Differences between revisions 27 and 42 (spanning 15 versions)
Revision 27 as of 2009-03-10 20:17:06
Size: 39214
Editor: JohnPalmieri
Comment:
Revision 42 as of 2012-03-16 06:42:11
Size: 57329
Editor: jason
Comment:
Deletions are marked like this. Additions are marked like this.
Line 5: Line 5:

{{{#!html
<b>html test!</b>
}}}
Line 56: Line 60:
http://sagenb.org/home/pub/2824/
Line 72: Line 78:
     var('x')
Line 79: Line 87:
     print "f(c) = %r"%f(z)      print "f(c) = %r"%f(x=z)
Line 83: Line 91:
     P = plot(f, z-interval, z+interval, rgbcolor='blue')      P = plot(f, (x,z-interval, z+interval), rgbcolor='blue')
Line 93: Line 101:

http://sagenb.org/home/pub/2823/
Line 101: Line 111:
     C = contour_plot(f, (-2,2), (-2,2), plot_points=30, contours=15, cmap=cmap)      C = contour_plot(f, (x,-2,2), (y,-2,2), plot_points=30, contours=15, cmap=cmap)
Line 154: Line 164:

== Numerical integrals with various rules ==
by Nick Alexander (based on the work of Marshall Hampton)

{{{
# by Nick Alexander (based on the work of Marshall Hampton)

var('x')
@interact
def midpoint(f = input_box(default = sin(x^2) + 2, type = SR),
    interval=range_slider(0, 10, 1, default=(0, 4), label="Interval"),
    number_of_subdivisions = slider(1, 20, 1, default=4, label="Number of boxes"),
    endpoint_rule = selector(['Midpoint', 'Left', 'Right', 'Upper', 'Lower'], nrows=1, label="Endpoint rule")):

    a, b = map(QQ, interval)
    t = sage.calculus.calculus.var('t')
    func = fast_callable(f(x=t), RDF, vars=[t])
    dx = ZZ(b-a)/ZZ(number_of_subdivisions)
   
    xs = []
    ys = []
    for q in range(number_of_subdivisions):
        if endpoint_rule == 'Left':
            xs.append(q*dx + a)
        elif endpoint_rule == 'Midpoint':
            xs.append(q*dx + a + dx/2)
        elif endpoint_rule == 'Right':
            xs.append(q*dx + a + dx)
        elif endpoint_rule == 'Upper':
            x = find_maximum_on_interval(func, q*dx + a, q*dx + dx + a)[1]
            xs.append(x)
        elif endpoint_rule == 'Lower':
            x = find_minimum_on_interval(func, q*dx + a, q*dx + dx + a)[1]
            xs.append(x)
    ys = [ func(x) for x in xs ]
         
    rects = Graphics()
    for q in range(number_of_subdivisions):
        xm = q*dx + dx/2 + a
        x = xs[q]
        y = ys[q]
        rects += line([[xm-dx/2,0],[xm-dx/2,y],[xm+dx/2,y],[xm+dx/2,0]], rgbcolor = (1,0,0))
        rects += point((x, y), rgbcolor = (1,0,0))
    min_y = min(0, find_minimum_on_interval(func,a,b)[0])
    max_y = max(0, find_maximum_on_interval(func,a,b)[0])

    # html('<h3>Numerical integrals with the midpoint rule</h3>')
    show(plot(func,a,b) + rects, xmin = a, xmax = b, ymin = min_y, ymax = max_y)
    
    def cap(x):
        # print only a few digits of precision
        if x < 1e-4:
            return 0
        return RealField(20)(x)
    sum_html = "%s \cdot \\left[ %s \\right]" % (dx, ' + '.join([ "f(%s)" % cap(i) for i in xs ]))
    num_html = "%s \cdot \\left[ %s \\right]" % (dx, ' + '.join([ str(cap(i)) for i in ys ]))
    
    numerical_answer = integral_numerical(func,a,b,max_points = 200)[0]
    estimated_answer = dx * sum([ ys[q] for q in range(number_of_subdivisions)])

    html(r'''
    <div class="math">
    \begin{align*}
      \int_{a}^{b} {f(x) \, dx} & = %s \\\
      \sum_{i=1}^{%s} {f(x_i) \, \Delta x}
      & = %s \\\
      & = %s \\\
      & = %s .
    \end{align*}
    </div>
    ''' % (numerical_answer, number_of_subdivisions, sum_html, num_html, estimated_answer))
}}}
{{attachment:num_int2.png}}

== Some polar parametric curves ==
by Marshall Hampton.
This is not very general, but could be modified to show other families of polar curves.
{{{
@interact
def para(n1 = slider(1,5,1,default = 2), n2 = slider(1,5,1,default = 3), a1 = slider(1,10,1/10,6/5), a2 = slider(1,10,1/10,6), b = slider(0,2,1/50,0)):
    var('t')
    html('$r=' + latex(b+sin(a1*t)^n1 + cos(a2*t)^n2)+'$')
    p = parametric_plot((cos(t)*(b+sin(a1*t)^n1 + cos(a2*t)^n2), sin(t)*(b+sin(a1*t)^n1 + cos(a2*t)^n2)), (t,0, 20*pi), plot_points = 1024, rgbcolor = (0,0,0))
    show(p, figsize = [5,5], xmin = -2-b, xmax = 2+b, ymin = -2-b, ymax = 2+b, axes = False)
}}}
{{attachment:polarcurves1.png}}
Line 362: Line 459:



Line 370: Line 463:
def trans(x=input_box(u2-v2, label="x=",type=SR), \ def trans(x=input_box(u^2-v^2, label="x=",type=SR), \
Line 382: Line 475:
     g1=sum([parametric_plot((i,v), t_min,t_max, rgbcolor=(1,0,0)) for i in u_range])
     g2=sum([parametric_plot((u,i), t_min,t_max, rgbcolor=(0,0,1)) for i in v_range])
     vline_straight=parametric_plot((u,v_val), t_min,t_max, rgbcolor=(0,0,1), linestyle='-',thickness=thickness)
     uline_straight=parametric_plot((u_val, v), t_min,t_max,rgbcolor=(1,0,0), linestyle='-',thickness=thickness)
     g1=sum([parametric_plot((i,v), (v,t_min,t_max), rgbcolor=(1,0,0)) for i in u_range])
     g2=sum([parametric_plot((u,i), (u,t_min,t_max), rgbcolor=(0,0,1)) for i in v_range])
     vline_straight=parametric_plot((u,v_val), (u,t_min,t_max), rgbcolor=(0,0,1), linestyle='-',thickness=thickness)
     uline_straight=parametric_plot((u_val, v), (v,t_min,t_max),rgbcolor=(1,0,0), linestyle='-',thickness=thickness)
Line 387: Line 480:
    (g1+g2+vline_straight+uline_straight).save("uv_coord.png",aspect_ratio=1, figsize=[5,5], axes_labels=['$u$','$v$'])   (g1+g2+vline_straight+uline_straight).save("uv_coord.png",aspect_ratio=1, figsize=[5,5], axes_labels=['$u$','$v$'])
Line 392: Line 485:
     g3=sum([parametric_plot((partial(xuv,i),partial(yuv,i)), t_min,t_max, rgbcolor=(1,0,0)) for i in u_range])
     g4=sum([parametric_plot((partial(xvu,i),partial(yvu,i)), t_min,t_max, rgbcolor=(0,0,1)) for i in v_range])
     vline=parametric_plot((partial(xvu,v_val),partial(yvu,v_val)), t_min,t_max, rgbcolor=(0,0,1), linestyle='-',thickness=thickness)
     uline=parametric_plot((partial(xuv,u_val),partial(yuv,u_val)), t_min,t_max,rgbcolor=(1,0,0), linestyle='-',thickness=thickness)
     g3=sum([parametric_plot((partial(xuv,i),partial(yuv,i)), (v,t_min,t_max), rgbcolor=(1,0,0)) for i in u_range])
     g4=sum([parametric_plot((partial(xvu,i),partial(yvu,i)), (u,t_min,t_max), rgbcolor=(0,0,1)) for i in v_range])
     uline=parametric_plot((partial(xuv,u_val),partial(yuv,u_val)),(v,t_min,t_max),rgbcolor=(1,0,0), linestyle='-',thickness=thickness)
     vline=parametric_plot((partial(xvu,v_val),partial(yvu,v_val)), (u,t_min,t_max), rgbcolor=(0,0,1), linestyle='-',thickness=thickness)
Line 480: Line 573:

== Quadric Surface Plotter ==
by Marshall Hampton. This is pretty simple, so I encourage people to spruce it up. In particular, it isn't set up to show all possible types of quadrics.
{{{
var('x,y,z')
quadrics = {'Ellipsoid':x^2+y^2+z^2-1,'Elliptic paraboloid':x^2+y^2-z,'Hyperbolic paraboloid':x^2-y^2-z, '1-Sheeted Hyperboloid':x^2+y^2-z^2-1,'2-Sheeted Hyperboloid':x^2-y^2-z^2-1, 'Cone':x^2+y^2-z^2}
@interact
def quads(q = selector(quadrics.keys()), a = slider(0,5,1/2,default = 1)):
    f = quadrics[q].subs({x:x*a^(1/2)})
    if a==0 or q=='Cone': html('<center>$'+latex(f)+' \ $'+ '(degenerate)</center>')
    else: html('<center>$'+latex(f)+'$ </center>')
    p = implicit_plot3d(f,(x,-2,2),(y,-2,2),(z,-2,2), plot_points = 75)
    show(p)
}}}
{{attachment:quadrics.png}}
Line 508: Line 616:
    dely = (y_end - y_start)/nx     dely = (y_end - y_start)/ny
Line 829: Line 937:
== Multivariate Limits by Definition ==
by John Travis

http://www.sagenb.org/home/pub/2828/

{{{
## An interactive way to demonstrate limits of multivariate functions of the form z = f(x,y)
##
## John Travis
## Mississippi College
##
## Spring 2011
##
## An updated version of this worksheet may be available at http://sagenb.mc.edu

# Starting point for radius values before collapsing in as R approaches 0.
# Functions ought to be "reasonable" within a circular domain of radius R surrounding
# the desired (x_0,y_0).

