*x^3 + 1627*x^2 - 3309*x - 6181"
"4994b1" 4994 454 7 2624 "(-1, a1 + 1, -a1^3 - 6*a1^2 - 8*a1 - 1, a1^3 + 6*a1^2 + 7*a1 - 1, a1^3 + 5*a1^2 + 4*a1 - 4, 3*a1^3 + 15*a1^2 + 13*a1 - 4)" "x^4 + 6*x^3 + 9*x^2 + 2*x - 1"
"6810f1" 6810 454 7 2624 "(-1, a1 + 1, -a1^3 - 6*a1^2 - 8*a1 - 1, a1^3 + 6*a1^2 + 7*a1 - 1, a1^3 + 5*a1^2 + 4*a1 - 4, 3*a1^3 + 15*a1^2 + 13*a1 - 4)" "x^4 + 6*x^3 + 9*x^2 + 2*x - 1"
"30418a1" 30418 454 7 6095165776 "(1, -1/2*a3 + 1/2, -1/256*a3^6 - 1/128*a3^5 + 61/256*a3^4 + 37/64*a3^3 - 663/256*a3^2 - 441/128*a3 + 1595/256, -3/128*a3^6 + 1/32*a3^5 + 181/128*a3^4 - 7/16*a3^3 - 2593/128*a3^2 + 173/32*a3 + 9327/128, 1/32*a3^6 - 1/32*a3^5 - 31/16*a3^4 + 3/16*a3^3 + 909/32*a3^2 - 149/32*a3 - 100, 5/256*a3^6 - 1/128*a3^5 - 293/256*a3^4 - 43/64*a3^3 + 3579/256*a3^2 + 551/128*a3 - 10107/256)" "x^7 + x^6 - 63*x^5 - 119*x^4 + 875*x^3 + 1627*x^2 - 3309*x - 6181"
"None found" "none" 454 7 6095165776 "(1, -1/2*a3 + 1/2, -1/256*a3^6 - 1/128*a3^5 + 61/256*a3^4 + 37/64*a3^3 - 663/256*a3^2 - 441/128*a3 + 1595/256, -3/128*a3^6 + 1/32*a3^5 + 181/128*a3^4 - 7/16*a3^3 - 2593/128*a3^2 + 173/32*a3 + 9327/128, 1/32*a3^6 - 1/32*a3^5 - 31/16*a3^4 + 3/16*a3^3 + 909/32*a3^2 - 149/32*a3 - 100, 5/256*a3^6 - 1/128*a3^5 - 293/256*a3^4 - 43/64*a3^3 + 3579/256*a3^2 + 551/128*a3 - 10107/256)" "x^7 + x^6 - 63*x^5 - 119*x^4 + 875*x^3 + 1627*x^2 - 3309*x - 6181"
"910k1" 910 455 7 1957 "(a3, -a3^3 + 3*a3^2 - 2, 1, -1, -2*a3^3 + 2*a3^2 + 6*a3, -1)" "x^4 - 3*x^3 - x^2 + 5*x + 1"
9.10E+003 910 455 7 45853772 "(a4, -a4^3 + a4^2 + 4*a4 - 2, 1, 1, -a4^5 + 2*a4^4 + 6*a4^3 - 10*a4^2 - 8*a4 + 9, 1)" "x^6 - 3*x^5 - 6*x^4 + 20*x^3 + 6*x^2 - 31*x + 9"
"914a1" 914 457 7 5.65E+024 "(a1, -22/3*a1^14 - 176/3*a1^13 - 248/3*a1^12 + 1409/3*a1^11 + 4334/3*a1^10 - 488*a1^9 - 17000/3*a1^8 - 9601/3*a1^7 + 24824/3*a1^6 + 23065/3*a1^5 - 14540/3*a1^4 - 15932/3*a1^3 + 4537/3*a1^2 + 1170*a1 - 1043/3, -8/3*a1^14 - 79/3*a1^13 - 184/3*a1^12 + 502/3*a1^11 + 2524/3*a1^10 + 255*a1^9 - 9145/3*a1^8 - 9500/3*a1^7 + 12118/3*a1^6 + 18116/3*a1^5 - 5953/3*a1^4 - 11923/3*a1^3 + 1877/3*a1^2 + 878*a1 - 661/3, 5*a1^14 + 51*a1^13 + 123*a1^12 - 326*a1^11 - 1682*a1^10 - 488*a1^9 + 6221*a1^8 + 6214*a1^7 - 8724*a1^6 - 12108*a1^5 + 5002*a1^4 + 8277*a1^3 - 1832*a1^2 - 1925*a1 + 546, -7/3*a1^14 - 77/3*a1^13 - 206/3*a1^12 + 455/3*a1^11 + 2684/3*a1^10 + 373*a1^9 - 9638/3*a1^8 - 10615/3*a1^7 + 12791/3*a1^6 + 19645/3*a1^5 - 6359/3*a1^4 - 12755/3*a1^3 + 1999/3*a1^2 + 921*a1 - 680/3, 11*a1^14 + 85*a1^13 + 105*a1^12 - 706*a1^11 - 1967*a1^10 + 997*a1^9 + 7813*a1^8 + 3498*a1^7 - 11471*a1^6 - 9202*a1^5 + 6665*a1^4 + 6226*a1^3 - 1917*a1^2 - 1275*a1 + 375)" "x^15 + 10*x^14 + 27*x^13 - 43*x^12 - 324*x^11 - 310*x^10 + 917*x^9 + 1910*x^8 - 330*x^7 - 3170*x^6 - 1281*x^5 + 1917*x^4 + 1110*x^3 - 506*x^2 - 232*x + 79"
"5954g1" 5954 458 7 373579942325233 "(1, 1/2*a4 - 1/2, -737/37213184*a4^8 - 2839/9303296*a4^7 + 2235/581456*a4^6 + 182471/9303296*a4^5 - 3058201/18606592*a4^4 - 2930137/9303296*a4^3 + 9564613/4651648*a4^2 + 6141289/9303296*a4 - 100562645/37213184, 9607/37213184*a4^8 - 17529/9303296*a4^7 - 69413/4651648*a4^6 + 978717/9303296*a4^5 + 4591147/18606592*a4^4 - 15220991/9303296*a4^3 - 3417829/2325824*a4^2 + 60757659/9303296*a4 + 231759003/37213184, 3537/18606592*a4^8 - 5803/4651648*a4^7 - 25011/2325824*a4^6 + 269547/4651648*a4^5 + 1677941/9303296*a4^4 - 2465733/4651648*a4^3 - 1437725/1162912*a4^2 - 5250555/4651648*a4 + 69758637/18606592, -951/1162912*a4^8 + 4261/581456*a4^7 + 87345/2325824*a4^6 - 463647/1162912*a4^5 - 697761/2325824*a4^4 + 416083/72682*a4^3 - 3640185/2325824*a4^2 - 20503355/1162912*a4 + 659735/2325824)" "x^9 - 13*x^8 - 12*x^7 + 692*x^6 - 1506*x^5 - 9358*x^4 + 29476*x^3 + 22260*x^2 - 84791*x - 14093"
"None found" "none" 458 7 4954452093 "(-1, a3 + 1, a3^6 + a3^5 - 9*a3^4 - 2*a3^3 + 21*a3^2 - 14*a3 + 3, a3^6 + a3^5 - 10*a3^4 - 4*a3^3 + 27*a3^2 - 6*a3 - 4, -a3^5 - a3^4 + 9*a3^3 + 3*a3^2 - 21*a3 + 9, -a3^6 + 11*a3^4 - 6*a3^3 - 32*a3^2 + 30*a3 + 2)" "x^7 + 3*x^6 - 9*x^5 - 24*x^4 + 31*x^3 + 46*x^2 - 51*x + 6"
"3213l1" 3213 459 7 404 "(a13, 0, -a13^2 + 6, a13^2 + 2*a13 - 7, -2*a13^2 - 2*a13 + 12, -2*a13^2 - 2*a13 + 11)" "x^3 - x^2 - 7*x + 9"
3.21E+004 3213 459 7 404 "(a12, 0, a12^2 - 6, a12^2 - 2*a12 - 7, 2*a12^2 - 2*a12 - 12, -2*a12^2 + 2*a12 + 11)" "x^3 + x^2 - 7*x - 9"
"None found" "none" 461 7 49 "(a1, 2*a1^2 + 3*a1 - 2, -2*a1^2 - 4*a1 + 1, -1, -a1^2 - 3*a1 - 3, -2*a1^2 - a1 + 2)" "x^3 + 2*x^2 - x - 1"
"26b1" 26 463 7 9.67E+044 "(a1, 88081079557/2192028849037*a1^21 - 14422074891/115369939423*a1^20 - 2628417572230/2192028849037*a1^19 + 8497220344229/2192028849037*a1^18 + 32189971934528/2192028849037*a1^17 - 109880752912386/2192028849037*a1^16 - 208266773801349/2192028849037*a1^15 + 771496154587641/2192028849037*a1^14 + 755393757720071/2192028849037*a1^13 - 3202984347030693/2192028849037*a1^12 - 1452100823408494/2192028849037*a1^11 + 8005041723954874/2192028849037*a1^10 + 999239360848340/2192028849037*a1^9 - 11686683734002023/2192028849037*a1^8 + 993848469210485/2192028849037*a1^7 + 9112869445104238/2192028849037*a1^6 - 1892870464522139/2192028849037*a1^5 - 162616003952727/115369939423*a1^4 + 771221864284476/2192028849037*a1^3 + 13552403923130/115369939423*a1^2 - 57299624398580/2192028849037*a1 - 4959079589235/2192028849037, -97598814399/2192028849037*a1^21 - 12060154791/115369939423*a1^20 + 6158276837549/2192028849037*a1^19 - 2974529732687/2192028849037*a1^18 - 107461690992292/2192028849037*a1^17 + 138090235403933/2192028849037*a1^16 + 872349945365154/2192028849037*a1^15 - 1503806189886096/2192028849037*a1^14 - 3795322820045360/2192028849037*a1^13 + 7940622433385189/2192028849037*a1^12 + 8965478486377590/2192028849037*a1^11 - 23099866942251974/2192028849037*a1^10 - 10123163282652780/2192028849037*a1^9 + 37400061934068795/2192028849037*a1^8 + 1939259022320828/2192028849037*a1^7 - 31536458444330130/2192028849037*a1^6 + 5092393651938517/2192028849037*a1^5 + 616389647891872/115369939423*a1^4 - 2812510092495637/2192028849037*a1^3 - 71953936327624/115369939423*a1^2 + 225193380521624/2192028849037*a1 + 56904893671196/2192028849037, -222625289944/2192028849037*a1^21 + 104367160850/115369939423*a1^20 - 901430985342/2192028849037*a1^19 - 38899721488001/2192028849037*a1^18 + 88315032444433/2192028849037*a1^17 + 278295627293925/2192028849037*a1^16 - 1026555612083387/2192028849037*a1^15 - 739309575040831/2192028849037*a1^14 + 5523724445972888/2192028849037*a1^13 - 823645537379160/2192028849037*a1^12 - 16093317475926696/2192028849037*a1^11 + 9581679579189143/2192028849037*a1^10 + 25700475951367957/2192028849037*a1^9 - 22473039772819819/2192028849037*a1^8 - 20833485990737514/2192028849037*a1^7 + 22689966688318300/2192028849037*a1^6 + 6991023755631008/2192028849037*a1^5 - 490147675928233/115369939423*a1^4 - 617237644097082/2192028849037*a1^3 + 58642933476640/115369939423*a1^2 + 21782425702458/2192028849037*a1 - 26555072225671/2192028849037, -377503382094/2192028849037*a1^21 + 161920021237/115369939423*a1^20 + 264598916261/2192028849037*a1^19 - 62513375389721/2192028849037*a1^18 + 109084437083606/2192028849037*a1^17 + 482375572081841/2192028849037*a1^16 - 1363387321551088/2192028849037*a1^15 - 1635812937585184/2192028849037*a1^14 + 7518281570385921/2192028849037*a1^13 + 1244080279270289/2192028849037*a1^12 - 22160897233422553/2192028849037*a1^11 + 7367200619029801/2192028849037*a1^10 + 35571494323123671/2192028849037*a1^9 - 21980826006363710/2192028849037*a1^8 - 28767100539855269/2192028849037*a1^7 + 23077657560880722/2192028849037*a1^6 + 9419865419517220/2192028849037*a1^5 - 470749222297896/115369939423*a1^4 - 713138500460331/2192028849037*a1^3 + 42194862635974/115369939423*a1^2 + 44460554853556/2192028849037*a1 - 5346927633707/2192028849037, -185526721264/2192028849037*a1^21 + 46321696138/115369939423*a1^20 + 3478976124052/2192028849037*a1^19 - 20528968497307/2192028849037*a1^18 - 23280988978840/2192028849037*a1^17 + 198754862672365/2192028849037*a1^16 + 53710403893317/2192028849037*a1^15 - 1039476970694517/2192028849037*a1^14 + 90359649147676/2192028849037*a1^13 + 3199445832292557/2192028849037*a1^12 - 704435592600010/2192028849037*a1^11 - 5940627969286164/2192028849037*a1^10 + 1288720310058817/2192028849037*a1^9 + 6649399195956646/2192028849037*a1^8 - 761357837048641/2192028849037*a1^7 - 4500790243338669/2192028849037*a1^6 - 143120577976740/2192028849037*a1^5 + 96904157671244/115369939423*a1^4 + 161930939692913/2192028849037*a1^3 - 19386056764491/115369939423*a1^2 + 4468507737272/2192028849037*a1 + 18152844079943/2192028849037)" "x^22 - 8*x^21 - x^20 + 161*x^19 - 281*x^18 - 1216*x^17 + 3523*x^16 + 3859*x^15 - 19383*x^14 - 1030*x^13 + 56835*x^12 - 26406*x^11 - 90387*x^10 + 71356*x^9 + 71796*x^8 - 76057*x^7 - 22452*x^6 + 32959*x^5 + 1404*x^4 - 4772*x^3 - 174*x^2 + 237*x + 25"
