Module: sage.groups.matrix_gps.unitary
These are $ n\times n$ unitary matrices with entries in $ GF(q^2)$ .
Author Log:
{{{#!python
sage: G = SU(3,GF(5)) sage: G.order() 378000 sage: G Special Unitary Group of degree 3 over Finite Field of size 5 sage: G._gap_init_() 'SU(3, 5)' sage: G.random() [ 3 2*a + 1 a + 1] [2*a + 2 4 a] [4*a + 2 a + 4 1] sage: G.base_ring() Finite Field of size 5 sage: G.field_of_definition() Finite Field in a of size 5^2}}}
Module-level Functions
n, R) |
n, R) |
Class: GeneralUnitaryGroup_finite_field
Class: GeneralUnitaryGroup_generic
Functions: as_matrix_group,$ $ gens
self) |
{{{#!python
sage: G = GU(4,GF(5)) sage: G.gens() [[ a 0 0 0] [ 0 1 0 0] [ 0 0 1 0] [ 0 0 0 3*a], [ 1 0 4*a + 3 0] [ 1 0 0 0] [ 0 2*a + 4 0 1] [ 0 3*a + 1 0 0]]}}}
Special Functions: __repr__,$ $ __str__,$ $ _gap_init_,$ $ _latex_
self) |
{{{#!python
sage: G = GU(3,GF(5)) sage: G General Unitary Group of degree 3 over Finite Field of size 5}}}
self) |
{{{#!python
sage: G = GU(3,GF(5)) sage: print G GU(3, GF(5))}}}
self) |
{{{#!python
sage: G = GU(3,GF(5)) sage: G._latex_() 'GU$(3, 5)$'}}}
Class: SpecialUnitaryGroup_finite_field
Class: SpecialUnitaryGroup_generic
Functions: as_matrix_group,$ $ gens
self) |
{{{#!python
sage: G = SU(4,GF(5)) sage: G.as_matrix_group() Matrix group over Finite Field in a of size 5^2 with 2 generators: [[[a, 0, 0, 0], [0, 2*a + 3, 0, 0], [0, 0, 4*a + 1, 0], [0, 0, 0, 3*a]], [[1, 0, 4*a + 3, 0], [1, 0, 0, 0], [0, 2*a + 4, 0, 1], [0, 3*a + 1, 0, 0]]]}}}
self) |
{{{#!python
sage: G = SU(4,GF(5)) sage: G.gens() [[ a 0 0 0] [ 0 2*a + 3 0 0] [ 0 0 4*a + 1 0] [ 0 0 0 3*a], [ 1 0 4*a + 3 0] [ 1 0 0 0] [ 0 2*a + 4 0 1] [ 0 3*a + 1 0 0]]}}}
Special Functions: __repr__,$ $ __str__,$ $ _gap_init_,$ $ _latex_
self) |
{{{#!python
sage: G = SU(3,GF(5)) sage: G Special Unitary Group of degree 3 over Finite Field of size 5}}}
self) |
{{{#!python
sage: G = SU(3,GF(5)) sage: print G SU(3, GF(5))}}}
self) |
{{{#!python
sage: G = SU(3,GF(5)) sage: G._latex_() 'SU$(3, 5)$'}}}
See About this document... for information on suggesting changes.