Rmax=2
@interact
def _(f=input_box(default=(x^3-y^3)/(x^2+y^2)),R=slider(0.1/10,Rmax,1/10,2),x0=(0),y0=(0)):

# converting f to cylindrical coordinates.
    g(r,t) = f(x=r*cos(t)+x0,y=r*sin(t)+y0)

# Sage graphing transformation used to see the original surface.
    cylinder = (r*cos(t)+x0,r*sin(t)+y0,z)
    surface = plot3d(g,(t,0,2*pi),(r,1/100,Rmax),transformation=cylinder,opacity=0.2)

# Regraph the surface for smaller and smaller radii controlled by the slider.
    limit = plot3d(g,(t,0,2*pi),(r,1/100,R),transformation=cylinder,rgbcolor=(0,1,0))
    
    show(surface+limit)
    print html('Enter $(x_0 ,y_0 )$ above and see what happens as R approaches zero.')
    print html('The surface has a limit as $(x,y)$ approaches ('+str(x0)+','+str(y0)+') if the green region collapses to a point')
}}}
{{attachment:3D_Limit_Defn.png}}


{{{
## An interactive way to demonstrate limits of multivariate functions of the form z = f(x,y)
## This one uses contour plots and so will work with functions that have asymptotic behavior.
##
## John Travis
## Mississippi College
##
## Spring 2011
##

# An increasing number of contours for z = f(x,y) are utilized surrounding a desired (x_0,y_0).
# A limit can be shown to exist at (x_0,y_0) provided the point stays trapped between adjacent
# contour lines as the number of lines increases. If the contours change wildly near the point,
# then a limit does not exist.
# Looking for two different paths to approach (x_0,y_0) that utilize a different selection of colors
# will help locate paths to use that exhibit the absence of a limit.

Rmax=2
@interact
def _(f=input_box(default=(x^3-y^3)/(x^2+y^2)),
      N=slider(5,100,1,10,label='Number of Contours'),
      x0=(0),y0=(0)):

    print html('Enter $(x_0 ,y_0 )$ above and see what happens as the number of contour levels increases.')
    print html('A surface will have a limit in the center of this graph provided there is not a sudden change in color there.')

    surface = contour_plot(f,(x,x0-1,x0+1),(y,y0-1,y0+1),cmap=True,colorbar=True,fill=False,contours=N)
    limit_point = point((x0,y0),color='red',size=30)
    show(limit_point+surface)}}}
{{attachment:3D_Limit_Defn_Contours.png}}


Line 880: Line 1061:
== 3D graph with points == == 3D graph with points and curves ==
Line 883: Line 1064:
This sagelet is handy when showing local maxima and minima in two variables. This sagelet is handy when showing local, constrained and absolute maxima and minima in two variables.
Line 887: Line 1068:
x,y=var('x y')
u,v=var('u v')
html('<h2>Graph in two variables</h2>')
@interact
def _(func=input_box('2*x^3+x*y^2-5*x^2+y^2',label="f(x,y)=",type=str), xmin=-1,xmax=3, ymin=-1,ymax=3,\
 st_points=input_box('(0,0),(5/3,0)',label="points", type=str),\
 show_planes=("Show zero planes", False), show_axes=("Show axes", True)):
%hide
%auto
x,y, t, u, v =var('x y t u v')
INI_func='x^2-2*x+y^2-2*y'
INI_box='-1,3.2,-1,3.2'
INI_points='(1,1,\'green\'),(3/2,3/2),(0,1),(1,0),(0,0,\'black\'),(3,0,\'black\'),(0,3,\'black\')'
INI_curves='(t,0,0,3,\'red\'),(0,t,0,3,\'green\'),(t,3-t,0,3)'
@interact
def _(func=input_box(INI_func,label="f(x,y)=",type=str),\
  bounds=input_box(INI_box,label="xmin,xmax,ymin,ymax",type=str),\
  st_points=input_box(INI_points,\
  label="points <br><small><small>(comma separated pairs, optionally with color)</small></small>", type=str),\
  bnd_curves=input_box(INI_curves,label="curves on boundary<br> <small><small><i>(x(t),y(t),tmin,tmax,'opt_color')</i></small></small>", type=str),\
 show_planes=("Show zero planes", False), show_axes=("Show axes", True),
 show_table=("Show table", True)):
Line 895: Line 1084:
 html(r'Function $ f(x,y)=%s$ '%latex(f(x,y)))
 xmin,xmax,ymin,ymax=sage_eval('('+bounds+')')
Line 896: Line 1087:
 html(r'Function $ f(x,y)=%s$ '%latex(f(x,y)))
 st_p=sage_eval('('+st_points+')')
 for current in range(len(st_p)):
   A=A+point3d((st_p[current][0],st_p[current][1],f(st_p[current][0],st_p[current][1])),size=9,rgbcolor='red')
 if not(bool(st_points=='')):
     st_p=sage_eval('('+st_points+',)')
     html(r'<table border=1>')
     for current in range(len(st_p)):
         point_color='red'
         if bool(len(st_p[current])==3):
              point_color=st_p[current][2]
         x0=st_p[current][0]
         y0=st_p[current][1]
         z0=f(x0,y0)
         if show_table:
              html(r'<tr><td>$\quad f(%s,%s)\quad $</td><td>$\quad %s$</td>\
              </tr>'%(latex(x0),latex(y0),z0.n()))
         A=A+point3d((x0,y0,z0),size=9,rgbcolor=point_color)
     html(r'</table>')
 if not(bool(bnd_curves=='')):
     bnd_cc=sage_eval('('+bnd_curves+',)',locals={'t':t})
     for current in range(len(bnd_cc)):
         bnd_c=bnd_cc[current]+('black',)
         A=A+parametric_plot3d((bnd_c[0],bnd_c[1],f(bnd_c[0],bnd_c[1])),\
             (t,bnd_c[2],bnd_c[3]),thickness=3,rgbcolor=bnd_c[4])
Line 901: Line 1109:
   A=A+plot3d(0,(x,xmin,xmax),(y,ymin,ymax),opacity=0.3,rgbcolor='gray')
   zmax=A.bounding_box()[1][2]
   zmin=A.bounding_box()[0][2]
   A=A+parametric_plot3d((u,0,v),(u,xmin,xmax),(v,zmin,zmax),opacity=0.3,rgbcolor='gray')
   A=A+parametric_plot3d((0,u,v),(u,ymin,ymax),(v,zmin,zmax),opacity=0.3,rgbcolor='gray')
   A=A+plot3d(0,(x,xmin,xmax),(y,ymin,ymax),opacity=0.3,rgbcolor='gray')
   zmax=A.bounding_box()[1][2]
     zmin=A.bounding_box()[0][2]
     A=A+parametric_plot3d((u,0,v),(u,xmin,xmax),(v,zmin,zmax),opacity=0.3,rgbcolor='gray')
     A=A+parametric_plot3d((0,u,v),(u,ymin,ymax),(v,zmin,zmax),opacity=0.3,rgbcolor='gray')
Line 907: Line 1115:
   zmax=A.bounding_box()[1][2]
   zmin=A.bounding_box()[0][2]
   A=A+line3d([(xmin,0,0), (xmax,0,0)], arrow_head=True,rgbcolor='black')
   A=A+line3d([(0,ymin,0), (0,ymax,0)], arrow_head=True,rgbcolor='black')
   A=A+line3d([(0,0,zmin), (0,0,zmax)], arrow_head=True,rgbcolor='black')
   zmax=A.bounding_box()[1][2]
     zmin=A.bounding_box()[0][2]
     A=A+line3d([(xmin,0,0), (xmax,0,0)], arrow_head=True,rgbcolor='black')
     A=A+line3d([(0,ymin,0), (0,ymax,0)], arrow_head=True,rgbcolor='black')
     A=A+line3d([(0,0,zmin), (0,0,zmax)], arrow_head=True,rgbcolor='black')
Line 960: Line 1168:
var('xx yy', ns=1) var('xx yy')
Line 990: Line 1198:


== Volumes over non-rectangular domains ==

by John Travis

http://www.sagenb.org/home/pub/2829/

{{{
## Graphing surfaces over non-rectangular domains
## John Travis
## Spring 2011
##
##
## An updated version of this worksheet may be available at http://sagenb.mc.edu
##
## Interact allows the user to input up to two inequality constraints on the
## domain when dealing with functional surfaces
##
## User inputs:
## f = "top" surface with z = f(x,y)
## g = "bottom" surface with z = g(x,y)
## condition1 = a single boundary constraint. It should not include && or | to join two conditions.
## condition2 = another boundary constraint. If there is only one constraint, just enter something true
## or even just an x (or y) in the entry blank.
##
##

var('x,y')

# f is the top surface
# g is the bottom surface
global f,g

# condition1 and condition2 are the inequality constraints. It would be nice
# to have any number of conditions connected by $$ or |
global condition1,condition2

@interact
def _(f=input_box(default=(1/3)*x^2 + (1/4)*y^2 + 5,label='$f(x)=$'),
        g=input_box(default=-1*x+0*y,label='$g(x)=$'),
        condition1=input_box(default= x^2+y^2<8,label='$Constraint_1=$'),
        condition2=input_box(default=y<sin(3*x),label='$Constraint_2=$'),
        show_3d=('Stereographic',false), show_vol=('Shade volume',true),
        dospin = ('Spin?',true),
        clr = color_selector('#faff00', label='Volume Color', widget='colorpicker', hide_box=True),
        xx = range_slider(-5, 5, 1, default=(-3,3), label='X Range'),
        yy = range_slider(-5, 5, 1, default=(-3,3), label='Y Range'),
        auto_update=false):
    
    # This is the top function actually graphed by using NaN outside domain
    def F(x,y):
        if condition1(x=x,y=y):
            if condition2(x=x,y=y):
                return f(x=x,y=y)
            else:
                return -NaN
        else:
            return -NaN

    # This is the bottom function actually graphed by using NaN outside domain
    def G(x,y):
        if condition1(x=x,y=y):
            if condition2(x=x,y=y):
                return g(x=x,y=y)
            else:
                return -NaN
        else:
            return -NaN
        
    P = Graphics()
      
# The graph of the top and bottom surfaces
    P_list = []
    P_list.append(plot3d(F,(x,xx[0],xx[1]),(y,yy[0],yy[1]),color='blue',opacity=0.9))
    P_list.append(plot3d(G,(x,xx[0],xx[1]),(y,yy[0],yy[1]),color='gray',opacity=0.9))
    
# Interpolate "layers" between the top and bottom if desired

    if show_vol:
        ratios = range(10)

        def H(x,y,r):
            return (1-r)*F(x=x,y=y)+r*G(x=x,y=y)
        P_list.extend([
        plot3d(lambda x,y: H(x,y,ratios[1]/10),(x,xx[0],xx[1]),(y,yy[0],yy[1]),opacity=0.2,color=clr),
        plot3d(lambda x,y: H(x,y,ratios[2]/10),(x,xx[0],xx[1]),(y,yy[0],yy[1]),opacity=0.2,color=clr),
        plot3d(lambda x,y: H(x,y,ratios[3]/10),(x,xx[0],xx[1]),(y,yy[0],yy[1]),opacity=0.2,color=clr),
        plot3d(lambda x,y: H(x,y,ratios[4]/10),(x,xx[0],xx[1]),(y,yy[0],yy[1]),opacity=0.2,color=clr),
        plot3d(lambda x,y: H(x,y,ratios[5]/10),(x,xx[0],xx[1]),(y,yy[0],yy[1]),opacity=0.2,color=clr),
        plot3d(lambda x,y: H(x,y,ratios[6]/10),(x,xx[0],xx[1]),(y,yy[0],yy[1]),opacity=0.2,color=clr),
        plot3d(lambda x,y: H(x,y,ratios[7]/10),(x,xx[0],xx[1]),(y,yy[0],yy[1]),opacity=0.2,color=clr),
        plot3d(lambda x,y: H(x,y,ratios[8]/10),(x,xx[0],xx[1]),(y,yy[0],yy[1]),opacity=0.2,color=clr),
        plot3d(lambda x,y: H(x,y,ratios[9]/10),(x,xx[0],xx[1]),(y,yy[0],yy[1]),opacity=0.2,color=clr)
        ])
# P = plot3d(lambda x,y: H(x,y,ratio/10),(x,xx[0],xx[1]),(y,yy[0],yy[1]),opacity=0.1)
             