"1389a1" 1389 463 7 9.67E+044 "(a1, 88081079557/2192028849037*a1^21 - 14422074891/115369939423*a1^20 - 2628417572230/2192028849037*a1^19 + 8497220344229/2192028849037*a1^18 + 32189971934528/2192028849037*a1^17 - 109880752912386/2192028849037*a1^16 - 208266773801349/2192028849037*a1^15 + 771496154587641/2192028849037*a1^14 + 755393757720071/2192028849037*a1^13 - 3202984347030693/2192028849037*a1^12 - 1452100823408494/2192028849037*a1^11 + 8005041723954874/2192028849037*a1^10 + 999239360848340/2192028849037*a1^9 - 11686683734002023/2192028849037*a1^8 + 993848469210485/2192028849037*a1^7 + 9112869445104238/2192028849037*a1^6 - 1892870464522139/2192028849037*a1^5 - 162616003952727/115369939423*a1^4 + 771221864284476/2192028849037*a1^3 + 13552403923130/115369939423*a1^2 - 57299624398580/2192028849037*a1 - 4959079589235/2192028849037, -97598814399/2192028849037*a1^21 - 12060154791/115369939423*a1^20 + 6158276837549/2192028849037*a1^19 - 2974529732687/2192028849037*a1^18 - 107461690992292/2192028849037*a1^17 + 138090235403933/2192028849037*a1^16 + 872349945365154/2192028849037*a1^15 - 1503806189886096/2192028849037*a1^14 - 3795322820045360/2192028849037*a1^13 + 7940622433385189/2192028849037*a1^12 + 8965478486377590/2192028849037*a1^11 - 23099866942251974/2192028849037*a1^10 - 10123163282652780/2192028849037*a1^9 + 37400061934068795/2192028849037*a1^8 + 1939259022320828/2192028849037*a1^7 - 31536458444330130/2192028849037*a1^6 + 5092393651938517/2192028849037*a1^5 + 616389647891872/115369939423*a1^4 - 2812510092495637/2192028849037*a1^3 - 71953936327624/115369939423*a1^2 + 225193380521624/2192028849037*a1 + 56904893671196/2192028849037, -222625289944/2192028849037*a1^21 + 104367160850/115369939423*a1^20 - 901430985342/2192028849037*a1^19 - 38899721488001/2192028849037*a1^18 + 88315032444433/2192028849037*a1^17 + 278295627293925/2192028849037*a1^16 - 1026555612083387/2192028849037*a1^15 - 739309575040831/2192028849037*a1^14 + 5523724445972888/2192028849037*a1^13 - 823645537379160/2192028849037*a1^12 - 16093317475926696/2192028849037*a1^11 + 9581679579189143/2192028849037*a1^10 + 25700475951367957/2192028849037*a1^9 - 22473039772819819/2192028849037*a1^8 - 20833485990737514/2192028849037*a1^7 + 22689966688318300/2192028849037*a1^6 + 6991023755631008/2192028849037*a1^5 - 490147675928233/115369939423*a1^4 - 617237644097082/2192028849037*a1^3 + 58642933476640/115369939423*a1^2 + 21782425702458/2192028849037*a1 - 26555072225671/2192028849037, -377503382094/2192028849037*a1^21 + 161920021237/115369939423*a1^20 + 264598916261/2192028849037*a1^19 - 62513375389721/2192028849037*a1^18 + 109084437083606/2192028849037*a1^17 + 482375572081841/2192028849037*a1^16 - 1363387321551088/2192028849037*a1^15 - 1635812937585184/2192028849037*a1^14 + 7518281570385921/2192028849037*a1^13 + 1244080279270289/2192028849037*a1^12 - 22160897233422553/2192028849037*a1^11 + 7367200619029801/2192028849037*a1^10 + 35571494323123671/2192028849037*a1^9 - 21980826006363710/2192028849037*a1^8 - 28767100539855269/2192028849037*a1^7 + 23077657560880722/2192028849037*a1^6 + 9419865419517220/2192028849037*a1^5 - 470749222297896/115369939423*a1^4 - 713138500460331/2192028849037*a1^3 + 42194862635974/115369939423*a1^2 + 44460554853556/2192028849037*a1 - 5346927633707/2192028849037, -185526721264/2192028849037*a1^21 + 46321696138/115369939423*a1^20 + 3478976124052/2192028849037*a1^19 - 20528968497307/2192028849037*a1^18 - 23280988978840/2192028849037*a1^17 + 198754862672365/2192028849037*a1^16 + 53710403893317/2192028849037*a1^15 - 1039476970694517/2192028849037*a1^14 + 90359649147676/2192028849037*a1^13 + 3199445832292557/2192028849037*a1^12 - 704435592600010/2192028849037*a1^11 - 5940627969286164/2192028849037*a1^10 + 1288720310058817/2192028849037*a1^9 + 6649399195956646/2192028849037*a1^8 - 761357837048641/2192028849037*a1^7 - 4500790243338669/2192028849037*a1^6 - 143120577976740/2192028849037*a1^5 + 96904157671244/115369939423*a1^4 + 161930939692913/2192028849037*a1^3 - 19386056764491/115369939423*a1^2 + 4468507737272/2192028849037*a1 + 18152844079943/2192028849037)" "x^22 - 8*x^21 - x^20 + 161*x^19 - 281*x^18 - 1216*x^17 + 3523*x^16 + 3859*x^15 - 19383*x^14 - 1030*x^13 + 56835*x^12 - 26406*x^11 - 90387*x^10 + 71356*x^9 + 71796*x^8 - 76057*x^7 - 22452*x^6 + 32959*x^5 + 1404*x^4 - 4772*x^3 - 174*x^2 + 237*x + 25"
"None found" "none" 463 7 1.11E+026 "(a0, 16567/27157*a0^15 + 123555/27157*a0^14 + 7867/2089*a0^13 - 1241603/27157*a0^12 - 2734229/27157*a0^11 + 3506452/27157*a0^10 + 13535438/27157*a0^9 - 203986/27157*a0^8 - 2042287/2089*a0^7 - 10979775/27157*a0^6 + 21686537/27157*a0^5 + 12171527/27157*a0^4 - 6229152/27157*a0^3 - 202430/2089*a0^2 + 913821/27157*a0 - 7771/27157, 6394/2089*a0^15 + 42479/2089*a0^14 + 6706/2089*a0^13 - 475877/2089*a0^12 - 683687/2089*a0^11 + 1793911/2089*a0^10 + 3791707/2089*a0^9 - 2575474/2089*a0^8 - 8085535/2089*a0^7 + 839943/2089*a0^6 + 7462280/2089*a0^5 + 668947/2089*a0^4 - 2727902/2089*a0^3 - 128487/2089*a0^2 + 371447/2089*a0 - 33144/2089, -100601/27157*a0^15 - 682759/27157*a0^14 - 15891/2089*a0^13 + 7436061/27157*a0^12 + 11817341/27157*a0^11 - 26290788/27157*a0^10 - 63030099/27157*a0^9 + 30652400/27157*a0^8 + 9949387/2089*a0^7 + 5968668/27157*a0^6 - 111675910/27157*a0^5 - 24976422/27157*a0^4 + 35430488/27157*a0^3 + 363111/2089*a0^2 - 4565284/27157*a0 + 330669/27157, 51912/27157*a0^15 + 357832/27157*a0^14 + 12242/2089*a0^13 - 3738178/27157*a0^12 - 6545388/27157*a0^11 + 11919997/27157*a0^10 + 33076029/27157*a0^9 - 8494259/27157*a0^8 - 4846435/2089*a0^7 - 15977128/27157*a0^6 + 46393421/27157*a0^5 + 21152721/27157*a0^4 - 8688081/27157*a0^3 - 231023/2089*a0^2 + 593608/27157*a0 - 175870/27157, -178593/27157*a0^15 - 1226292/27157*a0^14 - 35551/2089*a0^13 + 13173181/27157*a0^12 + 21987011/27157*a0^11 - 45123967/27157*a0^10 - 115304471/27157*a0^9 + 46716958/27157*a0^8 + 17954689/2089*a0^7 + 24575881/27157*a0^6 - 197951075/27157*a0^5 - 53985991/27157*a0^4 + 60659504/27157*a0^3 + 783143/2089*a0^2 - 7530115/27157*a0 + 452346/27157)" "x^16 + 9*x^15 + 17*x^14 - 70*x^13 - 282*x^12 + 7*x^11 + 1223*x^10 + 1073*x^9 - 2045*x^8 - 2946*x^7 + 1137*x^6 + 2847*x^5 + 88*x^4 - 954*x^3 - 47*x^2 + 118*x - 9"
"208d1" 208 464 7 8 "(0, a7, -1, -2*a7 - 2, -a7 - 2, 2*a7 + 1)" "x^2 + 2*x - 1"
"1392g1" 1392 464 7 8 "(0, -1/2*a8, -a8 - 3, 4, 1/2*a8 + 2, 2*a8 + 3)" "x^2 + 4*x - 4"
"7888b1" 7888 464 7 8 "(0, -1/2*a8, -a8 - 3, 4, 1/2*a8 + 2, 2*a8 + 3)" "x^2 + 4*x - 4"
"8816g1" 8816 464 7 8 "(0, a7, -1, -2*a7 - 2, -a7 - 2, 2*a7 + 1)" "x^2 + 2*x - 1"
6.05E+004 6045 465 7 8 "(a2, 1, -1, -a2 - 3, 2*a2 + 2, -a2 - 5)" "x^2 + 2*x - 1"
"6510x1" 6510 465 7 8 "(a2, 1, -1, -a2 - 3, 2*a2 + 2, -a2 - 5)" "x^2 + 2*x - 1"
"None found" "none" 466 7 49 "(1, a3 - 1, -a3^2 - a3 - 1, 2*a3^2 - a3 - 4, -3*a3^2 - 2*a3 + 1, 2*a3^2 + 2*a3 - 5)" "x^3 + x^2 - 2*x - 1"
"1410f1" 1410 470 7 21 "(-1, -1/2*a6 - 1/2, 1, 4, -1/2*a6 - 7/2, a6 + 3)" "x^2 + 4*x - 17"
"13630l1" 13630 470 7 229 "(1, 1/2*a8 - 1/2, 1, -1/4*a8^2 + 21/4, 1/4*a8^2 - 1/2*a8 - 15/4, -1/4*a8^2 + a8 + 9/4)" "x^3 - 7*x^2 - 5*x + 67"
"2355c1" 2355 471 7 24147949586752 "(a3, -1, -8/59*a3^8 + 41/59*a3^7 + 41/59*a3^6 - 376/59*a3^5 + 37/59*a3^4 + 950/59*a3^3 - 143/59*a3^2 - 599/59*a3 - 47/59, -31/59*a3^8 + 63/59*a3^7 + 299/59*a3^6 - 513/59*a3^5 - 867/59*a3^4 + 1041/59*a3^3 + 825/59*a3^2 - 411/59*a3 - 160/59, 15/59*a3^8 - 40/59*a3^7 - 158/59*a3^6 + 410/59*a3^5 + 528/59*a3^4 - 1324/59*a3^3 - 580/59*a3^2 + 1396/59*a3 + 125/59, 17/59*a3^8 - 6/59*a3^7 - 242/59*a3^6 + 32/59*a3^5 + 1094/59*a3^4 + 2/59*a3^3 - 1562/59*a3^2 + 56/59*a3 + 299/59)" "x^9 - 2*x^8 - 11*x^7 + 19*x^6 + 39*x^5 - 53*x^4 - 49*x^3 + 45*x^2 + 14*x - 1"
"34854a1" 34854 471 7 229 "(a2, -1, -a2^2 - a2 + 2, -1, -a2^2 + 1, 2*a2^2 - a2 - 6)" "x^3 - 4*x + 1"
"472d1" 472 472 7 921465377 "(0, 1/2*a6, 1/16*a6^4 - 3*a6^2 - 2*a6 + 22, 1/64*a6^5 + 3/32*a6^4 - 13/16*a6^3 - 5*a6^2 + 15/4*a6 + 30, -1/64*a6^5 - 3/32*a6^4 + 13/16*a6^3 + 19/4*a6^2 - 15/4*a6 - 26, -1/64*a6^5 - 3/32*a6^4 + 13/16*a6^3 + 19/4*a6^2 - 15/4*a6 - 24)" "x^6 + 2*x^5 - 60*x^4 - 128*x^3 + 816*x^2 + 960*x - 3584"
"23128q1" 23128 472 7 921465377 "(0, 1/2*a6, 1/16*a6^4 - 3*a6^2 - 2*a6 + 22, 1/64*a6^5 + 3/32*a6^4 - 13/16*a6^3 - 5*a6^2 + 15/4*a6 + 30, -1/64*a6^5 - 3/32*a6^4 + 13/16*a6^3 + 19/4*a6^2 - 15/4*a6 - 26, -1/64*a6^5 - 3/32*a6^4 + 13/16*a6^3 + 19/4*a6^2 - 15/4*a6 - 24)" "x^6 + 2*x^5 - 60*x^4 - 128*x^3 + 816*x^2 + 960*x - 3584"
"18447f1" 18447 473 7 38569 "(a4, 2*a4^4 - a4^3 - 13*a4^2 + 4*a4 + 4, -5*a4^4 + 2*a4^3 + 31*a4^2 - 7*a4 - 9, a4^3 - a4^2 - 6*a4, -1, 3*a4^4 - a4^3 - 18*a4^2 + 3*a4 + 3)" "x^5 - x^4 - 6*x^3 + 5*x^2 + x - 1"
"158a1" 158 474 7 229 "(1, 1, 1/2*a4 + 1/2, -1/2*a4 + 1/2, -1/4*a4^2 + 13/4, 1/4*a4^2 - 13/4)" "x^3 - 3*x^2 - 13*x + 7"
"3318c1" 3318 474 7 29 "(-1, -1, a2 - 1, a2, 0, 0)" "x^2 - x - 7"
"6162d1" 6162 474 7 29 "(-1, -1, a2 - 1, a2, 0, 0)" "x^2 - x - 7"
"1425f1" 1425 475 7 49 "(a3, a3^2 + 3*a3, 0, a3^2 + a3 - 2, -3*a3^2 - 7*a3 + 1, -a3^2 - 2*a3 - 1)" "x^3 + 4*x^2 + 3*x - 1"
1.43E+004 1425 475 7 49 "(a7, -a7^2 + 3*a7, 0, -a7^2 + a7 + 2, -3*a7^2 + 7*a7 + 1, a7^2 - 2*a7 + 1)" "x^3 - 4*x^2 + 3*x + 1"
"477a1" 477 477 7 1957 "(a3, 0, -a3^3 - a3^2 + 2*a3, -a3^3 - 3*a3^2 + 2*a3 + 5, 4*a3^3 + 6*a3^2 - 12*a3 - 12, 3*a3^3 + 5*a3^2 - 8*a3 - 10)" "x^4 + 3*x^3 - x^2 - 7*x - 3"
"954h1" 954 477 7 1957 "(a4, 0, -a4^3 + 3*a4^2 - 2, -a4^3 + 3*a4^2 - 3, -2*a4^2 + 2*a4 + 6, -a4^3 - a4^2 + 6*a4 + 2)" "x^4 - 3*x^3 - x^2 + 5*x + 1"
"954a1" 954 477 7 1957 "(a2, 0, -a2^3 - 3*a2^2 + 2, a2^3 + 3*a2^2 - 3, 2*a2^2 + 2*a2 - 6, a2^3 - a2^2 - 6*a2 + 2)" "x^4 + 3*x^3 - x^2 - 5*x + 1"