           
# Now, accumulate all of the graphs into one grouped graph.
    P = sum(P_list[i] for i in range(len(P_list)))


    if show_3d:
        show(P,frame=true,axes=false,xmin=xx[0],xmax=xx[1],ymin=yy[0],ymax=yy[1],stereo='redcyan',figsize=(6,9),viewer='jmol',spin=dospin)
    else:
        show(P,frame=true,axes=false,xmin=xx[0],xmax=xx[1],ymin=yy[0],ymax=yy[1],figsize=(6,9),viewer='jmol',spin=dospin)
}}}
{{attachment:3D_Irregular_Volume.png}}

== Lateral Surface Area ==

by John Travis

http://www.sagenb.org/home/pub/2826/

{{{
## Display and compute the area of the lateral surface between two surfaces
## corresponding to the (scalar) line integral
## John Travis
## Spring 2011

var('x,y,t,s')
@interact
def _(f=input_box(default=6-4*x^2-y^2*2/5,label='$f(x,y) = $'),
        g=input_box(default=-2+sin(x)+sin(y),label='$g(x,y) = $'),
        u=input_box(default=cos(t),label='$u(t) = $'),
        v=input_box(default=2*sin(t),label='$v(t) = $'),
        a=input_box(default=0,label='$a = $'),
        b=input_box(default=3*pi/2,label='$b = $'),
        xx = range_slider(-5, 5, 1, default=(-1,1), label='x view'),
        yy = range_slider(-5, 5, 1, default=(-2,2), label='y view'),
        smoother=checkbox(default=false)):
        
    ds = sqrt(derivative(u(t),t)^2+derivative(v(t),t)^2)
    
# Set up the integrand to compute the line integral, making all attempts
# to simplify the result so that it looks as nice as possible.
    A = (f(x=u(t),y=v(t))-g(x=u(t),y=v(t)))*ds.simplify_trig().simplify()
    
# It is not expected that Sage can actually perform the line integral calculation.
# So, the result displayed may not be a numerical value as expected.
# Creating a good but harder example that "works" is desirable.
    line_integral = integral(A,t,a,b)
    line_integral_approx = numerical_integral(A,a,b)[0]
       
    html(r'<h4 align=center>Lateral Surface Area = $ %s $ </h4>'%latex(line_integral))

    html(r'<h4 align=center>Lateral Surface $ \approx $ %s</h2>'%str(line_integral_approx))

# Plot the top function z = f(x,y) that is being integrated.
    G = plot3d(f,(x,xx[0],xx[1]),(y,yy[0],yy[1]),opacity=0.2)
    G += plot3d(g,(x,xx[0],xx[1]),(y,yy[0],yy[1]),opacity=0.2)

# Add space curves on the surfaces "above" the domain curve (u(t),v(t))
    G += parametric_plot3d([u,v,g(x=u(t),y=v(t))],(t,a,b),thickness=2,color='red')
    G += parametric_plot3d([u,v,f(x=u(t),y=v(t))],(t,a,b),thickness=2,color='red')
    k=0
    if smoother:
        delw = 0.025
        lat_thick = 3
    else:
        delw = 0.10
        lat_thick = 10
    for w in (a,a+delw,..,b):
        G += parametric_plot3d([u(w),v(w),s*f(x=u(w),y=v(w))+(1-s)*g(x=u(w),y=v(w))],(s,0,1),thickness=lat_thick,color='yellow',opacity=0.9)
    show(G,spin=true)
}}}
{{attachment:Lateral_Surface.png}}


== Parametric surface example ==
by Marshall Hampton
{{{
var('u,v')
npi = RDF(pi)
@interact
def viewer(mesh = checkbox(default = False, label = 'Show u,v meshlines'), uc = slider(-2,2,1/10,0, label = '<span style="color:red">Constant u value</span>'), vc = slider(-2,2,1/10,0, label = '<span style="color:green">Constant v value</span>'), functions = input_box([u,v^2,u^2+v])):
    f1(u,v) = functions[0]
    f2(u,v) = functions[1]
    f3(u,v) = functions[2]
    surface_plot = parametric_plot3d([f1,f2,f3], (u,-2,2), (v,-2,2), mesh = mesh, opacity = .8)
    constant_u = line3d([[f1(uc,q), f2(uc,q), f3(uc,q)] for q in srange(-2,2,.01)], rgbcolor = (1,0,0), thickness = 3)
    constant_v = line3d([[f1(q,vc), f2(q,vc), f3(q,vc)] for q in srange(-2,2,.01)], rgbcolor = (0,1,0), thickness = 3)
    show(surface_plot + constant_u + constant_v, frame = False)
}}}
{{attachment:parametric_surface.png}}

== Line Integrals in 3D Vector Field ==

by John Travis

http://www.sagenb.org/home/pub/2827/

{{{
## This worksheet interactively computes and displays the line integral of a 3D vector field
## over a given smooth curve C
##
## John Travis
## Mississippi College
## 06/16/11
##
## An updated version of this worksheet may be available at http://sagenb.mc.edu
##

var('x,y,z,t,s')

@interact
def _(M=input_box(default=x*y*z,label="$M(x,y,z)$"),
        N=input_box(default=-y*z,label="$N(x,y,z)$"),
        P=input_box(default=z*y,label="$P(x,y,z)$"),
        u=input_box(default=cos(t),label="$x=u(t)$"),
        v=input_box(default=2*sin(t),label="$y=v(t)$"),
        w=input_box(default=t*(t-2*pi)/pi,label="$z=w(t)$"),
        tt = range_slider(-2*pi, 2*pi, pi/6, default=(0,2*pi), label='t Range'),
        xx = range_slider(-5, 5, 1, default=(-1,1), label='x Range'),
        yy = range_slider(-5, 5, 1, default=(-2,2), label='y Range'),
        zz = range_slider(-5, 5, 1, default=(-3,1), label='z Range'),
        in_3d=checkbox(true)):

# setup the parts and then compute the line integral
    dr = [derivative(u(t),t),derivative(v(t),t),derivative(w(t),t)]
    A = (M(x=u(t),y=v(t),z=w(t))*dr[0]
        +N(x=u(t),y=v(t),z=w(t))*dr[1]
        +P(x=u(t),y=v(t),z=w(t))*dr[2])
    global line_integral
    line_integral = integral(A(t=t),t,tt[0],tt[1])
    
    html(r'<h2 align=center>$ \int_{C} \left \langle M,N,P \right \rangle dr $ = $ %s $ </h2>'%latex(line_integral))
    G = plot_vector_field3d((M,N,P),(x,xx[0],xx[1]),(y,yy[0],yy[1]),(z,zz[0],zz[1]),plot_points=6)
    G += parametric_plot3d([u,v,w],(t,tt[0],tt[1]),thickness='5',color='yellow')
    if in_3d:
        show(G,stereo='redcyan',spin=true)
    else:
        show(G,perspective_depth=true)
}}}
{{attachment:3D_Line_Integral.png}}

Sage Interactions - Calculus

goto interact main page

html test!

Root Finding Using Bisection

by William Stein

def bisect_method(f, a, b, eps):
    try:
        f = f._fast_float_(f.variables()[0])
    except AttributeError:
        pass
    intervals = [(a,b)]
    two = float(2); eps = float(eps)
    while True:
        c = (a+b)/two
        fa = f(a); fb = f(b); fc = f(c)
        if abs(fc) < eps: return c, intervals
        if fa*fc < 0:
            a, b = a, c
        elif fc*fb < 0:
            a, b = c, b
        else:
            raise ValueError, "f must have a sign change in the interval (%s,%s)"%(a,b)
        intervals.append((a,b))
html("<h1>Double Precision Root Finding Using Bisection</h1>")
@interact
def _(f = cos(x) - x, a = float(0), b = float(1), eps=(-3,(-16..-1))):
     eps = 10^eps
     print "eps = %s"%float(eps)
     try:
         time c, intervals = bisect_method(f, a, b, eps)
     except ValueError:
         print "f must have opposite sign at the endpoints of the interval"
         show(plot(f, a, b, color='red'), xmin=a, xmax=b)
     else:
         print "root =", c
         print "f(c) = %r"%f(c)
         print "iterations =", len(intervals)
         P = plot(f, a, b, color='red')
         h = (P.ymax() - P.ymin())/ (1.5*len(intervals))
         L = sum(line([(c,h*i), (d,h*i)]) for i, (c,d) in enumerate(intervals) )
         L += sum(line([(c,h*i-h/4), (c,h*i+h/4)]) for i, (c,d) in enumerate(intervals) )
         L += sum(line([(d,h*i-h/4), (d,h*i+h/4)]) for i, (c,d) in enumerate(intervals) )
         show(P + L, xmin=a, xmax=b)

bisect.png

Newton's Method

Note that there is a more complicated Newton's method below.

by William Stein

http://sagenb.org/home/pub/2824/

def newton_method(f, c, eps, maxiter=100):
    x = f.variables()[0]
    fprime = f.derivative(x)
    try:
        g = f._fast_float_(x)
        gprime = fprime._fast_float_(x)
    except AttributeError:
        g = f; gprime = fprime
    iterates = [c]
    for i in xrange(maxiter):
       fc = g(c)
       if abs(fc) < eps: return c, iterates
       c = c - fc/gprime(c)
       iterates.append(c)
    return c, iterates
    
var('x')    
html("<h1>Double Precision Root Finding Using Newton's Method</h1>")
@interact
def _(f = x^2 - 2, c = float(0.5), eps=(-3,(-16..-1)), interval=float(0.5)):
     eps = 10^(eps)
     print "eps = %s"%float(eps)
     time z, iterates = newton_method(f, c, eps)
     print "root =", z
     print "f(c) = %r"%f(x=z)
     n = len(iterates)
     print "iterations =", n
     html(iterates)
     P = plot(f, (x,z-interval, z+interval), rgbcolor='blue')
     h = P.ymax(); j = P.ymin()
     L = sum(point((w,(n-1-float(i))/n*h), rgbcolor=(float(i)/n,0.2,0.3), pointsize=10) + \
             line([(w,h),(w,j)],rgbcolor='black',thickness=0.2) for i,w in enumerate(iterates))
     show(P + L, xmin=z-interval, xmax=z+interval)

newton.png

A contour map and 3d plot of two inverse distance functions

by William Stein

http://sagenb.org/home/pub/2823/

@interact
def _(q1=(-1,(-3,3)), q2=(-2,(-3,3)),
      cmap=['autumn', 'bone', 'cool', 'copper', 'gray', 'hot', 'hsv',
           'jet', 'pink', 'prism', 'spring', 'summer', 'winter']):
     x,y = var('x,y')
     f = q1/sqrt((x+1)^2 + y^2) + q2/sqrt((x-1)^2+(y+0.5)^2)
     C = contour_plot(f, (x,-2,2), (y,-2,2), plot_points=30, contours=15, cmap=cmap)
     show(C, figsize=3, aspect_ratio=1)
     show(plot3d(f, (x,-2,2), (y,-2,2)), figsize=5, viewer='tachyon')

mountains.png

A simple tangent line grapher

by Marshall Hampton

html('<h2>Tangent line grapher</h2>')
@interact
def tangent_line(f = input_box(default=sin(x)), xbegin = slider(0,10,1/10,0), xend = slider(0,10,1/10,10), x0 = slider(0, 1, 1/100, 1/2)):
    prange = [xbegin, xend]
    x0i = xbegin + x0*(xend-xbegin)
    var('x')
    df = diff(f)
    tanf = f(x0i) + df(x0i)*(x-x0i)
    fplot = plot(f, prange[0], prange[1])
    print 'Tangent line is y = ' + tanf._repr_()
    tanplot = plot(tanf, prange[0], prange[1], rgbcolor = (1,0,0))
    fmax = f.find_maximum_on_interval(prange[0], prange[1])[0]
    fmin = f.find_minimum_on_interval(prange[0], prange[1])[0]
    show(fplot + tanplot, xmin = prange[0], xmax = prange[1], ymax = fmax, ymin = fmin)

tangents.png

Numerical integrals with the midpoint rule

by Marshall Hampton

var('x')
@interact
def midpoint(n = slider(1,100,1,4), f = input_box(default = "x^2", type = str), start = input_box(default = "0", type = str), end = input_box(default = "1", type = str)):
    a = N(start)
    b = N(end)
    func = sage_eval(f, locals={'x':x})
    dx = (b-a)/n
    midxs = [q*dx+dx/2 + a for q in range(n)]
    midys = [func(x_val) for x_val in midxs]
    rects = Graphics()
    for q in range(n):
        xm = midxs[q]
        ym = midys[q]
        rects = rects + line([[xm-dx/2,0],[xm-dx/2,ym],[xm+dx/2,ym],[xm+dx/2,0]], rgbcolor = (1,0,0)) + point((xm,ym), rgbcolor = (1,0,0))
    min_y = find_minimum_on_interval(func,a,b)[0]
    max_y = find_maximum_on_interval(func,a,b)[0]
    html('<h3>Numerical integrals with the midpoint rule</h3>')
    html('$\int_{a}^{b}{f(x) dx} {\\approx} \sum_i{f(x_i) \Delta x}$')
    print "\n\nSage numerical answer: " + str(integral_numerical(func,a,b,max_points = 200)[0])
    print "Midpoint estimated answer: " + str(RDF(dx*sum([midys[q] for q in range(n)])))
    show(plot(func,a,b) + rects, xmin = a, xmax = b, ymin = min_y, ymax = max_y)

num_int.png

Numerical integrals with various rules

by Nick Alexander (based on the work of Marshall Hampton)

# by Nick Alexander (based on the work of Marshall Hampton)

var('x')
@interact
def midpoint(f = input_box(default = sin(x^2) + 2, type = SR),
    interval=range_slider(0, 10, 1, default=(0, 4), label="Interval"),
    number_of_subdivisions = slider(1, 20, 1, default=4, label="Number of boxes"),
    endpoint_rule = selector(['Midpoint', 'Left', 'Right', 'Upper', 'Lower'], nrows=1, label="Endpoint rule")):

    a, b = map(QQ, interval)
    t = sage.calculus.calculus.var('t')
    func = fast_callable(f(x=t), RDF, vars=[t])
    dx = ZZ(b-a)/ZZ(number_of_subdivisions)
   
    xs = []
    ys = []
    for q in range(number_of_subdivisions):
        if endpoint_rule == 'Left':
            xs.append(q*dx + a)
        elif endpoint_rule == 'Midpoint':
            xs.append(q*dx + a + dx/2)
        elif endpoint_rule == 'Right':
            xs.append(q*dx + a + dx)
        elif endpoint_rule == 'Upper':
            x = find_maximum_on_interval(func, q*dx + a, q*dx + dx + a)[1]
            xs.append(x)
        elif endpoint_rule == 'Lower':
            x = find_minimum_on_interval(func, q*dx + a, q*dx + dx + a)[1]
            xs.append(x)
    ys = [ func(x) for x in xs ]
         
    rects = Graphics()
    for q in range(number_of_subdivisions):
        xm = q*dx + dx/2 + a
        x = xs[q]
        y = ys[q]
        rects += line([[xm-dx/2,0],[xm-dx/2,y],[xm+dx/2,y],[xm+dx/2,0]], rgbcolor = (1,0,0))
        rects += point((x, y), rgbcolor = (1,0,0))
    min_y = min(0, find_minimum_on_interval(func,a,b)[0])
    max_y = max(0, find_maximum_on_interval(func,a,b)[0])

    # html('<h3>Numerical integrals with the midpoint rule</h3>')
    show(plot(func,a,b) + rects, xmin = a, xmax = b, ymin = min_y, ymax = max_y)
    
    def cap(x):
        # print only a few digits of precision
        if x < 1e-4:
            return 0
        return RealField(20)(x)
    sum_html = "%s \cdot \\left[ %s \\right]" % (dx, ' + '.join([ "f(%s)" % cap(i) for i in xs ]))
    num_html = "%s \cdot \\left[ %s \\right]" % (dx, ' + '.join([ str(cap(i)) for i in ys ]))
    
    numerical_answer = integral_numerical(func,a,b,max_points = 200)[0]
    estimated_answer = dx * sum([ ys[q] for q in range(number_of_subdivisions)])

    html(r'''
    <div class="math">
    \begin{align*}
      \int_{a}^{b} {f(x) \, dx} & = %s \\\
      \sum_{i=1}^{%s} {f(x_i) \, \Delta x}
      & = %s \\\
      & = %s \\\
      & = %s .
    \end{align*}
    </div>
    ''' % (numerical_answer, number_of_subdivisions, sum_html, num_html, estimated_answer))

num_int2.png

Some polar parametric curves

by Marshall Hampton. This is not very general, but could be modified to show other families of polar curves.

@interact
def para(n1 = slider(1,5,1,default = 2), n2 = slider(1,5,1,default = 3), a1 = slider(1,10,1/10,6/5), a2 = slider(1,10,1/10,6), b = slider(0,2,1/50,0)):
    var('t')
    html('$r=' + latex(b+sin(a1*t)^n1 + cos(a2*t)^n2)+'$')
    p = parametric_plot((cos(t)*(b+sin(a1*t)^n1 + cos(a2*t)^n2), sin(t)*(b+sin(a1*t)^n1 + cos(a2*t)^n2)), (t,0, 20*pi), plot_points = 1024, rgbcolor = (0,0,0))
    show(p, figsize = [5,5], xmin = -2-b, xmax = 2+b, ymin = -2-b, ymax = 2+b, axes = False)

polarcurves1.png

Function tool

Enter symbolic functions f, g, and a, a range, then click the appropriate button to compute and plot some combination of f, g, and a along with f and g. This is inspired by the Matlab funtool GUI.

x = var('x')
@interact
def _(f=sin(x), g=cos(x), xrange=input_box((0,1)), yrange='auto', a=1,
      action=selector(['f', 'df/dx', 'int f', 'num f', 'den f', '1/f', 'finv',
                       'f+a', 'f-a', 'f*a', 'f/a', 'f^a', 'f(x+a)', 'f(x*a)',
                       'f+g', 'f-g', 'f*g', 'f/g', 'f(g)'],
             width=15, nrows=5, label="h = "),
      do_plot = ("Draw Plots", True)):
    try:
        f = SR(f); g = SR(g); a = SR(a)
    except TypeError, msg:
        print msg[-200:]
        print "Unable to make sense of f,g, or a as symbolic expressions."
        return
    if not (isinstance(xrange, tuple) and len(xrange) == 2):
          xrange = (0,1)
    h = 0; lbl = ''
    if action == 'f':
        h = f
        lbl = 'f'
    elif action == 'df/dx':
        h = f.derivative(x)
        lbl = '\\frac{df}{dx}'
    elif action == 'int f':
        h = f.integrate(x)
        lbl = '\\int f dx'
    elif action == 'num f':
        h = f.numerator()
        lbl = '\\text{numer(f)}'
    elif action == 'den f':
        h = f.denominator()
        lbl = '\\text{denom(f)}'
    elif action == '1/f':
        h = 1/f
        lbl = '\\frac{1}{f}'
    elif action == 'finv':
        h = solve(f == var('y'), x)[0].rhs()
        lbl = 'f^{-1}(y)'
    elif action == 'f+a':
        h = f+a
        lbl = 'f + a'
    elif action == 'f-a':
        h = f-a
        lbl = 'f - a'
    elif action == 'f*a':
        h = f*a
        lbl = 'f \\times a'
    elif action == 'f/a':
        h = f/a
        lbl = '\\frac{f}{a}'
    elif action == 'f^a':
        h = f^a
        lbl = 'f^a'
    elif action == 'f^a':
        h = f^a
        lbl = 'f^a'
    elif action == 'f(x+a)':
        h = f(x+a)
        lbl = 'f(x+a)'
    elif action == 'f(x*a)':
        h = f(x*a)
        lbl = 'f(xa)'
    elif action == 'f+g':
        h = f+g
        lbl = 'f + g'
    elif action == 'f-g':
        h = f-g
        lbl = 'f - g'
    elif action == 'f*g':
        h = f*g
        lbl = 'f \\times g'
    elif action == 'f/g':
        h = f/g
        lbl = '\\frac{f}{g}'
    elif action == 'f(g)':
        h = f(g)
        lbl = 'f(g)'
    html('<center><font color="red">$f = %s$</font></center>'%latex(f))
    html('<center><font color="green">$g = %s$</font></center>'%latex(g))
    html('<center><font color="blue"><b>$h = %s = %s$</b></font></center>'%(lbl, latex(h)))
    if do_plot:
        P = plot(f, xrange, color='red', thickness=2) +  \
            plot(g, xrange, color='green', thickness=2) + \
            plot(h, xrange, color='blue', thickness=2)
        if yrange == 'auto':
            show(P, xmin=xrange[0], xmax=xrange[1])
        else:
            yrange = sage_eval(yrange)
            show(P, xmin=xrange[0], xmax=xrange[1], ymin=yrange[0], ymax=yrange[1])

funtool.png

Newton-Raphson Root Finding

by Neal Holtz

This allows user to display the Newton-Raphson procedure one step at a time. It uses the heuristic that, if any of the values of the controls change, then the procedure should be re-started, else it should be continued.