"6214b1" 6214 478 7 4205 "(-1, -1/2*a0 - 1/2, 1/8*a0^3 - 1/8*a0^2 - 21/8*a0 + 5/8, -1/4*a0^3 + 23/4*a0 - 1/2, 3/8*a0^3 + 1/8*a0^2 - 59/8*a0 - 17/8, -3/8*a0^3 + 1/8*a0^2 + 67/8*a0 - 17/8)" "x^4 - 22*x^2 + 5"
"None found" "none" 478 7 4205 "(-1, -1/2*a0 - 1/2, 1/8*a0^3 - 1/8*a0^2 - 21/8*a0 + 5/8, -1/4*a0^3 + 23/4*a0 - 1/2, 3/8*a0^3 + 1/8*a0^2 - 59/8*a0 - 17/8, -3/8*a0^3 + 1/8*a0^2 + 67/8*a0 - 17/8)" "x^4 - 22*x^2 + 5"
"None found" "none" 478 7 9129208 "(-1, -a3 - 1, -4/31*a3^5 - 37/31*a3^4 - 75/31*a3^3 + 115/31*a3^2 + 10*a3 - 21/31, -19/62*a3^5 - 137/62*a3^4 - 89/31*a3^3 + 461/62*a3^2 + 13*a3 - 123/62, -11/62*a3^5 - 63/62*a3^4 - 14/31*a3^3 + 169/62*a3^2 + 167/62, 41/124*a3^5 + 263/124*a3^4 + 117/62*a3^3 - 985/124*a3^2 - 21/2*a3 + 471/124)" "x^6 + 8*x^5 + 13*x^4 - 27*x^3 - 59*x^2 + 13*x + 7"
"6227c1" 6227 479 7 2.04E+075 "(a1, 198216323844251155370812651657245291351085/43299557505812608642127324159129260658424597*a1^31 - 527262018744456168734627495094057571874963/43299557505812608642127324159129260658424597*a1^30 - 3269267463167206600310449986015992717825570/14433185835270869547375774719709753552808199*a1^29 + 8783363560610536742028210191722332009985185/14433185835270869547375774719709753552808199*a1^28 + 72091107727010571986545768059200666397634880/14433185835270869547375774719709753552808199*a1^27 - 587966872710785340988011333191219676859029709/43299557505812608642127324159129260658424597*a1^26 - 2805844440959715393074370919286238285532116680/43299557505812608642127324159129260658424597*a1^25 + 2579161786528929541900780471924131834172738430/14433185835270869547375774719709753552808199*a1^24 + 23816987858008910674483034048442953850952305932/43299557505812608642127324159129260658424597*a1^23 - 22277273870417024894032348722193938899166420864/14433185835270869547375774719709753552808199*a1^22 - 139162963789461877968722828140235278673826868144/43299557505812608642127324159129260658424597*a1^21 + 133022822400443175458594516614799155555698262280/14433185835270869547375774719709753552808199*a1^20 + 191084057474817690746269884408910209228491025073/14433185835270869547375774719709753552808199*a1^19 - 1690313821945986202060056563943062654527136325272/43299557505812608642127324159129260658424597*a1^18 - 1675300167317306554031680458394364544234093411554/43299557505812608642127324159129260658424597*a1^17 + 1709188455820593808968118936859115191095190090116/14433185835270869547375774719709753552808199*a1^16 + 3440530934571211254091178069316038711273289730436/43299557505812608642127324159129260658424597*a1^15 - 11105287494581330555545676102793083259906831689048/43299557505812608642127324159129260658424597*a1^14 - 1606276840782546886349081037491926237454170640060/14433185835270869547375774719709753552808199*a1^13 + 5633528406338676725097678437464862622002145479428/14433185835270869547375774719709753552808199*a1^12 + 1433520523110252466932311539165352519320479879712/14433185835270869547375774719709753552808199*a1^11 - 17499814484748394560573090960305859169015160955176/43299557505812608642127324159129260658424597*a1^10 - 2042688125548113564476827378759912830779328433100/43299557505812608642127324159129260658424597*a1^9 + 11642930998220421297062796634836397882117642129352/43299557505812608642127324159129260658424597*a1^8 + 135346740834226068352835548425273242516987412332/43299557505812608642127324159129260658424597*a1^7 - 4492019503107973902340901087088674074117118754464/43299557505812608642127324159129260658424597*a1^6 + 281321144041777488669154718220283360147485155431/43299557505812608642127324159129260658424597*a1^5 + 825033826195771971670948843231884699322885943804/43299557505812608642127324159129260658424597*a1^4 - 79976725089771314707963267668186607363236517181/43299557505812608642127324159129260658424597*a1^3 - 49044793817257638525726055325200131097551387488/43299557505812608642127324159129260658424597*a1^2 + 2225578265922128883854147518353009301514501341/14433185835270869547375774719709753552808199*a1 - 34279945836513634598474685534464542183271984/43299557505812608642127324159129260658424597, 1030105604896516974940885442342379089765492/129898672517437825926381972477387781975273791*a1^31 - 3338000639463150696895674393852488296302298/129898672517437825926381972477387781975273791*a1^30 - 16809773598447233039514689841995334797159890/43299557505812608642127324159129260658424597*a1^29 + 18601988336250323542018533520937409372944528/14433185835270869547375774719709753552808199*a1^28 + 366016755552045253656234456644351984829577258/43299557505812608642127324159129260658424597*a1^27 - 3750686606524400969987598660826590583610644712/129898672517437825926381972477387781975273791*a1^26 - 14032365504015299710711177186834310656280776876/129898672517437825926381972477387781975273791*a1^25 + 16525545283604625610798580201763170349750942127/43299557505812608642127324159129260658424597*a1^24 + 116973049242727452048649425619293532752323463715/129898672517437825926381972477387781975273791*a1^23 - 143427041451667884702759290449416787851104673731/43299557505812608642127324159129260658424597*a1^22 - 668641510061650817104793525941426808819109264827/129898672517437825926381972477387781975273791*a1^21 + 286953501328688630584887835055266442917999699183/14433185835270869547375774719709753552808199*a1^20 + 893726182228643947546956659346157689341743137455/43299557505812608642127324159129260658424597*a1^19 - 10997779365948658490927696482207501028395154681617/129898672517437825926381972477387781975273791*a1^18 - 7575360009401530379828330698820606453620559620879/129898672517437825926381972477387781975273791*a1^17 + 11180624055833616018859413367516208414426907762434/43299557505812608642127324159129260658424597*a1^16 + 14883032656579732150049775217028269497541680049933/129898672517437825926381972477387781975273791*a1^15 - 73017443321641907979369233529520666070507300508769/129898672517437825926381972477387781975273791*a1^14 - 6519775656747916934640235041114948744499123300301/43299557505812608642127324159129260658424597*a1^13 + 37206215526891906348146795529043566203451820514101/43299557505812608642127324159129260658424597*a1^12 + 1735172592377708019501731657505782679094080082709/14433185835270869547375774719709753552808199*a1^11 - 115964646863067456762011068730668892524304436220009/129898672517437825926381972477387781975273791*a1^10 - 5371010664578784005059237228169897864834237463640/129898672517437825926381972477387781975273791*a1^9 + 77286029066713307088989388520670730962035104264283/129898672517437825926381972477387781975273791*a1^8 - 1601787848097641684775938620818224565657311285681/129898672517437825926381972477387781975273791*a1^7 - 29795466629630781985081882843302958989415910209093/129898672517437825926381972477387781975273791*a1^6 + 1869294067690646598011248460941001048571044983943/129898672517437825926381972477387781975273791*a1^5 + 5432979658478713378478506089123610568263759019401/129898672517437825926381972477387781975273791*a1^4 - 396715575562450542816245018067676245145734487975/129898672517437825926381972477387781975273791*a1^3 - 305141344630307815215516650185743233364727682527/129898672517437825926381972477387781975273791*a1^2 + 12150931128699949156204049238578990519021388799/43299557505812608642127324159129260658424597*a1 - 123662975306465908677471551590750265568588037/129898672517437825926381972477387781975273791, 801259027329361249903787877108751888497997/129898672517437825926381972477387781975273791*a1^31 - 2212110193254191442802527666239733105916901/129898672517437825926381972477387781975273791*a1^30 - 12970720045678394069453118949143911515328065/43299557505812608642127324159129260658424597*a1^29 + 36436134352636601764594543534131482634829438/43299557505812608642127324159129260658424597*a1^28 + 93213621451489031359251406517446828205245966/14433185835270869547375774719709753552808199*a1^27 - 2407400330763162442595579841868396639326211612/129898672517437825926381972477387781975273791*a1^26 - 10588805793362244253541032310976507625896290234/129898672517437825926381972477387781975273791*a1^25 + 3467273086349245247737001332225491763864296239/14433185835270869547375774719709753552808199*a1^24 + 86886880376627200447687605316234650040507671377/129898672517437825926381972477387781975273791*a1^23 - 88289543788536278370398409674981041046796577937/43299557505812608642127324159129260658424597*a1^22 - 486608425792975444768795347514913448373766793757/129898672517437825926381972477387781975273791*a1^21 + 172233252284257683204843714963789444678332952137/14433185835270869547375774719709753552808199*a1^20 + 632958165862484390606455465330416477128849529745/43299557505812608642127324159129260658424597*a1^19 - 6415984060960419007288556905381262029055561200499/129898672517437825926381972477387781975273791*a1^18 - 5167404468041688881062643019244196132953086213461/129898672517437825926381972477387781975273791*a1^17 + 6319283769260186857951894765755212052506984806379/43299557505812608642127324159129260658424597*a1^16 + 9608999515095219701688777193349392605176163258875/129898672517437825926381972477387781975273791*a1^15 - 39854561477787729525402137329919501863095510200240/129898672517437825926381972477387781975273791*a1^14 - 1281722024160728080772415144573358230080849634649/14433185835270869547375774719709753552808199*a1^13 + 