# ideas from 'A simple tangent line grapher' by Marshall Hampton
# http://wiki.sagemath.org/interact

State = Data = None   # globals to allow incremental changes in interaction data

@interact
def newtraph(f = input_box(default=8*sin(x)*exp(-x)-1, label='f(x)'), 
             xmin = input_box(default=0), 
             xmax = input_box(default=4*pi), 
             x0 = input_box(default=3, label='x0'),
             show_calcs = ("Show Calcs",True),
             step = ['Next','Prev', 'Reset'] ):
    global State, Data
    state = [f,xmin,xmax,x0,show_calcs]
    if (state != State) or (step == 'Reset'):   # when any of the controls change
        Data = [ 1 ]                            # reset the plot
        State = state
    elif step == 'Next':
        N, = Data
        Data = [ N+1 ]
    elif step == 'Prev':
        N, = Data
        if N > 1:
            Data = [ N-1 ]
    N, = Data
    df = diff(f)

    theplot = plot( f, xmin, xmax )
    theplot += text( '\n$x_0$', (x0,0), rgbcolor=(1,0,0),
                     vertical_alignment="bottom" if f(x0) < 0 else "top" )
    theplot += points( [(x0,0)], rgbcolor=(1,0,0) )

    Trace = []
    def Err( msg, Trace=Trace ):
        Trace.append( '<font color="red"><b>Error: %s!!</b></font>' % (msg,) )
    def Disp( s, color="blue", Trace=Trace ):
        Trace.append( """<font color="%s">$ %s $</font>""" % (color,s,) )

    Disp( """f(x) = %s""" % (latex(f),) )
    Disp( """f'(x) = %s""" % (latex(df),) )

    stop = False
    is_inf = False
    xi = x0
    for i in range(N):
        fi = RR(f(xi))
        fpi = RR(df(xi))

        theplot += points( [(xi,fi)], rgbcolor=(1,0,0) )
        theplot += line( [(xi,0),(xi,fi)], linestyle=':', rgbcolor=(1,0,0) ) # vert dotted line
        Disp( """i = %d""" % (i,) )
        Disp( """~~~~x_{%d} = %.4g""" % (i,xi) )
        Disp( """~~~~f(x_{%d}) = %.4g""" % (i,fi) )
        Disp( """~~~~f'(x_{%d}) = %.4g""" % (i,fpi) )

        if fpi == 0.0:
            Err( 'Derivative is 0 at iteration %d' % (i+1,) )
            is_inf = True
            show_calcs = True
        else:
            xip1 = xi - fi/fpi
            Disp( r"""~~~~x_{%d} = %.4g - ({%.4g})/({%.4g}) = %.4g""" % (i+1,xi,fi,fpi,xip1) )
            if abs(xip1) > 10*(xmax-xmin):
                Err( 'Derivative is too close to 0!' )
                is_inf = True
                show_calcs = True
            elif not ((xmin - 0.5*(xmax-xmin)) <= xip1 <= (xmax + 0.5*(xmax-xmin))):
                Err( 'x value out of range; probable divergence!' )
                stop = True
                show_calcs = True
 
        if is_inf:
            xl = xi - 0.05*(xmax-xmin)
            xr = xi + 0.05*(xmax-xmin)
            yl = yr = fi
        else:
            xl = min(xi,xip1) - 0.01*(xmax-xmin)
            xr = max(xi,xip1) + 0.01*(xmax-xmin)
            yl = -(xip1-xl)*fpi
            yr = (xr-xip1)*fpi
            theplot += text( '\n$x_{%d}$' % (i+1,), (xip1,0), rgbcolor=(1,0,0),
                             vertical_alignment="bottom" if f(xip1) < 0 else "top" )
            theplot += points( [(xip1,0)], rgbcolor=(1,0,0) )

        theplot += line( [(xl,yl),(xr,yr)], rgbcolor=(1,0,0) )  # tangent

        if stop or is_inf:
            break
        epsa = 100.0*abs((xip1-xi)/xip1)
        nsf = 2 - log(2.0*epsa)/log(10.0)
        Disp( r"""~~~~~~~~\epsilon_a = \left|(%.4g - %.4g)/%.4g\right|\times100\%% = %.4g \%%""" % (xip1,xi,xip1,epsa) )
        Disp( r"""~~~~~~~~num.~sig.~fig. \approx %.2g""" % (nsf,) )
        xi = xip1

    show( theplot, xmin=xmin, xmax=xmax )
    if show_calcs:
        for t in Trace:
            html( t )

newtraph.png

Coordinate Transformations

by Jason Grout

var('u v')
from sage.ext.fast_eval import fast_float
from functools import partial
@interact
def trans(x=input_box(u^2-v^2, label="x=",type=SR), \
         y=input_box(u*v+cos(u*v), label="y=",type=SR), \
         t_val=slider(0,10,0.2,6, label="Length of curves"), \
         u_percent=slider(0,1,0.05,label="<font color='red'>u</font>", default=.7),
         v_percent=slider(0,1,0.05,label="<font color='blue'>v</font>", default=.7),
         u_range=input_box(range(-5,5,1), label="u lines"),
         v_range=input_box(range(-5,5,1), label="v lines")):
     thickness=4
     u_val = min(u_range)+(max(u_range)-min(u_range))*u_percent
     v_val = min(v_range)+(max(v_range)-min(v_range))*v_percent
     t_min = -t_val
     t_max = t_val
     g1=sum([parametric_plot((i,v), (v,t_min,t_max), rgbcolor=(1,0,0)) for i in u_range])
     g2=sum([parametric_plot((u,i), (u,t_min,t_max), rgbcolor=(0,0,1)) for i in v_range])
     vline_straight=parametric_plot((u,v_val), (u,t_min,t_max), rgbcolor=(0,0,1), linestyle='-',thickness=thickness)
     uline_straight=parametric_plot((u_val, v), (v,t_min,t_max),rgbcolor=(1,0,0), linestyle='-',thickness=thickness)
 
     (g1+g2+vline_straight+uline_straight).save("uv_coord.png",aspect_ratio=1, figsize=[5,5], axes_labels=['$u$','$v$'])
     xuv = fast_float(x,'u','v')
     yuv = fast_float(y,'u','v')
     xvu = fast_float(x,'v','u')
     yvu = fast_float(y,'v','u')
     g3=sum([parametric_plot((partial(xuv,i),partial(yuv,i)), (v,t_min,t_max), rgbcolor=(1,0,0)) for i in u_range])
     g4=sum([parametric_plot((partial(xvu,i),partial(yvu,i)), (u,t_min,t_max), rgbcolor=(0,0,1)) for i in v_range])
     uline=parametric_plot((partial(xuv,u_val),partial(yuv,u_val)),(v,t_min,t_max),rgbcolor=(1,0,0), linestyle='-',thickness=thickness)
     vline=parametric_plot((partial(xvu,v_val),partial(yvu,v_val)), (u,t_min,t_max), rgbcolor=(0,0,1), linestyle='-',thickness=thickness)
     (g3+g4+vline+uline).save("xy_coord.png", aspect_ratio=1, figsize=[5,5], axes_labels=['$x$','$y$'])
     print jsmath("x=%s, \: y=%s"%(latex(x), latex(y)))
     print "<html><table><tr><td><img src='cell://uv_coord.png'/></td><td><img src='cell://xy_coord.png'/></td></tr></table></html>"

coordinate-transform-1.png coordinate-transform-2.png

Taylor Series

by Harald Schilly

var('x')
x0  = 0
f   = sin(x)*e^(-x)
p   = plot(f,-1,5, thickness=2)
dot = point((x0,f(x0)),pointsize=80,rgbcolor=(1,0,0))
@interact
def _(order=(1..12)):
    ft = f.taylor(x,x0,order)
    pt = plot(ft,-1, 5, color='green', thickness=2)
    html('$f(x)\;=\;%s$'%latex(f))
    html('$\hat{f}(x;%s)\;=\;%s+\mathcal{O}(x^{%s})$'%(x0,latex(ft),order+1))
    show(dot + p + pt, ymin = -.5, ymax = 1)

taylor_series_animated.gif

Illustration of the precise definition of a limit

by John Perry

I'll break tradition and put the image first. Apologies if this is Not A Good Thing.

snapshot_epsilon_delta.png

html("<h2>Limits: <i>ε-δ</i></h2>")
html("This allows you to estimate which values of <i>δ</i> guarantee that <i>f</i> is within <i>ε</i> units of a limit.")
html("<ul><li>Modify the value of <i>f</i> to choose a function.</li>")
html("<li>Modify the value of <i>a</i> to change the <i>x</i>-value where the limit is being estimated.</li>")
html("<li>Modify the value of <i>L</i> to change your guess of the limit.</li>")
html("<li>Modify the values of <i>δ</i> and <i>ε</i> to modify the rectangle.</li></ul>")
html("If the blue curve passes through the pink boxes, your values for <i>δ</i> and/or <i>ε</i> are probably wrong.")
@interact
def delta_epsilon(f = input_box(default=(x^2-x)/(x-1)), a=input_box(default=1), L = input_box(default=1), delta=input_box(label="δ",default=0.1), epsilon=input_box(label="ε",default=0.1), xm=input_box(label="<i>x</i><sub>min</sub>",default=-1), xM=input_box(label="<i>x</i><sub>max</sub>",default=4)):
    f_left_plot = plot(f,xm,a-delta/3,thickness=2)
    f_right_plot = plot(f,a+delta/3,xM,thickness=2)
    epsilon_line_1 = line([(xm,L-epsilon),(xM,L-epsilon)], rgbcolor=(0.5,0.5,0.5),linestyle='--')
    epsilon_line_2 = line([(xm,L+epsilon),(xM,L+epsilon)], rgbcolor=(0.5,0.5,0.5),linestyle='--')
    ym = min(f_right_plot.ymin(),f_left_plot.ymin())
    yM = max(f_right_plot.ymax(),f_left_plot.ymax())
    bad_region_1 = polygon([(a-delta,L+epsilon),(a-delta,yM),(a+delta,yM),(a+delta,L+epsilon)], rgbcolor=(1,0.6,0.6))
    bad_region_2 = polygon([(a-delta,L-epsilon),(a-delta,ym),(a+delta,ym),(a+delta,L-epsilon)], rgbcolor=(1,0.6,0.6))
    aL_point = point((a,L),rgbcolor=(1,0,0),pointsize=20)
    delta_line_1 = line([(a-delta,ym),(a-delta,yM)],rgbcolor=(0.5,0.5,0.5),linestyle='--')
    delta_line_2 = line([(a+delta,ym),(a+delta,yM)],rgbcolor=(0.5,0.5,0.5),linestyle='--')
    (f_left_plot +f_right_plot +epsilon_line_1 +epsilon_line_2 +delta_line_1 +delta_line_2 +aL_point +bad_region_1 +bad_region_2).show(xmin=xm,xmax=xM)

A graphical illustration of sin(x)/x -> 1 as x-> 0

by Wai Yan Pong

x=var('x')
@interact
def _(x = slider(-7/10,7/10,1/20,1/2)):
    html('<h3>A graphical illustration of $\lim_{x -> 0} \sin(x)/x =1$</h3>')
    html('Below is the unit circle, so the length of the <font color=red>red line</font> is |sin(x)|')
    html('and the length of the <font color=blue>blue line</font> is |tan(x)| where x is the length of the arc.') 
    html('From the picture, we see that |sin(x)| $\le$ |x| $\le$ |tan(x)|.')
    html('It follows easily from this that cos(x) $\le$ sin(x)/x $\le$ 1 when x is near 0.')
    html('As $\lim_{x ->0} \cos(x) =1$, we conclude that $\lim_{x -> 0} \sin(x)/x =1$.')
    if not (x == 0):
        pretty_print("sin(x)/x = "+str(sin(float(x))/float(x)))
    elif x == 0:
        pretty_print("The limit of sin(x)/x as x tends to 0 is 1.")
    C=circle((0,0),1, rgbcolor='black')
    mvp = (cos(x),sin(x));tpt = (1, tan(x))
    p1 = point(mvp, pointsize=30, rgbcolor='red'); p2 = point((1,0), pointsize=30, rgbcolor='red')
    line1 = line([(0,0),tpt], rgbcolor='black'); line2 = line([(cos(x),0),mvp], rgbcolor='red') 
    line3 = line([(0,0),(1,0)], rgbcolor='black'); line4 = line([(1,0),tpt], rgbcolor='blue')
    result = C+p1+p2+line1+line2+line3+line4
    result.show(aspect_ratio=1, figsize=[3,3], axes=False)

sinelimit.png

Quadric Surface Plotter

by Marshall Hampton. This is pretty simple, so I encourage people to spruce it up. In particular, it isn't set up to show all possible types of quadrics.

var('x,y,z')
quadrics = {'Ellipsoid':x^2+y^2+z^2-1,'Elliptic paraboloid':x^2+y^2-z,'Hyperbolic paraboloid':x^2-y^2-z, '1-Sheeted Hyperboloid':x^2+y^2-z^2-1,'2-Sheeted Hyperboloid':x^2-y^2-z^2-1, 'Cone':x^2+y^2-z^2}
@interact
def quads(q = selector(quadrics.keys()), a = slider(0,5,1/2,default = 1)):
    f = quadrics[q].subs({x:x*a^(1/2)})
    if a==0 or q=='Cone': html('<center>$'+latex(f)+' \ $'+ '(degenerate)</center>')
    else: html('<center>$'+latex(f)+'$ </center>')
    p = implicit_plot3d(f,(x,-2,2),(y,-2,2),(z,-2,2), plot_points = 75)
    show(p)

quadrics.png

The midpoint rule for numerically integrating a function of two variables

by Marshall Hampton

from sage.plot.plot3d.platonic import index_face_set
def cuboid(v1,v2,**kwds):
    """
    Cuboid defined by corner points v1 and v2.
    """
    ptlist = []
    for vi in (v1,v2):
        for vj in (v1,v2):
            for vk in (v1,v2):
                ptlist.append([vi[0],vj[1],vk[2]])
    f_incs = [[0, 2, 6, 4], [0, 1, 3, 2], [0, 1, 5, 4], [1, 3, 7, 5], [2, 3, 7, 6], [4, 5, 7, 6]]
    
    if 'aspect_ratio' not in kwds:
        kwds['aspect_ratio'] = [1,1,1]
    return index_face_set(f_incs,ptlist,enclosed = True, **kwds)
var('x,y')
R16 = RealField(16)
npi = RDF(pi)
sin,cos = math.sin,math.cos 
html("<h1>The midpoint rule for a function of two variables</h1>")
@interact
def midpoint2d(func = input_box('y*sin(x)/x+sin(y)',type=str,label='function of x and y'), nx = slider(2,20,1,3,label='x subdivisions'), ny = slider(2,20,1,3,label='y subdivisions'), x_start = slider(-10,10,.1,0), x_end = slider(-10,10,.1,3*npi), y_start= slider(-10,10,.1,0), y_end= slider(-10,10,.1,3*npi)):
    f = sage_eval('lambda x,y: ' + func)
    delx = (x_end - x_start)/nx
    dely = (y_end - y_start)/ny
    xvals = [RDF(x_start + (i+1.0/2)*delx) for i in range(nx)]
    yvals = [RDF(y_start + (i+1.0/2)*dely) for i in range(ny)]
    num_approx = 0
    cubs = []
    darea = delx*dely
    for xv in xvals:
        for yv in yvals:
            num_approx += f(xv,yv)*darea
            cubs.append(cuboid([xv-delx/2,yv-dely/2,0],[xv+delx/2,yv+dely/2,f(xv,yv)], opacity = .5, rgbcolor = (1,0,0)))
    html("$$\int_{"+str(R16(y_start))+"}^{"+str(R16(y_end))+"} "+ "\int_{"+str(R16(x_start))+"}^{"+str(R16(x_end))+"} "+func+"\ dx \ dy$$")
    html('<p style="text-align: center;">Numerical approximation: ' + str(num_approx)+'</p>')
    p1 = plot3d(f,(x,x_start,x_end),(y,y_start,y_end))
    show(p1+sum(cubs))

numint2d.png

Gaussian (Legendre) quadrature

by Jason Grout

The output shows the points evaluated using Gaussian quadrature (using a weight of 1, so using Legendre polynomials). The vertical bars are shaded to represent the relative weights of the points (darker = more weight). The error in the trapezoid, Simpson, and quadrature methods is both printed out and compared through a bar graph. The "Real" error is the error returned from scipy on the definite integral.

from scipy.special.orthogonal import p_roots
from scipy.integrate import quad, trapz, simps
from sage.ext.fast_eval import fast_float
from numpy import linspace
show_weight_graph=False
#  'Hermite': {'w': e**(-x**2), 'xmin': -numpy.inf, 'xmax': numpy.inf, 'func': h_roots},
#  'Laguerre': {'w': e**(-x), 'xmin': 0, 'xmax': numpy.inf, 'func': l_roots},

methods = {'Legendre': {'w': 1, 'xmin': -1, 'xmax': 1, 'func': p_roots},
                'Chebyshev': {'w': 1/sqrt(1-x**2), 'xmin': -1, 'xmax': 1, 'func': t_roots},
                'Chebyshev2': {'w': sqrt(1-x**2), 'xmin': -1, 'xmax': 1, 'func': u_roots},
                'Trapezoid': {'w': 1, 'xmin': -1, 'xmax': 1, 'func': lambda n: (linspace(-1r,1,n), numpy.array([1.0r]+[2.0r]*(n-2)+[1.0r])*1.0r/n)},
                'Simpson': {'w': 1, 'xmin': -1, 'xmax': 1, 'func': lambda n: (linspace(-1r,1,n), numpy.array([1.0r]+[4.0r,2.0r]*int((n-3.0r)/2.0r)+[4.0r,1.0r])*2.0r/(3.0r*n))}}
var("x")
def box(center, height, area,**kwds):
    width2 = 1.0*area/height/2.0
    return polygon([(center-width2,0),(center+width2,0),(center+width2,height),(center-width2,height)],**kwds)
    
    
@interact
def weights(n=slider(1,30,1,default=10),f=input_box(default=3*x+cos(10*x)),show_method=["Legendre", "Chebyshev", "Chebyshev2", "Trapezoid","Simpson"]):
    ff = fast_float(f,'x')
    method = methods[show_method]
    xcoords,w = (method['func'])(int(n))
    xmin = method['xmin']
    xmax = method['xmax']
    plot_min = max(xmin, -10)
    plot_max = min(xmax, 10)
    scaled_func = f*method['w']
    scaled_ff = fast_float(scaled_func)

    coords = zip(xcoords,w)
    max_weight = max(w)
    coords_scaled = zip(xcoords,w/max_weight)

    f_graph = plot(scaled_func,plot_min,plot_max)
    boxes = sum(box(x,ff(x),w*ff(x),rgbcolor=(0.5,0.5,0.5),alpha=0.3) for x,w in coords)
    stems = sum(line([(x,0),(x,scaled_ff(x))],rgbcolor=(1-y,1-y,1-y),thickness=2,markersize=6,alpha=y) for x,y in coords_scaled)
    points = sum([point([(x,0),(x,scaled_ff(x))],rgbcolor='black',pointsize=30) for x,_ in coords])
    graph = stems+points+f_graph+boxes
    if show_weight_graph:
        graph += line([(x,y) for x,y in coords_scaled], rgbcolor='green',alpha=0.4)
    
    show(graph,xmin=plot_min,xmax=plot_max)

    approximation = sum([w*ff(x) for x,w in coords])
    integral,integral_error = scipy.integrate.quad(scaled_ff, xmin, xmax)
    x_val = linspace(min(xcoords), max(xcoords),n)
    y_val = map(scaled_ff,x_val)
    trapezoid = integral-trapz(y_val, x_val)
    simpson = integral-simps(y_val, x_val)
    html("$$\sum_{i=1}^{i=%s}w_i\left(%s\\right)= %s\\approx %s =\int_{-1}^{1}%s \,dx$$"%(n,latex(f.subs(x="x_i")), approximation, integral, latex(scaled_func)))
    error_data = [trapezoid, simpson, integral-approximation,integral_error]
    print "Trapezoid: %s, Simpson: %s, \nMethod: %s, Real: %s"%tuple(error_data)
    show(bar_chart(error_data,width=1),ymin=min(error_data), ymax=max(error_data))