6517383581282194152177549224826182894317221981421/14433185835270869547375774719709753552808199*a1^12 + 2522247986302207801615315837860852594899899523116/43299557505812608642127324159129260658424597*a1^11 - 58514850555939360596044895634248498542612755411623/129898672517437825926381972477387781975273791*a1^10 - 600388715741708152656566734762718212390091573291/129898672517437825926381972477387781975273791*a1^9 + 37377480309128049725261550637212223571623128260045/129898672517437825926381972477387781975273791*a1^8 - 2848576115404549775316459164417928949081019662081/129898672517437825926381972477387781975273791*a1^7 - 13823819526421297117043941059239772280333274608604/129898672517437825926381972477387781975273791*a1^6 + 1852473852914895531094578031397640531934689841552/129898672517437825926381972477387781975273791*a1^5 + 2448147884104325259927377151077273906620910937614/129898672517437825926381972477387781975273791*a1^4 - 386656205343345219491166592482106050304815697577/129898672517437825926381972477387781975273791*a1^3 - 142586949470931281851176912019996895122419404519/129898672517437825926381972477387781975273791*a1^2 + 2918284631757737480939637442532637846869816863/14433185835270869547375774719709753552808199*a1 - 299607432643559930105134127554890294037485245/129898672517437825926381972477387781975273791, -956304044143028931596094345135445327497241/129898672517437825926381972477387781975273791*a1^31 + 2331245075463355755349987836841899595729424/129898672517437825926381972477387781975273791*a1^30 + 15783904153743931751979743048426645713226024/43299557505812608642127324159129260658424597*a1^29 - 12840751038658628924677979616252887323231924/14433185835270869547375774719709753552808199*a1^28 - 348502502605368386150788414321920950598539285/43299557505812608642127324159129260658424597*a1^27 + 2554655298488908201998720926277036795601511323/129898672517437825926381972477387781975273791*a1^26 + 13593740407953540162903028911140577880439566280/129898672517437825926381972477387781975273791*a1^25 - 11084877246860114266907637902307737554619695244/43299557505812608642127324159129260658424597*a1^24 - 115803750482275172926833809732753748328886711678/129898672517437825926381972477387781975273791*a1^23 + 94542255602979062205188919382723953480980764978/43299557505812608642127324159129260658424597*a1^22 + 680584373506038024065652701047650214609979398267/129898672517437825926381972477387781975273791*a1^21 - 185441016238982431782770655318555989460341356770/14433185835270869547375774719709753552808199*a1^20 - 943319410583361409299238237603846936028576422696/43299557505812608642127324159129260658424597*a1^19 + 6950449995215933843532581719371999561173425210130/129898672517437825926381972477387781975273791*a1^18 + 8398555939473694993943996038473372118602195963746/129898672517437825926381972477387781975273791*a1^17 - 6892396298667906542658572587778835517449665695174/43299557505812608642127324159129260658424597*a1^16 - 17702657815135331176778451207749223519228495391622/129898672517437825926381972477387781975273791*a1^15 + 43794751692383590285004897380157632521457878214238/129898672517437825926381972477387781975273791*a1^14 + 8661117880802518176998870831802426775979191194730/43299557505812608642127324159129260658424597*a1^13 - 21660212372907714525276051255480968643402224129510/43299557505812608642127324159129260658424597*a1^12 - 2831866952733104339882188419297498882923906967794/14433185835270869547375774719709753552808199*a1^11 + 65390351803930844379326723769330215262387361009142/129898672517437825926381972477387781975273791*a1^10 + 15414212021849981067117240232980653967790576555262/129898672517437825926381972477387781975273791*a1^9 - 42142292571114409038888888882275745996808608513398/129898672517437825926381972477387781975273791*a1^8 - 4797467941599280614177966052784425261466944289918/129898672517437825926381972477387781975273791*a1^7 + 15693912695705604401177461098407058257445146404211/129898672517437825926381972477387781975273791*a1^6 + 370164994518558540680057428906624526954488574798/129898672517437825926381972477387781975273791*a1^5 - 2762836233555288364550385371199489076196913354521/129898672517437825926381972477387781975273791*a1^4 + 84569877836460012207836518908116591195347822094/129898672517437825926381972477387781975273791*a1^3 + 151104398651229620543507538484533030872331879641/129898672517437825926381972477387781975273791*a1^2 - 5905156480330247194829941304881007224613313923/43299557505812608642127324159129260658424597*a1 + 194899180751749453867592062818400877172578636/129898672517437825926381972477387781975273791, 58188618545571803783568491802535971743794/14433185835270869547375774719709753552808199*a1^31 - 150809030163387102949436486303774817396025/14433185835270869547375774719709753552808199*a1^30 - 2908743622461582132032533875465966966120625/14433185835270869547375774719709753552808199*a1^29 + 7613734808747537463392476405332110771558146/14433185835270869547375774719709753552808199*a1^28 + 64851079040538263827567893739560431457158595/14433185835270869547375774719709753552808199*a1^27 - 171838941486615470119502826220417341753592642/14433185835270869547375774719709753552808199*a1^26 - 851180043391102972994609872056410377704186891/14433185835270869547375774719709753552808199*a1^25 + 2290372998908861355121467466046288358446241804/14433185835270869547375774719709753552808199*a1^24 + 7311031362595295424241943141393792456599531406/14433185835270869547375774719709753552808199*a1^23 - 20065379690898365985934403198790264858586308062/14433185835270869547375774719709753552808199*a1^22 - 43203191871830338376693319163187216412161779692/14433185835270869547375774719709753552808199*a1^21 + 121704917726230363950622481468631547942685859752/14433185835270869547375774719709753552808199*a1^20 + 179647732494511621902914609036789045428094436940/14433185835270869547375774719709753552808199*a1^19 - 524399006187229759319431415215463719076801354258/14433185835270869547375774719709753552808199*a1^18 - 527688864027386414753167496884947708054642896440/14433185835270869547375774719709753552808199*a1^17 + 1620526261587613183106183638818071402666516942418/14433185835270869547375774719709753552808199*a1^16 + 1079406501742729187622691485077880419931530606368/14433185835270869547375774719709753552808199*a1^15 - 3580248531144014149610377382226252730463795151834/14433185835270869547375774719709753552808199*a1^14 - 1476206044355491328161360300084324333594534045700/14433185835270869547375774719709753552808199*a1^13 + 5565424551719405882015105807876250550787729328864/14433185835270869547375774719709753552808199*a1^12 + 1220042714484278306911238280154010372743464151178/14433185835270869547375774719709753552808199*a1^11 - 5894641641658527574359458860919696782426810797298/14433185835270869547375774719709753552808199*a1^10 - 419068879191790244310347655996918440632703574954/14433185835270869547375774719709753552808199*a1^9 + 4018689891601996028050918497952786187834313619574/14433185835270869547375774719709753552808199*a1^8 - 163230945483384383105899067833994552576836712638/14433185835270869547375774719709753552808199*a1^7 - 1593001355939197687045579211433602912113388771652/14433185835270869547375774719709753552808199*a1^6 + 186798245694394889422014678832781536591135889121/14433185835270869547375774719709753552808199*a1^5 + 301945186373200029474626170062396086904616833265/14433185835270869547375774719709753552808199*a1^4 - 45686249262088033908799832792839381045905611754/14433185835270869547375774719709753552808199*a1^3 - 18649648269447185709368819151428703485947561747/14433185835270869547375774719709753552808199*a1^2 + 3618204397832418418978272388912261486034041752/14433185835270869547375774719709753552808199*a1 - 30062768838039479865214492062959417627446229/14433185835270869547375774719709753552808199)" "x^32 - 3*x^31 - 49*x^30 + 150*x^29 + 1068*x^28 - 3349*x^27 - 13663*x^26 + 44102*x^25 + 114017*x^24 - 381227*x^23 - 652363*x^22 + 2278423*x^21 + 2617329*x^20 - 9659993*x^19 - 7391907*x^18 + 29333039*x^17 + 14485613*x^16 - 63589225*x^15 - 18892591*x^14 + 96842403*x^13 + 14744217*x^12 - 100301909*x^11 - 4507611*x^10 + 66698107*x^9 - 2210691*x^8 - 25684834*x^7 + 2153748*x^6 + 4689118*x^5 - 470371*x^4 - 268239*x^3 + 38414*x^2 - 242*x - 7"
"26b1" 26 481 7 2.46E+018 "(a3, -13/86*a3^10 + 17/43*a3^9 + 81/43*a3^8 - 397/86*a3^7 - 687/86*a3^6 + 684/43*a3^5 + 1403/86*a3^4 - 721/43*a3^3 - 1575/86*a3^2 + 287/86*a3 + 268/43, -2/43*a3^10 + 27/86*a3^9 - 13/86*a3^8 - 271/86*a3^7 + 278/43*a3^6 + 583/86*a3^5 - 2489/86*a3^4 + 228/43*a3^3 + 1739/43*a3^2 - 1119/86*a3 - 675/43, 23/172*a3^10 + 3/86*a3^9 - 269/86*a3^8 + 107/172*a3^7 + 4113/172*a3^6 - 843/86*a3^5 - 12273/172*a3^4 + 1387/43*a3^3 + 13047/172*a3^2 - 4477/172*a3 - 1741/86, -7/172*a3^10 - 7/43*a3^9 + 40/43*a3^8 + 375/172*a3^7 - 1177/172*a3^6 - 398/43*a3^5 + 3395/172*a3^4 + 565/43*a3^3 - 3739/172*a3^2 - 421/172*a3 + 743/86, -1)" "x^11 - 3*x^10 - 14*x^9 + 45*x^8 + 64*x^7 - 237*x^6 - 99*x^5 + 529*x^4 - 7*x^3 - 460*x^2 + 67*x + 110"