quadrature1.png quadrature2.png

Vector Calculus, 2-D Motion

By Rob Beezer

A fast_float() version is available in a worksheet

# 2-D motion and vector calculus
# Copyright 2009, Robert A. Beezer
# Creative Commons BY-SA 3.0 US
#
# 2009/02/15  Built on Sage 3.3.rc0
# 2009/02/17  Improvements from Jason Grout
#
# variable parameter is  t
# later at a particular value named t0
#
var('t')
#
# parameter range
#
start=0
stop=2*pi
#
# position vector definition
# edit here for new example
# example is wide ellipse
# adjust x, extents in final show()
#
position=vector( (4*cos(t), sin(t)) )
#
# graphic of the motion itself
#
path = parametric_plot( position(t).list(), (t, start, stop), color = "black" )
#
# derivatives of motion, lengths, unit vectors, etc
#
velocity = derivative( position(t) )
acceleration = derivative(velocity(t))
speed = velocity.norm()
speed_deriv = derivative(speed)
tangent = (1/speed)*velocity
dT = derivative(tangent(t))
normal = (1/dT.norm())*dT
#
# interact section
#   slider for parameter, 24 settings
#   checkboxes for various vector displays
#   computations at one value of parameter, t0
#
@interact
def _(t0 = slider(float(start), float(stop), float((stop-start)/24), float(start) , label = "Parameter"),
      pos_check = ("Position", True), 
      vel_check = ("Velocity", False),
      tan_check = ("Unit Tangent", False),
      nor_check = ("Unit Normal", False),
      acc_check = ("Acceleration", False),
      tancomp_check = ("Tangential Component", False),
      norcomp_check = ("Normal Component", False)
       ):
    #
    # location of interest
    #
    pos_tzero = position(t0)
    #
    # various scalar quantities at point
    #
    speed_component = speed(t0)
    tangent_component = speed_deriv(t0)
    normal_component = sqrt( acceleration(t0).norm()^2 - tangent_component^2 )
    curvature = normal_component/speed_component^2
    #
    # various vectors, mostly as arrows from the point
    #
    pos = arrow((0,0), pos_tzero, rgbcolor=(0,0,0))
    tan = arrow(pos_tzero, pos_tzero + tangent(t0), rgbcolor=(0,1,0) )
    vel = arrow(pos_tzero, pos_tzero + velocity(t0), rgbcolor=(0,0.5,0))
    nor = arrow(pos_tzero, pos_tzero + normal(t0), rgbcolor=(0.5,0,0))
    acc = arrow(pos_tzero, pos_tzero + acceleration(t0), rgbcolor=(1,0,1))
    tancomp = arrow(pos_tzero, pos_tzero + tangent_component*tangent(t0), rgbcolor=(1,0,1) )
    norcomp = arrow(pos_tzero, pos_tzero + normal_component*normal(t0), rgbcolor=(1,0,1))
    #
    # accumulate the graphic based on checkboxes
    #
    picture = path
    if pos_check:
        picture = picture + pos
    if vel_check:
        picture = picture + vel
    if tan_check:
        picture = picture+ tan
    if nor_check:
        picture = picture + nor
    if acc_check:
        picture = picture + acc
    if tancomp_check:
        picture = picture + tancomp
    if norcomp_check:
        picture = picture + norcomp
    #
    # print textual info
    #
    print "Position vector defined as r(t)=", position(t)
    print "Speed is ", N(speed(t0))
    print "Curvature is ", N(curvature)
    #
    # show accumulated graphical info
    # adjust x-,y- extents to get best plot
    #
    show(picture, xmin=-4,xmax=4, ymin=-1.5,ymax=1.5,aspect_ratio=1)

motion2d.png

Vector Calculus, 3-D Motion

by Rob Beezer

Available as a worksheet

# 3-D motion and vector calculus
# Copyright 2009, Robert A. Beezer
# Creative Commons BY-SA 3.0 US
#
#
# 2009/02/15  Built on Sage 3.3.rc0
# 2009/02/17  Improvements from Jason Grout
#
# variable parameter is  t
# later at a particular value named t0
# 
# un-comment double hash (##) to get
# time-consuming torsion computation
#
var('t')
#
# parameter range
#
start=-4*pi
stop=8*pi
#
# position vector definition
# edit here for new example
# example is wide ellipse
# adjust figsize in final show() to get accurate aspect ratio
#
a=1/(8*pi)
c=(3/2)*a
position=vector( (exp(a*t)*cos(t), exp(a*t)*sin(t), exp(c*t)) )
#
# graphic of the motion itself
#
path = parametric_plot3d( position(t).list(), (t, start, stop), color = "black" )
#
# derivatives of motion, lengths, unit vectors, etc
#
velocity = derivative( position(t) )
acceleration = derivative(velocity(t))
speed = velocity.norm()
speed_deriv = derivative(speed)
tangent = (1/speed)*velocity
dT = derivative(tangent(t))
normal = (1/dT.norm())*dT
binormal = tangent.cross_product(normal)
## dB = derivative(binormal(t))
#
# interact section
#   slider for parameter, 24 settings
#   checkboxes for various vector displays
#   computations at one value of parameter, t0
#
@interact
def _(t0 = slider(float(start), float(stop), float((stop-start)/24), float(start) , label = "Parameter"),
      pos_check = ("Position", True), 
      vel_check = ("Velocity", False),
      tan_check = ("Unit Tangent", False),
      nor_check = ("Unit Normal", False),
      bin_check = ("Unit Binormal", False),
      acc_check = ("Acceleration", False),
      tancomp_check = ("Tangential Component", False),
      norcomp_check = ("Normal Component", False)
       ):
    #
    # location of interest
    #
    pos_tzero = position(t0)
    #
    # various scalar quantities at point
    #
    speed_component = speed(t0)
    tangent_component = speed_deriv(t0)
    normal_component = sqrt( acceleration(t0).norm()^2 - tangent_component^2 )
    curvature = normal_component/speed_component^2
    ## torsion = (1/speed_component)*(dB(t0)).dot_product(normal(t0))
    #
    # various vectors, mostly as arrows from the point
    #
    pos = arrow3d((0,0,0), pos_tzero, rgbcolor=(0,0,0))
    tan = arrow3d(pos_tzero, pos_tzero + tangent(t0), rgbcolor=(0,1,0) )
    vel = arrow3d(pos_tzero, pos_tzero + velocity(t0), rgbcolor=(0,0.5,0))
    nor = arrow3d(pos_tzero, pos_tzero + normal(t0), rgbcolor=(0.5,0,0))
    bin = arrow3d(pos_tzero, pos_tzero + binormal(t0), rgbcolor=(0,0,0.5))
    acc = arrow3d(pos_tzero, pos_tzero + acceleration(t0), rgbcolor=(1,0,1))
    tancomp = arrow3d(pos_tzero, pos_tzero + tangent_component*tangent(t0), rgbcolor=(1,0,1) )
    norcomp = arrow3d(pos_tzero, pos_tzero + normal_component*normal(t0), rgbcolor=(1,0,1))
    #
    # accumulate the graphic based on checkboxes
    #
    picture = path
    if pos_check:
        picture = picture + pos
    if vel_check:
        picture = picture + vel
    if tan_check:
        picture = picture+ tan
    if nor_check:
        picture = picture + nor
    if bin_check:
        picture = picture + bin
    if acc_check:
        picture = picture + acc
    if tancomp_check:
        picture = picture + tancomp
    if norcomp_check:
        picture = picture + norcomp
    #
    # print textual info
    #
    print "Position vector: r(t)=", position(t)
    print "Speed is ", N(speed(t0))
    print "Curvature is ", N(curvature)
    ## print "Torsion is ", N(torsion)
    print
    print "Right-click on graphic to zoom to 400%"
    print "Drag graphic to rotate"
    #
    # show accumulated graphical info
    #
    show(picture, aspect_ratio=[1,1,1])

motion3d.png

Multivariate Limits by Definition

by John Travis

http://www.sagenb.org/home/pub/2828/

##  An interactive way to demonstrate limits of multivariate functions of the form z = f(x,y)
##
##  John Travis
##  Mississippi College
##  
##  Spring 2011
##
##  An updated version of this worksheet may be available at http://sagenb.mc.edu

#  Starting point for radius values before collapsing in as R approaches 0.
#  Functions ought to be "reasonable" within a circular domain of radius R surrounding 
#  the desired (x_0,y_0).

Rmax=2
@interact
def _(f=input_box(default=(x^3-y^3)/(x^2+y^2)),R=slider(0.1/10,Rmax,1/10,2),x0=(0),y0=(0)):

#   converting f to cylindrical coordinates.  
    g(r,t) = f(x=r*cos(t)+x0,y=r*sin(t)+y0)

#   Sage graphing transformation used to see the original surface.
    cylinder = (r*cos(t)+x0,r*sin(t)+y0,z)
    surface = plot3d(g,(t,0,2*pi),(r,1/100,Rmax),transformation=cylinder,opacity=0.2)

#   Regraph the surface for smaller and smaller radii controlled by the slider.
    limit = plot3d(g,(t,0,2*pi),(r,1/100,R),transformation=cylinder,rgbcolor=(0,1,0))
    
    show(surface+limit)
    print html('Enter $(x_0 ,y_0 )$ above and see what happens as R approaches zero.')
    print html('The surface has a limit as $(x,y)$ approaches ('+str(x0)+','+str(y0)+') if the green region collapses to a point')

3D_Limit_Defn.png

##  An interactive way to demonstrate limits of multivariate functions of the form z = f(x,y)
##  This one uses contour plots and so will work with functions that have asymptotic behavior.
##
##  John Travis
##  Mississippi College
##  
##  Spring 2011
##

#  An increasing number of contours for z = f(x,y) are utilized surrounding a desired (x_0,y_0).
#  A limit can be shown to exist at (x_0,y_0) provided the point stays trapped between adjacent 
#  contour lines as the number of lines increases.  If the contours change wildly near the point,
#  then a limit does not exist.
#  Looking for two different paths to approach (x_0,y_0) that utilize a different selection of colors
#  will help locate paths to use that exhibit the absence of a limit.