"2405c1" 2405 481 7 2.46E+018 "(a3, -13/86*a3^10 + 17/43*a3^9 + 81/43*a3^8 - 397/86*a3^7 - 687/86*a3^6 + 684/43*a3^5 + 1403/86*a3^4 - 721/43*a3^3 - 1575/86*a3^2 + 287/86*a3 + 268/43, -2/43*a3^10 + 27/86*a3^9 - 13/86*a3^8 - 271/86*a3^7 + 278/43*a3^6 + 583/86*a3^5 - 2489/86*a3^4 + 228/43*a3^3 + 1739/43*a3^2 - 1119/86*a3 - 675/43, 23/172*a3^10 + 3/86*a3^9 - 269/86*a3^8 + 107/172*a3^7 + 4113/172*a3^6 - 843/86*a3^5 - 12273/172*a3^4 + 1387/43*a3^3 + 13047/172*a3^2 - 4477/172*a3 - 1741/86, -7/172*a3^10 - 7/43*a3^9 + 40/43*a3^8 + 375/172*a3^7 - 1177/172*a3^6 - 398/43*a3^5 + 3395/172*a3^4 + 565/43*a3^3 - 3739/172*a3^2 - 421/172*a3 + 743/86, -1)" "x^11 - 3*x^10 - 14*x^9 + 45*x^8 + 64*x^7 - 237*x^6 - 99*x^5 + 529*x^4 - 7*x^3 - 460*x^2 + 67*x + 110"
"114234a1" 114234 482 7 229 "(-1, 1/2*a2 + 1/2, -1/8*a2^2 - a2 + 9/8, -3, 1/4*a2^2 + 3/2*a2 - 11/4, -1/8*a2^2 - 3/2*a2 - 19/8)" "x^3 + 7*x^2 - 9*x - 31"
"26b1" 26 485 7 9652257 "(a6, -1/4*a6^5 - 1/2*a6^4 + 11/4*a6^3 + 3*a6^2 - 25/4*a6 - 7/4, 1, a6^4 - 2*a6^3 - 6*a6^2 + 10*a6 + 5, -1/2*a6^5 - a6^4 + 11/2*a6^3 + 7*a6^2 - 27/2*a6 - 11/2, 3/4*a6^5 - 1/2*a6^4 - 21/4*a6^3 + 2*a6^2 + 27/4*a6 + 1/4)" "x^6 + x^5 - 9*x^4 - 9*x^3 + 17*x^2 + 14*x + 1"
"485a1" 485 485 7 18378541769 "(a8, 1/4*a8^6 + 1/4*a8^5 - 11/4*a8^4 - 11/4*a8^3 + 29/4*a8^2 + 6*a8 - 1/4, -1, -1/2*a8^6 + 1/2*a8^5 + 9/2*a8^4 - 7/2*a8^3 - 17/2*a8^2 + 3*a8 + 5/2, -a8^2 + a8 + 4, -1/2*a8^6 + 11/2*a8^4 - 29/2*a8^2 + 1/2*a8 + 5)" "x^7 - 2*x^6 - 10*x^5 + 18*x^4 + 26*x^3 - 35*x^2 - 21*x + 7"
"3395b1" 3395 485 7 853959836 "(a7, a7^6 - 9*a7^4 + a7^3 + 22*a7^2 - 5*a7 - 12, -1, -a7^6 + 10*a7^4 - 2*a7^3 - 29*a7^2 + 9*a7 + 17, a7^5 + 2*a7^4 - 7*a7^3 - 11*a7^2 + 10*a7 + 9, -a7^5 - 3*a7^4 + 8*a7^3 + 18*a7^2 - 15*a7 - 17)" "x^7 + x^6 - 9*x^5 - 7*x^4 + 23*x^3 + 12*x^2 - 15*x - 8"
"4171a1" 4171 485 7 29 "(1, 1/2*a3 - 1/2, 1, 0, -a3 + 3, 1/2*a3 + 5/2)" "x^2 - 4*x - 25"
"5335a1" 5335 485 7 29 "(1, 1/2*a3 - 1/2, 1, 0, -a3 + 3, 1/2*a3 + 5/2)" "x^2 - 4*x - 25"
"29585a1" 29585 485 7 1957 "(a5, -a5^3 - a5^2 + 2*a5, 1, a5^3 + 2*a5^2 - 2*a5 - 4, -a5^2 - a5 - 2, 2*a5^3 - 6*a5 + 1)" "x^4 + x^3 - 4*x^2 - 2*x + 3"
"None found" "none" 485 7 9652257 "(a6, -1/4*a6^5 - 1/2*a6^4 + 11/4*a6^3 + 3*a6^2 - 25/4*a6 - 7/4, 1, a6^4 - 2*a6^3 - 6*a6^2 + 10*a6 + 5, -1/2*a6^5 - a6^4 + 11/2*a6^3 + 7*a6^2 - 27/2*a6 - 11/2, 3/4*a6^5 - 1/2*a6^4 - 21/4*a6^3 + 2*a6^2 + 27/4*a6 + 1/4)" "x^6 + x^5 - 9*x^4 - 9*x^3 + 17*x^2 + 14*x + 1"
"None found" "none" 487 7 257 "(a2, 2, 2, 2, -2*a2^2 - 4*a2 + 8, -2)" "x^3 - 5*x + 3"
"1464b1" 1464 488 7 643168996 "(0, -a3, -1/4*a3^5 - 3/4*a3^4 + 9/4*a3^3 + 11/2*a3^2 - 5*a3 - 6, -1/4*a3^5 - 1/4*a3^4 + 11/4*a3^3 + a3^2 - 7*a3, 1/4*a3^5 + 1/4*a3^4 - 15/4*a3^3 - 3*a3^2 + 12*a3 + 8, 1/4*a3^5 + 3/4*a3^4 - 5/4*a3^3 - 9/2*a3^2 + 6)" "x^6 + 3*x^5 - 9*x^4 - 26*x^3 + 16*x^2 + 52*x + 16"
"2440c1" 2440 488 7 8 "(0, 0, -1, a0 + 2, -3*a0 - 10, -2*a0 - 9)" "x^2 + 6*x + 7"
"2440b1" 2440 488 7 8 "(0, 0, -1, a0 + 2, -3*a0 - 10, -2*a0 - 9)" "x^2 + 6*x + 7"
"978g1" 978 489 7 1.17E+017 "(a3, 1, -21/68*a3^9 + 4/17*a3^8 + 161/34*a3^7 - 227/68*a3^6 - 414/17*a3^5 + 243/17*a3^4 + 836/17*a3^3 - 1369/68*a3^2 - 2201/68*a3 + 95/17, 3/34*a3^9 + 5/34*a3^8 - 23/17*a3^7 - 36/17*a3^6 + 239/34*a3^5 + 325/34*a3^4 - 485/34*a3^3 - 224/17*a3^2 + 295/34*a3 + 36/17, 1/17*a3^9 - 4/17*a3^8 - 21/17*a3^7 + 61/17*a3^6 + 159/17*a3^5 - 294/17*a3^4 - 513/17*a3^3 + 457/17*a3^2 + 580/17*a3 - 78/17, 9/34*a3^9 - 1/17*a3^8 - 69/17*a3^7 + 39/34*a3^6 + 350/17*a3^5 - 116/17*a3^4 - 668/17*a3^3 + 475/34*a3^2 + 749/34*a3 - 62/17)" "x^10 - x^9 - 16*x^8 + 15*x^7 + 87*x^6 - 72*x^5 - 188*x^4 + 125*x^3 + 132*x^2 - 55*x + 4"
"23961m1" 23961 489 7 1.17E+017 "(a3, 1, -21/68*a3^9 + 4/17*a3^8 + 161/34*a3^7 - 227/68*a3^6 - 414/17*a3^5 + 243/17*a3^4 + 836/17*a3^3 - 1369/68*a3^2 - 2201/68*a3 + 95/17, 3/34*a3^9 + 5/34*a3^8 - 23/17*a3^7 - 36/17*a3^6 + 239/34*a3^5 + 325/34*a3^4 - 485/34*a3^3 - 224/17*a3^2 + 295/34*a3 + 36/17, 1/17*a3^9 - 4/17*a3^8 - 21/17*a3^7 + 61/17*a3^6 + 159/17*a3^5 - 294/17*a3^4 - 513/17*a3^3 + 457/17*a3^2 + 580/17*a3 - 78/17, 9/34*a3^9 - 1/17*a3^8 - 69/17*a3^7 + 39/34*a3^6 + 350/17*a3^5 - 116/17*a3^4 - 668/17*a3^3 + 475/34*a3^2 + 749/34*a3 - 62/17)" "x^10 - x^9 - 16*x^8 + 15*x^7 + 87*x^6 - 72*x^5 - 188*x^4 + 125*x^3 + 132*x^2 - 55*x + 4"
"None found" "none" 489 7 93559285808 "(a2, -1, -1/2*a2^7 + a2^6 + 11/2*a2^5 - 19/2*a2^4 - 35/2*a2^3 + 49/2*a2^2 + 25/2*a2 - 11, -1/2*a2^6 + 2*a2^5 + 1/2*a2^4 - 19/2*a2^3 + 15/2*a2^2 + 13/2*a2 - 9/2, a2^7 - 2*a2^6 - 9*a2^5 + 14*a2^4 + 23*a2^3 - 24*a2^2 - 9*a2 + 10, a2^7 - 2*a2^6 - 10*a2^5 + 17*a2^4 + 27*a2^3 - 38*a2^2 - 8*a2 + 13)" "x^8 - 4*x^7 - 6*x^6 + 35*x^5 - 86*x^3 + 36*x^2 + 39*x - 19"
"None found" "none" 489 7 106069 "(a1, -1, a1^4 + a1^3 - 5*a1^2 - 2*a1 + 4, -a1^4 - 2*a1^3 + 3*a1^2 + 4*a1 - 2, -a1^4 + 5*a1^2 - 2*a1 - 6, -a1^4 + 6*a1^2 - a1 - 4)" "x^5 + 2*x^4 - 4*x^3 - 7*x^2 + 3*x + 4"
"490c1" 490 490 7 8 "(-1, -a12 - 1, 1, 0, 2*a12 + 8, 2*a12 + 4)" "x^2 + 6*x + 7"
"490d1" 490 490 7 8 "(-1, -a12 - 1, 1, 0, 2*a12 + 8, 2*a12 + 4)" "x^2 + 6*x + 7"
"490a1" 490 490 7 8 "(-1, a11 + 1, -1, 0, 2*a11 + 8, -2*a11 - 4)" "x^2 + 6*x + 7"
"490b1" 490 490 7 8 "(-1, a11 + 1, -1, 0, 2*a11 + 8, -2*a11 - 4)" "x^2 + 6*x + 7"
"26b1" 26 491 7 4.49E+066 "(a2, 23108313731491005958945/218089520041081175482624*a2^28 - 4990921243167303783455/109044760020540587741312*a2^27 - 1128237043944943824602305/218089520041081175482624*a2^26 + 510789038220329400741103/218089520041081175482624*a2^25 + 12235940192251196566205495/109044760020540587741312*a2^24 - 11486392256760376002059439/218089520041081175482624*a2^23 - 310884227120062146619354149/218089520041081175482624*a2^22 + 37441678869415215565124865/54522380010270293870656*a2^21 + 2567387872825066096992801631/218089520041081175482624*a2^20 - 314422047663874124131196579/54522380010270293870656*a2^19 - 14462925102759462326803330109/218089520041081175482624*a2^18 + 7144730506518246130810302047/218089520041081175482624*a2^17 + 56723385490790397675247041219/218089520041081175482624*a2^16 - 28062356711339419523041158657/218089520041081175482624*a2^15 - 155202108078989193851145985279/218089520041081175482624*a2^14 + 19128539572470952946010911329/54522380010270293870656*a2^13 + 73033019213460611902799783449/54522380010270293870656*a2^12 - 71579667312412771283916815127/109044760020540587741312*a2^11 - 183180316062116736693216330747/109044760020540587741312*a2^10 + 89138874931513893180363639905/109044760020540587741312*a2^9 + 289372922052299143129515027651/218089520041081175482624*a2^8 - 8685639012562813198804414721/13630595002567573467664*a2^7 - 8212619346483800913099528667/13630595002567573467664*a2^6 + 3749859888199500177434582251/13630595002567573467664*a2^5 + 1894985749176688097788896587/13630595002567573467664*a2^4 - 174625295706668521753160397/3407648750641893366916*a2^3 - 14453544936544907868787544/851912187660473341729*a2^2 + 5691745989950541422276935/1703824375320946683458*a2 + 788008533738074726670509/851912187660473341729, 46390173195350031769459/218089520041081175482624*a2^28 - 287700363345141299539/3407648750641893366916*a2^27 - 2265767449072243036297399/218089520041081175482624*a2^26 + 945847363434923118382099/218089520041081175482624*a2^25 + 6145977858546805278593191/27261190005135146935328*a2^24 - 21330737248031017375519769/218089520041081175482624*a2^23 - 624974105843270153900174245/218089520041081175482624*a2^22 + 139349391489420176348280481/109044760020540587741312*a2^21 + 5164987186501287486885159437/218089520041081175482624*a2^20 - 1171885420233881582783868231/109044760020540587741312*a2^19 - 29122846557622810688666145047/218089520041081175482624*a2^18 + 13327490858026602210543250555/218089520041081175482624*a2^17 + 114356044958796382283112755879/218089520041081175482624*a2^16 - 52383951831533553402571383693/218089520041081175482624*a2^15 - 313395683406478584247391816415/218089520041081175482624*a2^14 + 71469683156800433541820547015/109044760020540587741312*a2^13 + 147810722720736126192852171027/54522380010270293870656*a2^12 - 133890950984541638690786833049/109044760020540587741312*a2^11 - 372034250554197688812806961967/109044760020540587741312*a2^10 + 167126736004092685116375453133/109044760020540587741312*a2^9 + 591174263418013248190082402749/218089520041081175482624*a2^8 - 130803458946685504966057124841/109044760020540587741312*a2^7 - 33922494148411792015317901443/27261190005135146935328*a2^6 + 7102753082548731859023170365/13630595002567573467664*a2^5 + 997800743541289215828456651/3407648750641893366916*a2^4 - 667587883910328388526351711/6815297501283786733832*a2^3 - 30679456747676303654145250/851912187660473341729*a2^2 + 10976915534645600786004999/1703824375320946683458*a2 + 1644794886766733723348133/851912187660473341729, 61123797985732835716123/109044760020540587741312*a2^28 - 12190108946092542051659/54522380010270293870656*a2^27 - 2985463439888759090665163/109044760020540587741312*a2^26 + 1251536292297903683822073/109044760020540587741312*a2^25 + 32393001103029889016833303/54522380010270293870656*a2^24 - 28208065115954643852521069/109044760020540587741312*a2^23 - 823480979166375963047315115/109044760020540587741312*a2^22 + 11511379858528989528328083/3407648750641893366916*a2^21 + 6805081549849536775125990325/109044760020540587741312*a2^20 - 48381043553957760047842117/1703824375320946683458*a2^19 - 38365569004662461861863688743/109044760020540587741312*a2^18 + 17599679067322927531931025721/109044760020540587741312*a2^17 + 150614195244010388149920731637/109044760020540587741312*a2^16 - 69149223775111563634175417039/109044760020540587741312*a2^15 - 412598582814892509531459836073/109044760020540587741312*a2^14 + 11788797519853207410988007769/6815297501283786733832*a2^13 + 194470131894016552926084570015/27261190005135146935328*a2^12 - 176624757996204068967619525425/54522380010270293870656*a2^11 - 488929803445812233033915779877/54522380010270293870656*a2^10 + 220398892873424408277504202663/54522380010270293870656*a2^9 + 775440175452382255961731672441/109044760020540587741312*a2^8 - 86209725616540986132753892421/27261190005135146935328*a2^7 - 44344934001635122357382391757/13630595002567573467664*a2^6 + 18704834937907753289929900769/13630595002567573467664*a2^5 + 5187087264287998316374350849/6815297501283786733832*a2^4 - 219027106568433982006669321/851912187660473341729*a2^3 - 79463662998394308469978272/851912187660473341729*a2^2 + 14349089490187851413898124/851912187660473341729*a2 + 4265173104774073687949840/851912187660473341729, -4024315406687105321637/54522380010270293870656*a2^28 + 2927901798278404361441/109044760020540587741312*a2^27 + 196696304405427346693207/54522380010270293870656*a2^26 - 151156043936377633708303/109044760020540587741312*a2^25 - 8544669523508507947746643/109044760020540587741312*a2^24 + 1711035021507586695012101/54522380010270293870656*a2^23 + 108740997028145789635504291/109044760020540587741312*a2^22 - 44845330292988785575063039/109044760020540587741312*a2^21 - 225012548162525101847868523/27261190005135146935328*a2^20 + 378015171297692285732095579/109044760020540587741312*a2^19 + 1271275906697182967870011125/27261190005135146935328*a2^18 - 2153575621295811283212959799/109044760020540587741312*a2^17 - 20020710251516341961499802941/109044760020540587741312*a2^16 + 8479060568151502253092777079/109044760020540587741312*a2^15 + 55067290546633924923199397119/109044760020540587741312*a2^14 - 23180398345681783826694044061/109044760020540587741312*a2^13 - 52215040212521650634008721549/54522380010270293870656*a2^12 + 5442549423050810179594236985/13630595002567573467664*a2^11 + 66232826683298861270531540411/54522380010270293870656*a2^10 - 27288409243425212563552456263/54522380010270293870656*a2^9 - 6663918674373270782710962125/6815297501283786733832*a2^8 + 43014895113449314945109504931/109044760020540587741312*a2^7 + 25052085788904929317307262119/54522380010270293870656*a2^6 - 2364286315075455852363888015/13630595002567573467664*a2^5 - 1538720843856984570736165065/13630595002567573467664*a2^4 + 56936703638242928517996863/1703824375320946683458*a2^3 + 49219716104480577221231971/3407648750641893366916*a2^2 - 3870824592869818274304823/1703824375320946683458*a2 - 668333035848226034529820/851912187660473341729, -136514578125992580164467/218089520041081175482624*a2^28 + 13534961113744893724129/54522380010270293870656*a2^27 + 6667633629029924516861847/218089520041081175482624*a2^26 - 2780859707090495317624031/218089520041081175482624*a2^25 - 36172433358200228073320305/54522380010270293870656*a2^24 + 62707652342394643793032241/218089520041081175482624*a2^23 + 1839136998369782425658048593/218089520041081175482624*a2^22 - 409609857284213840659959735/109044760020540587741312*a2^21 - 15198769203286378828615267053/218089520041081175482624*a2^20 + 3444244534619409648904073553/109044760020540587741312*a2^19 + 85693296516396691284855907983/218089520041081175482624*a2^18 - 39164516305054810907522365591/218089520041081175482624*a2^17 - 336453201082426920907716984611/218089520041081175482624*a2^16 + 153911131907951599633548062137/218089520041081175482624*a2^15 + 921884666860285647665663517019/218089520041081175482624*a2^14 - 209948828681731507938937655333/109044760020540587741312*a2^13 - 434661658817553429404924099347/54522380010270293870656*a2^12 + 393237810739577611452274170517/109044760020540587741312*a2^11 + 1093443867244021063586489551299/109044760020540587741312*a2^10 - 490736897770061011284370737905/109044760020540587741312*a2^9 - 1735945695215242621960061794837/218089520041081175482624*a2^8 + 383947563167493036602898079295/109044760020540587741312*a2^7 + 49727698223156074617317769197/13630595002567573467664*a2^6 - 41665128374416230776623001451/27261190005135146935328*a2^5 - 5835458436630303640960465031/6815297501283786733832*a2^4 + 976766433801533951348584949/3407648750641893366916*a2^3 + 358176988028726436258969575/3407648750641893366916*a2^2 - 32013722419203811484670621/1703824375320946683458*a2 - 4794044879575333710187837/851912187660473341729)" "x^29 - 49*x^27 + x^26 + 1068*x^25 - 39*x^24 - 13655*x^23 + 658*x^22 + 113723*x^21 - 6306*x^20 - 647801*x^19 + 37953*x^18 + 2578721*x^17 - 150115*x^16 - 7201417*x^15 + 398246*x^14 + 13959112*x^13 - 711934*x^12 - 18310154*x^11 + 839798*x^10 + 15574775*x^9 - 585854*x^8 - 8065060*x^7 + 132680*x^6 + 2339280*x^5 + 83968*x^4 - 350400*x^3 - 36608*x^2 + 20992*x + 3584"
"None found" "none" 491 7 4.49E+066 "(a2, 23108313731491005958945/218089520041081175482624*a2^28 - 4990921243167303783455/109044760020540587741312*a2^27 - 1128237043944943824602305/218089520041081175482624*a2^26 + 510789038220329400741103/218089520041081175482624*a2^25 + 12235940192251196566205495/109044760020540587741312*a2^24 - 11486392256760376002059439/218089520041081175482624*a2^23 - 310884227120062146619354149/218089520041081175482624*a2^22 + 37441678869415215565124865/54522380010270293870656*a2^21 + 2567387872825066096992801631/218089520041081175482624*a2^20 - 314422047663874124131196579/54522380010270293870656*a2^19 - 14462925102759462326803330109/218089520041081175482624*a2^18 + 7144730506518246130810302047/218089520041081175482624*a2^17 + 56723385490790397675247041219/218089520041081175482624*a2^16 - 28062356711339419523041158657/218089520041081175482624*a2^15 - 155202108078989193851145985279/218089520041081175482624*a2^14 + 19128539572470952946010911329/54522380010270293870656*a2^13 + 73033019213460611902799783449/54522380010270293870656*a2^12 - 71579667312412771283916815127/109044760020540587741312*a2^11 - 183180316062116736693216330747/109044760020540587741312*a2^10 + 89138874931513893180363639905/109044760020540587741312*a2^9 + 289372922052299143129515027651/218089520041081175482624*a2^8 - 8685639012562813198804414721/13630595002567573467664*a2^7 - 8212619346483800913099528667/13630595002567573467664*a2^6 + 3749859888199500177434582251/13630595002567573467664*a2^5 + 1894985749176688097788896587/13630595002567573467664*a2^4 - 174625295706668521753160397/3407648750641893366916*a2^3 - 14453544936544907868787544/851912187660473341729*a2^2 + 5691745989950541422276935/1703824375320946683458*a2 + 788008533738074726670509/851912187660473341729, 46390173195350031769459/218089520041081175482624*a2^28 - 287700363345141299539/3407648750641893366916*a2^27 - 2265767449072243036297399/218089520041081175482624*a2^26 + 945847363434923118382099/218089520041081175482624*a2^25 + 6145977858546805278593191/27261190005135146935328*a2^24 - 21330737248031017375519769/218089520041081175482624*a2^23 - 624974105843270153900174245/218089520041081175482624*a2^22 + 139349391489420176348280481/109044760020540587741312*a2^21 + 5164987186501287486885159437/218089520041081175482624*a2^20 - 1171885420233881582783868231/109044760020540587741312*a2^19 - 29122846557622810688666145047/218089520041081175482624*a2^18 + 13327490858026602210543250555/218089520041081175482624*a2^17 + 114356044958796382283112755879/218089520041081175482624*a2^16 - 52383951831533553402571383693/218089520041081175482624*a2^15 - 313395683406478584247391816415/218089520041081175482624*a2^14 + 71469683156800433541820547015/109044760020540587741312*a2^13 + 147810722720736126192852171027/54522380010270293870656*a2^12 - 133890950984541638690786833049/109044760020540587741312*a2^11 - 372034250554197688812806961967/109044760020540587741312*a2^10 + 167126736004092685116375453133/109044760020540587741312*a2^9 + 591174263418013248190082402749/218089520041081175482624*a2^8 - 130803458946685504966057124841/109044760020540587741312*a2^7 - 33922494148411792015317901443/27261190005135146935328*a2^6 + 7102753082548731859023170365/13630595002567573467664*a2^5 + 997800743541289215828456651/3407648750641893366916*a2^4 - 667587883910328388526351711/6815297501283786733832*a2^3 - 30679456747676303654145250/851912187660473341729*a2^2 + 10976915534645600786004999/1703824375320946683458*a2 + 1644794886766733723348133/851912187660473341729, 61123797985732835716123/109044760020540587741312*a2^28 - 12190108946092542051659/54522380010270293870656*a2^27 - 2985463439888759090665163/109044760020540587741312*a2^26 + 1251536292297903683822073/109044760020540587741312*a2^25 + 32393001103029889016833303/54522380010270293870656*a2^24 - 28208065115954643852521069/109044760020540587741312*a2^23 - 823480979166375963047315115/109044760020540587741312*a2^22 + 11511379858528989528328083/3407648750641893366916*a2^21 + 6805081549849536775125990325/109044760020540587741312*a2^20 - 48381043553957760047842117/1703824375320946683458*a2^19 - 38365569004662461861863688743/109044760020540587741312*a2^18 + 17599679067322927531931025721/109044760020540587741312*a2^17 + 150614195244010388149920731637/109044760020540587741312*a2^16 - 69149223775111563634175417039/109044760020540587741312*a2^15 - 412598582814892509531459836073/109044760020540587741312*a2^14 + 11788797519853207410988007769/6815297501283786733832*a2^13 + 194470131894016552926084570015/27261190005135146935328*a2^12 - 176624757996204068967619525425/54522380010270293870656*a2^11 - 488929803445812233033915779877/54522380010270293870656*a2^10 + 220398892873424408277504202663/54522380010270293870656*a2^9 + 775440175452382255961731672441/109044760020540587741312*a2^8 - 86209725616540986132753892421/27261190005135146935328*a2^7 - 44344934001635122357382391757/13630595002567573467664*a2^6 + 18704834937907753289929900769/13630595002567573467664*a2^5 + 5187087264287998316374350849/6815297501283786733832*a2^4 - 219027106568433982006669321/851912187660473341729*a2^3 - 79463662998394308469978272/851912187660473341729*a2^2 + 14349089490187851413898124/851912187660473341729*a2 + 4265173104774073687949840/851912187660473341729, -4024315406687105321637/54522380010270293870656*a2^28 + 2927901798278404361441/109044760020540587741312*a2^27 + 196696304405427346693207/54522380010270293870656*a2^26 - 151156043936377633708303/109044760020540587741312*a2^25 - 8544669523508507947746643/109044760020540587741312*a2^24 + 1711035021507586695012101/54522380010270293870656*a2^23 + 108740997028145789635504291/109044760020540587741312*a2^22 - 44845330292988785575063039/109044760020540587741312*a2^21 - 225012548162525101847868523/27261190005135146935328*a2^20 + 378015171297692285732095579/109044760020540587741312*a2^19 + 1271275906697182967870011125/27261190005135146935328*a2^18 - 2153575621295811283212959799/109044760020540587741312*a2^17 - 20020710251516341961499802941/109044760020540587741312*a2^16 + 8479060568151502253092777079/109044760020540587741312*a2^15 + 55067290546633924923199397119/109044760020540587741312*a2^14 - 23180398345681783826694044061/109044760020540587741312*a2^13 - 52215040212521650634008721549/54522380010270293870656*a2^12 + 5442549423050810179594236985/13630595002567573467664*a2^11 + 66232826683298861270531540411/54522380010270293870656*a2^10 - 27288409243425212563552456263/54522380010270293870656*a2^9 - 6663918674373270782710962125/6815297501283786733832*a2^8 + 43014895113449314945109504931/109044760020540587741312*a2^7 + 25052085788904929317307262119/54522380010270293870656*a2^6 - 2364286315075455852363888015/13630595002567573467664*a2^5 - 1538720843856984570736165065/13630595002567573467664*a2^4 + 56936703638242928517996863/1703824375320946683458*a2^3 + 49219716104480577221231971/3407648750641893366916*a2^2 - 3870824592869818274304823/1703824375320946683458*a2 - 668333035848226034529820/851912187660473341729, -136514578125992580164467/218089520041081175482624*a2^28 + 13534961113744893724129/54522380010270293870656*a2^27 + 6667633629029924516861847/218089520041081175482624*a2^26 - 2780859707090495317624031/218089520041081175482624*a2^25 - 36172433358200228073320305/54522380010270293870656*a2^24 + 62707652342394643793032241/218089520041081175482624*a2^23 + 1839136998369782425658048593/218089520041081175482624*a2^22 - 409609857284213840659959735/109044760020540587741312*a2^21 - 15198769203286378828615267053/218089520041081175482624*a2^20 + 3444244534619409648904073553/109044760020540587741312*a2^19 + 85693296516396691284855907983/218089520041081175482624*a2^18 - 39164516305054810907522365591/218089520041081175482624*a2^17 - 336453201082426920907716984611/218089520041081175482624*a2^16 + 153911131907951599633548062137/218089520041081175482624*a2^15 + 921884666860285647665663517019/218089520041081175482624*a2^14 - 209948828681731507938937655333/109044760020540587741312*a2^13 - 434661658817553429404924099347/54522380010270293870656*a2^12 + 393237810739577611452274170517/109044760020540587741312*a2^11 + 1093443867244021063586489551299/109044760020540587741312*a2^10 - 490736897770061011284370737905/109044760020540587741312*a2^9 - 1735945695215242621960061794837/218089520041081175482624*a2^8 + 383947563167493036602898079295/109044760020540587741312*a2^7 + 49727698223156074617317769197/13630595002567573467664*a2^6 - 41665128374416230776623001451/27261190005135146935328*a2^5 - 5835458436630303640960465031/6815297501283786733832*a2^4 + 976766433801533951348584949/3407648750641893366916*a2^3 + 358176988028726436258969575/3407648750641893366916*a2^2 - 32013722419203811484670621/1703824375320946683458*a2 - 4794044879575333710187837/851912187660473341729)" "x^29 - 49*x^27 + x^26 + 1068*x^25 - 39*x^24 - 13655*x^23 + 658*x^22 + 113723*x^21 - 6306*x^20 - 647801*x^19 + 37953*x^18 + 2578721*x^17 - 150115*x^16 - 7201417*x^15 + 398246*x^14 + 13959112*x^13 - 711934*x^12 - 18310154*x^11 + 839798*x^10 + 15574775*x^9 - 585854*x^8 - 8065060*x^7 + 132680*x^6 + 2339280*x^5 + 83968*x^4 - 350400*x^3 - 36608*x^2 + 20992*x + 3584"
"None found" "none" 491 7 4.49E+066 "(a2, 23108313731491005958945/218089520041081175482624*a2^28 - 4990921243167303783455/109044760020540587741312*a2^27 - 1128237043944943824602305/218089520041081175482624*a2^26 + 510789038220329400741103/218089520041081175482624*a2^25 + 12235940192251196566205495/109044760020540587741312*a2^24 - 11486392256760376002059439/218089520041081175482624*a2^23 - 310884227120062146619354149/218089520041081175482624*a2^22 + 37441678869415215565124865/54522380010270293870656*a2^21 + 2567387872825066096992801631/218089520041081175482624*a2^20 - 314422047663874124131196579/54522380010270293870656*a2^19 - 14462925102759462326803330109/218089520041081175482624*a2^18 + 7144730506518246130810302047/218089520041081175482624*a2^17 + 56723385490790397675247041219/218089520041081175482624*a2^16 - 28062356711339419523041158657/218089520041081175482624*a2^15 - 155202108078989193851145985279/218089520041081175482624*a2^14 + 19128539572470952946010911329/54522380010270293870656*a2^13 + 73033019213460611902799783449/54522380010270293870656*a2^12 - 71579667312412771283916815127/109044760020540587741312*a2^11 - 183180316062116736693216330747/109044760020540587741312*a2^10 + 89138874931513893180363639905/109044760020540587741312*a2^9 + 289372922052299143129515027651/218089520041081175482624*a2^8 - 8685639012562813198804414721/13630595002567573467664*a2^7 - 8212619346483800913099528667/13630595002567573467664*a2^6 + 3749859888199500177434582251/13630595002567573467664*a2^5 + 1894985749176688097788896587/13630595002567573467664*a2^4 - 174625295706668521753160397/3407648750641893366916*a2^3 - 14453544936544907868787544/851912187660473341729*a2^2 + 5691745989950541422276935/1703824375320946683458*a2 + 788008533738074726670509/851912187660473341729, 46390173195350031769459/218089520041081175482624*a2^28 - 287700363345141299539/3407648750641893366916*a2^27 - 2265767449072243036297399/218089520041081175482624*a2^26 + 945847363434923118382099/218089520041081175482624*a2^25 + 6145977858546805278593191/27261190005135146935328*a2^24 - 21330737248031017375519769/218089520041081175482624*a2^23 - 624974105843270153900174245/218089520041081175482624*a2^22 + 139349391489420176348280481/109044760020540587741312*a2^21 + 5164987186501287486885159437/218089520041081175482624*a2^20 - 1171885420233881582783868231/109044760020540587741312*a2^19 - 29122846557622810688666145047/218089520041081175482624*a2^18 + 13327490858026602210543250555/218089520041081175482624*a2^17 + 114356044958796382283112755879/218089520041081175482624*a2^16 - 52383951831533553402571383693/218089520041081175482624*a2^15 - 313395683406478584247391816415/218089520041081175482624*a2^14 + 71469683156800433541820547015/109044760020540587741312*a2^13 + 147810722720736126192852171027/54522380010270293870656*a2^12 - 133890950984541638690786833049/109044760020540587741312*a2^11 - 372034250554197688812806961967/109044760020540587741312*a2^10 + 167126736004092685116375453133/109044760020540587741312*a2^9 + 591174263418013248190082402749/218089520041081175482624*a2^8 - 130803458946685504966057124841/109044760020540587741312*a2^7 - 33922494148411792015317901443/27261190005135146935328*a2^6 + 7102753082548731859023170365/13630595002567573467664*a2^5 + 997800743541289215828456651/3407648750641893366916*a2^4 - 667587883910328388526351711/6815297501283786733832*a2^3 - 30679456747676303654145250/851912187660473341729*a2^2 + 10976915534645600786004999/1703824375320946683458*a2 + 1644794886766733723348133/851912187660473341729, 61123797985732835716123/109044760020540587741312*a2^28 - 12190108946092542051659/54522380010270293870656*a2^27 - 2985463439888759090665163/109044760020540587741312*a2^26 + 1251536292297903683822073/109044760020540587741312*a2^25 + 32393001103029889016833303/54522380010270293870656*a2^24 - 28208065115954643852521069/109044760020540587741312*a2^23 - 823480979166375963047315115/109044760020540587741312*a2^22 + 11511379858528989528328083/3407648750641893366916*a2^21 + 6805081549849536775125990325/109044760020540587741312*a2^20 - 48381043553957760047842117/1703824375320946683458*a2^19 - 38365569004662461861863688743/109044760020540587741312*a2^18 + 17599679067322927531931025721/109044760020540587741312*a2^17 + 150614195244010388149920731637/109044760020540587741312*a2^16 - 69149223775111563634175417039/109044760020540587741312*a2^15 - 412598582814892509531459836073/109044760020540587741312*a2^14 + 11788797519853207410988007769/6815297501283786733832*a2^13 + 194470131894016552926084570015/27261190005135146935328*a2^12 - 176624757996204068967619525425/54522380010270293870656*a2^11 - 488929803445812233033915779877/54522380010270293870656*a2^10 + 220398892873424408277504202663/54522380010270293870656*a2^9 + 775440175452382255961731672441/109044760020540587741312*a2^8 - 86209725616540986132753892421/27261190005135146935328*a2^7 - 44344934001635122357382391757/13630595002567573467664*a2^6 + 18704834937907753289929900769/13630595002567573467664*a2^5 + 5187087264287998316374350849/6815297501283786733832*a2^4 - 219027106568433982006669321/851912187660473341729*a2^3 - 79463662998394308469978272/851912187660473341729*a2^2 + 14349089490187851413898124/851912187660473341729*a2 + 4265173104774073687949840/851912187660473341729, -4024315406687105321637/54522380010270293870656*a2^28 + 2927901798278404361441/109044760020540587741312*a2^27 + 196696304405427346693207/54522380010270293870656*a2^26 - 151156043936377633708303/109044760020540587741312*a2^25 - 8544669523508507947746643/109044760020540587741312*a2^24 + 1711035021507586695012101/54522380010270293870656*a2^23 + 108740997028145789635504291/109044760020540587741312*a2^22 - 44845330292988785575063039/109044760020540587741312*a2^21 - 225012548162525101847868523/27261190005135146935328*a2^20 + 378015171297692285732095579/109044760020540587741312*a2^19 + 1271275906697182967870011125/27261190005135146935328*a2^18 - 2153575621295811283212959799/109044760020540587741312*a2^17 - 20020710251516341961499802941/109044760020540587741312*a2^16 + 8479060568151502253092777079/109044760020540587741312*a2^15 + 55067290546633924923199397119/109044760020540587741312*a2^14 - 23180398345681783826694044061/109044760020540587741312*a2^13 - 52215040212521650634008721549/54522380010270293870656*a2^12 + 5442549423050810179594236985/13630595002567573467664*a2^11 + 66232826683298861270531540411/54522380010270293870656*a2^10 - 27288409243425212563552456263/54522380010270293870656*a2^9 - 6663918674373270782710962125/6815297501283786733832*a2^8 + 43014895113449314945109504931/109044760020540587741312*a2^7 + 25052085788904929317307262119/54522380010270293870656*a2^6 - 2364286315075455852363888015/13630595002567573467664*a2^5 - 1538720843856984570736165065/13630595002567573467664*a2^4 + 56936703638242928517996863/1703824375320946683458*a2^3 + 49219716104480577221231971/3407648750641893366916*a2^2 - 3870824592869818274304823/1703824375320946683458*a2 - 668333035848226034529820/851912187660473341729, -136514578125992580164467/218089520041081175482624*a2^28 + 13534961113744893724129/54522380010270293870656*a2^27 + 6667633629029924516861847/218089520041081175482624*a2^26 - 2780859707090495317624031/218089520041081175482624*a2^25 - 36172433358200228073320305/54522380010270293870656*a2^24 + 62707652342394643793032241/218089520041081175482624*a2^23 + 1839136998369782425658048593/218089520041081175482624*a2^22 - 409609857284213840659959735/109044760020540587741312*a2^21 - 15198769203286378828615267053/218089520041081175482624*a2^20 + 3444244534619409648904073553/109044760020540587741312*a2^19 + 85693296516396691284855907983/218089520041081175482624*a2^18 - 39164516305054810907522365591/218089520041081175482624*a2^17 - 336453201082426920907716984611/218089520041081175482624*a2^16 + 153911131907951599633548062137/218089520041081175482624*a2^15 + 921884666860285647665663517019/218089520041081175482624*a2^14 - 209948828681731507938937655333/109044760020540587741312*a2^13 - 434661658817553429404924099347/54522380010270293870656*a2^12 + 393237810739577611452274170517/109044760020540587741312*a2^11 + 1093443867244021063586489551299/109044760020540587741312*a2^10 - 490736897770061011284370737905/109044760020540587741312*a2^9 - 1735945695215242621960061794837/218089520041081175482624*a2^8 + 383947563167493036602898079295/109044760020540587741312*a2^7 + 49727698223156074617317769197/13630595002567573467664*a2^6 - 41665128374416230776623001451/27261190005135146935328*a2^5 - 5835458436630303640960465031/6815297501283786733832*a2^4 + 976766433801533951348584949/3407648750641893366916*a2^3 + 358176988028726436258969575/3407648750641893366916*a2^2 - 32013722419203811484670621/1703824375320946683458*a2 - 4794044879575333710187837/851912187660473341729)" "x^29 - 49*x^27 + x^26 + 1068*x^25 - 39*x^24 - 13655*x^23 + 658*x^22 + 113723*x^21 - 6306*x^20 - 647801*x^19 + 37953*x^18 + 2578721*x^17 - 150115*x^16 - 7201417*x^15 + 398246*x^14 + 13959112*x^13 - 711934*x^12 - 18310154*x^11 + 839798*x^10 + 15574775*x^9 - 585854*x^8 - 8065060*x^7 + 132680*x^6 + 2339280*x^5 + 83968*x^4 - 350400*x^3 - 36608*x^2 + 20992*x + 3584"
"26b1" 26 493 7 270017 "(a4, -a4^2 - a4 + 2, -a4^4 - a4^3 + 4*a4^2 + a4 - 2, a4^4 + 2*a4^3 - 2*a4^2 - 3*a4 - 2, -a4^3 + 3*a4 - 5, -a4^3 - a4^2 + 3*a4 - 1)" "x^5 + 2*x^4 - 5*x^3 - 7*x^2 + 7*x + 3"
9.86E+003 986 493 7 948361400152 "(a6, -a6^2 + a6 + 4, a6^6 - 2*a6^5 - 8*a6^4 + 12*a6^3 + 21*a6^2 - 16*a6 - 18, -1/2*a6^7 + a6^6 + 4*a6^5 - 11/2*a6^4 - 11*a6^3 + 5*a6^2 + 21/2*a6 + 7/2, -a6^5 + 2*a6^4 + 6*a6^3 - 9*a6^2 - 8*a6 + 6, -1/2*a6^7 + a6^6 + 4*a6^5 - 13/2*a6^4 - 10*a6^3 + 10*a6^2 + 17/2*a6 + 1/2)" "x^8 - 3*x^7 - 10*x^6 + 29*x^5 + 37*x^4 - 88*x^3 - 65*x^2 + 80*x + 51"
"1482d1" 1482 494 7 361 "(-1, -1/2*a5 - 1/2, 1/4*a5^2 + 1/2*a5 - 15/4, -1/2*a5^2 - 2*a5 + 17/2, 1/4*a5^2 + a5 - 17/4, 1)" "x^3 + x^2 - 25*x + 31"
"1482i1" 1482 494 7 49 "(1, -a6 + 1, a6^2 + 2*a6 + 1, -2*a6^2 - 2*a6 + 2, a6^2 + 5*a6 + 1, -1)" "x^3 + 2*x^2 - x - 1"
"5434d1" 5434 494 7 361 "(-1, -1/2*a5 - 1/2, 1/4*a5^2 + 1/2*a5 - 15/4, -1/2*a5^2 - 2*a5 + 17/2, 1/4*a5^2 + a5 - 17/4, 1)" "x^3 + x^2 - 25*x + 31"
"None found" "none" 494 7 361 "(-1, -1/2*a5 - 1/2, 1/4*a5^2 + 1/2*a5 - 15/4, -1/2*a5^2 - 2*a5 + 17/2, 1/4*a5^2 + a5 - 17/4, 1)" "x^3 + x^2 - 25*x + 31"
"99d1" 99 495 7 8 "(a1, 0, 1, -2, -1, -2*a1 - 6)" "x^2 + 2*x - 1"
"990l1" 990 495 7 8 "(a1, 0, 1, -2, -1, -2*a1 - 6)" "x^2 + 2*x - 1"
"990g1" 990 495 7 8 "(a3, 0, 1, 2*a3 - 4, 1, -4*a3 + 4)" "x^2 - 2*x - 1"
"3465q1" 3465 495 7 8 "(a3, 0, 1, 2*a3 - 4, 1, -4*a3 + 4)" "x^2 - 2*x - 1"
"3337b1" 3337 497 7 8 "(-1, 1/2*a1 + 1/2, 0, 1, -1, -3/2*a1 - 11/2)" "x^2 + 6*x + 1"
"None found" "none" 497 7 8 "(-1, 1/2*a1 + 1/2, 0, 1, -1, -3/2*a1 - 11/2)" "x^2 + 6*x + 1"
"498a1" 498 498 7 21 "(-1, 1, -1/2*a2, 1/2*a2 - 1, 0, -1/2*a2 + 5)" "x^2 - 6*x - 12"
"3486a1" 3486 498 7 621 "(-1, -1, a5 + 3, -a5 - 4, 1/3*a5^2 + 1/3*a5 - 17/3, -2/3*a5^2 - 11/3*a5 - 2/3)" "x^3 + 9*x^2 + 15*x - 16"
"5478o1" 5478 498 7 40709 "(1, 1, 1/2*a6 - 1, 1/8*a6^3 - 3/4*a6^2 - 2*a6 + 4, -1/8*a6^3 + a6^2 - 5, -1/8*a6^3 + 1/4*a6^2 + 4*a6 + 6)" "x^4 - 12*x^3 + 16*x^2 + 136*x - 32"
"4990b1" 4990 499 7 1.04E+026 "(a1, -175/108*a1^15 - 469/54*a1^14 + 1511/108*a1^13 + 7595/54*a1^12 + 189/4*a1^11 - 90257/108*a1^10 - 22667/27*a1^9 + 122191/54*a1^8 + 175661/54*a1^7 - 282515/108*a1^6 - 580537/108*a1^5 + 16955/36*a1^4 + 3677*a1^3 + 11477/12*a1^2 - 7789/12*a1 - 973/4, 833/1404*a1^15 + 203/54*a1^14 - 4093/1404*a1^13 - 41875/702*a1^12 - 25427/468*a1^11 + 36919/108*a1^10 + 189727/351*a1^9 - 603329/702*a1^8 - 1328191/702*a1^7 + 1105621/1404*a1^6 + 4215899/1404*a1^5 + 133363/468*a1^4 - 78469/39*a1^3 - 37481/52*a1^2 + 55115/156*a1 + 8179/52, 3479/1404*a1^15 + 713/54*a1^14 - 31483/1404*a1^13 - 151453/702*a1^12 - 2849/52*a1^11 + 140581/108*a1^10 + 411178/351*a1^9 - 2545769/702*a1^8 - 3246949/702*a1^7 + 6316195/1404*a1^6 + 10786625/1404*a1^5 - 666139/468*a1^4 - 205213/39*a1^3 - 161573/156*a1^2 + 144689/156*a1 + 15577/52, 575/468*a1^15 + 43/6*a1^14 - 411/52*a1^13 - 8855/78*a1^12 - 38003/468*a1^11 + 23341/36*a1^10 + 107993/117*a1^9 - 126151/78*a1^8 - 260033/78*a1^7 + 673547/468*a1^6 + 837563/156*a1^5 + 296039/468*a1^4 - 47115/13*a1^3 - 223667/156*a1^2 + 32693/52*a1 + 16307/52, -2531/702*a1^15 - 560/27*a1^14 + 18559/702*a1^13 + 117343/351*a1^12 + 42917/234*a1^11 - 106357/54*a1^10 - 827111/351*a1^9 + 1838360/351*a1^8 + 3049642/351*a1^7 - 4022641/702*a1^6 - 9875987/702*a1^5 + 74201/234*a1^4 + 370856/39*a1^3 + 221795/78*a1^2 - 129461/78*a1 - 17789/26)" "x^16 + 5*x^15 - 11*x^14 - 85*x^13 + 9*x^12 + 548*x^11 + 293*x^10 - 1718*x^9 - 1408*x^8 + 2735*x^7 + 2662*x^6 - 2058*x^5 - 2241*x^4 + 585*x^3 + 738*x^2 - 54*x - 81"

Attached Files

To refer to attachments on a page, use attachment:filename, as shown below in the list of files. Do NOT use the URL of the [get] link, since this is subject to change and can break easily.
  • [get | view] (2010-07-02 16:00:01, 4.8 KB) [[attachment:BenPresentation]]
  • [get | view] (2010-07-02 00:23:21, 90.0 KB) [[attachment:S_4 field _ Elliptic Curve comparison]]
  • [get | view] (2010-07-02 07:39:08, 780.1 KB) [[attachment:compileddata.csv]]
  • [get | view] (2010-07-02 16:36:56, 3.9 KB) [[attachment:exceptionalfields.csv]]
  • [get | view] (2010-07-02 07:54:25, 72.5 KB) [[attachment:freakshow.csv]]
  • [get | view] (2010-07-02 16:38:22, 90.0 KB) [[attachment:newfndata.csv]]
  • [get | view] (2010-07-02 16:59:02, 90.0 KB) [[attachment:s4fieldellipticcurve.csv]]
  • [get | view] (2010-07-02 16:52:47, 101.9 KB) [[attachment:serre.pdf]]
 All files | Selected Files: delete move to page copy to page

You are not allowed to attach a file to this page.