Rmax=2
@interact
def _(f=input_box(default=(x^3-y^3)/(x^2+y^2)),
      N=slider(5,100,1,10,label='Number of Contours'),
      x0=(0),y0=(0)):

    print html('Enter $(x_0 ,y_0 )$ above and see what happens as the number of contour levels increases.')
    print html('A surface will have a limit in the center of this graph provided there is not a sudden change in color there.')    

    surface = contour_plot(f,(x,x0-1,x0+1),(y,y0-1,y0+1),cmap=True,colorbar=True,fill=False,contours=N)
    limit_point = point((x0,y0),color='red',size=30)
    show(limit_point+surface)

3D_Limit_Defn_Contours.png

Directional Derivatives

This interact displays graphically a tangent line to a function, illustrating a directional derivative (the slope of the tangent line).

var('x,y,t,z')
f(x,y)=sin(x)*cos(y)

pif = float(pi)

line_thickness=3
surface_color='blue'
plane_color='purple'
line_color='red'
tangent_color='green'
gradient_color='orange'

@interact
def myfun(location=input_grid(1, 2, default=[0,0], label = "Location (x,y)", width=2), angle=slider(0, 2*pif, label = "Angle"), 
show_surface=("Show surface", True)):
    location3d = vector(location[0]+[0])
    location = location3d[0:2]
    direction3d = vector(RDF, [cos(angle), sin(angle), 0])
    direction=direction3d[0:2]
    cos_angle = math.cos(angle)
    sin_angle = math.sin(angle)
    df = f.gradient()
    direction_vector=line3d([location3d, location3d+direction3d], arrow_head=True, rgbcolor=line_color, thickness=line_thickness)
    curve_point = (location+t*direction).list()
    curve = parametric_plot(curve_point+[f(*curve_point)], (t,-3,3),color=line_color,thickness=line_thickness)
    plane = parametric_plot((cos_angle*x+location[0],sin_angle*x+location[1],t), (x, -3,3), (t,-3,3),opacity=0.8, color=plane_color)
    pt = point3d(location3d.list(),color='green', size=10)

    tangent_line = parametric_plot((location[0]+t*cos_angle, location[1]+t*sin_angle, f(*location)+t*df(*location)*(direction)), (t, -3,3), thickness=line_thickness, color=tangent_color)
    picture3d = direction_vector+curve+plane+pt+tangent_line

    picture2d = contour_plot(f(x,y), (x,-3,3),(y,-3,3), plot_points=100)
    picture2d += arrow(location.list(), (location+direction).list()) 
    picture2d += point(location.list(),rgbcolor='green',pointsize=40)
    if show_surface:
        picture3d += plot3d(f, (x,-3,3),(y,-3,3),opacity=0.7)
        
    dff = df(location[0], location[1])
    dff3d = vector(RDF,dff.list()+[0])
    picture3d += line3d([location3d, location3d+dff3d], arrow_head=True, rgbcolor=gradient_color, thickness=line_thickness)
    picture2d += arrow(location.list(), (location+dff).list(), rgbcolor=gradient_color, width=line_thickness)
    show(picture3d,aspect=[1,1,1], axes=True)
    show(picture2d, aspect_ratio=1)

directional derivative.png

3D graph with points and curves

By Robert Marik

This sagelet is handy when showing local, constrained and absolute maxima and minima in two variables. Available as a worksheet

%hide
%auto
x,y, t, u, v =var('x y t u v')
INI_func='x^2-2*x+y^2-2*y'
INI_box='-1,3.2,-1,3.2'
INI_points='(1,1,\'green\'),(3/2,3/2),(0,1),(1,0),(0,0,\'black\'),(3,0,\'black\'),(0,3,\'black\')'
INI_curves='(t,0,0,3,\'red\'),(0,t,0,3,\'green\'),(t,3-t,0,3)'
@interact
def _(func=input_box(INI_func,label="f(x,y)=",type=str),\
  bounds=input_box(INI_box,label="xmin,xmax,ymin,ymax",type=str),\
  st_points=input_box(INI_points,\
  label="points <br><small><small>(comma separated pairs, optionally with color)</small></small>", type=str),\
  bnd_curves=input_box(INI_curves,label="curves on boundary<br> <small><small><i>(x(t),y(t),tmin,tmax,'opt_color')</i></small></small>", type=str),\
 show_planes=("Show zero planes", False),  show_axes=("Show axes", True),  
 show_table=("Show table", True)):
 f=sage_eval('lambda x,y: ' + func)
 html(r'Function $ f(x,y)=%s$ '%latex(f(x,y)))
 xmin,xmax,ymin,ymax=sage_eval('('+bounds+')')
 A=plot3d(f(x,y),(x,xmin,xmax),(y,ymin,ymax),opacity=0.5)
 if not(bool(st_points=='')):
     st_p=sage_eval('('+st_points+',)')
     html(r'<table border=1>')
     for current in range(len(st_p)):
         point_color='red'
         if bool(len(st_p[current])==3):
              point_color=st_p[current][2]
         x0=st_p[current][0]
         y0=st_p[current][1]
         z0=f(x0,y0)
         if show_table:
              html(r'<tr><td>$\quad f(%s,%s)\quad $</td><td>$\quad %s$</td>\
              </tr>'%(latex(x0),latex(y0),z0.n()))
         A=A+point3d((x0,y0,z0),size=9,rgbcolor=point_color)           
     html(r'</table>')
 if not(bool(bnd_curves=='')):
     bnd_cc=sage_eval('('+bnd_curves+',)',locals={'t':t})
     for current in range(len(bnd_cc)):
         bnd_c=bnd_cc[current]+('black',) 
         A=A+parametric_plot3d((bnd_c[0],bnd_c[1],f(bnd_c[0],bnd_c[1])),\
             (t,bnd_c[2],bnd_c[3]),thickness=3,rgbcolor=bnd_c[4])
 if show_planes:
     A=A+plot3d(0,(x,xmin,xmax),(y,ymin,ymax),opacity=0.3,rgbcolor='gray')
     zmax=A.bounding_box()[1][2]
     zmin=A.bounding_box()[0][2]
     A=A+parametric_plot3d((u,0,v),(u,xmin,xmax),(v,zmin,zmax),opacity=0.3,rgbcolor='gray')
     A=A+parametric_plot3d((0,u,v),(u,ymin,ymax),(v,zmin,zmax),opacity=0.3,rgbcolor='gray')
 if show_axes:
     zmax=A.bounding_box()[1][2]
     zmin=A.bounding_box()[0][2]
     A=A+line3d([(xmin,0,0), (xmax,0,0)], arrow_head=True,rgbcolor='black') 
     A=A+line3d([(0,ymin,0), (0,ymax,0)], arrow_head=True,rgbcolor='black') 
     A=A+line3d([(0,0,zmin), (0,0,zmax)], arrow_head=True,rgbcolor='black') 
 show(A)

3Dgraph_with_points.png

Approximating function in two variables by differential

by Robert Marik

x,y=var('x y')
html('<h2>Explaining approximation of a function in two \
variables by differential</h2>')
html('Points x0 and y0 are values where the exact value of the function \
is known. Deltax and Deltay are displacements of the new point. Exact value \
and approximation by differential at shifted point are compared.')
@interact
def _(func=input_box('sqrt(x^3+y^3)',label="f(x,y)=",type=str), x0=1, y0=2, \
  deltax=slider(-1,1,0.01,0.2),\
  deltay=slider(-1,1,0.01,-0.4), xmin=0, xmax=2, ymin=0, ymax=3):
  f=sage_eval('lambda x,y: ' + func)
  derx(x,y)=diff(f(x,y),x)
  dery(x,y)=diff(f(x,y),y)
  tangent(x,y)=f(x0,y0)+derx(x0,y0)*(x-x0)+dery(x0,y0)*(y-y0)
  A=plot3d(f(x,y),(x,xmin,xmax),(y,ymin,ymax),opacity=0.5)
  B=plot3d(tangent(x,y),(x,xmin,xmax),(y,ymin,ymax),color='red',opacity=0.5)
  C=point3d((x0,y0,f(x0,y0)),rgbcolor='blue',size=9)
  CC=point3d((x0+deltax,y0+deltay,f(x0+deltax,y0+deltay)),rgbcolor='blue',size=9)
  D=point3d((x0+deltax,y0+deltay,tangent(x0+deltax,y0+deltay)),rgbcolor='red',size=9)
  exact_value_ori=f(x0,y0).n(digits=10)
  exact_value=f(x0+deltax,y0+deltay)
  approx_value=tangent(x0+deltax,y0+deltay).n(digits=10)
  abs_error=(abs(exact_value-approx_value))
  html(r'Function $ f(x,y)=%s \approx %s $ '%(latex(f(x,y)),latex(tangent(x,y))))
  html(r' $f %s = %s$'%(latex((x0,y0)),latex(exact_value_ori)))
  html(r'Shifted point $%s$'%latex(((x0+deltax),(y0+deltay))))
  html(r'Value of the function in shifted point is $%s$'%f(x0+deltax,y0+deltay))
  html(r'Value on the tangent plane in shifted point is $%s$'%latex(approx_value))
  html(r'Error is $%s$'%latex(abs_error)) 
  show(A+B+C+CC+D)

3D_differential.png

Taylor approximations in two variables

by John Palmieri

This displays the nth order Taylor approximation, for n from 1 to 10, of the function sin(x2 + y2) cos(y) exp(-(x2+y2)/2).

var('x y')
var('xx yy')
G = sin(xx^2 + yy^2) * cos(yy) * exp(-0.5*(xx^2+yy^2))
def F(x,y):
    return G.subs(xx=x).subs(yy=y)
plotF = plot3d(F, (0.4, 2), (0.4, 2), adaptive=True, color='blue')
@interact
def _(x0=(0.5,1.5), y0=(0.5, 1.5),
      order=(1..10)):
    F0 = float(G.subs(xx=x0).subs(yy=y0))
    P = (x0, y0, F0)
    dot = point3d(P, size=15, color='red')
    plot = dot + plotF
    approx = F0
    for n in range(1, order+1):
        for i in range(n+1):
            if i == 0:
                deriv = G.diff(yy, n)
            elif i == n:
                deriv = G.diff(xx, n)
            else:
                deriv = G.diff(xx, i).diff(yy, n-i)
            deriv = float(deriv.subs(xx=x0).subs(yy=y0))
            coeff = binomial(n, i)/factorial(n)
            approx += coeff * deriv * (x-x0)^i * (y-y0)^(n-i)
    plot += plot3d(approx, (x, 0.4, 1.6), 
             (y, 0.4, 1.6), color='red', opacity=0.7)
    html('$F(x,y) = e^{-(x^2+y^2)/2} \\cos(y) \\sin(x^2+y^2)$')
    show(plot)

taylor-3d.png

Volumes over non-rectangular domains

by John Travis

http://www.sagenb.org/home/pub/2829/

##  Graphing surfaces over non-rectangular domains 
##  John Travis
##  Spring 2011
##
##
##  An updated version of this worksheet may be available at http://sagenb.mc.edu
##
##  Interact allows the user to input up to two inequality constraints on the
##  domain when dealing with functional surfaces
##
##  User inputs:
##    f = "top" surface with z = f(x,y)
##    g = "bottom" surface with z = g(x,y)
##    condition1 = a single boundary constraint.  It should not include && or | to join two conditions.
##    condition2 = another boundary constraint.  If there is only one constraint, just enter something true
##        or even just an x (or y) in the entry blank.
##
## 

var('x,y')

#  f is the top surface
#  g is the bottom surface
global f,g

#  condition1 and condition2 are the inequality constraints.  It would be nice
#  to have any number of conditions connected by $$ or | 
global condition1,condition2

@interact
def _(f=input_box(default=(1/3)*x^2 + (1/4)*y^2 + 5,label='$f(x)=$'),
        g=input_box(default=-1*x+0*y,label='$g(x)=$'),
        condition1=input_box(default= x^2+y^2<8,label='$Constraint_1=$'),
        condition2=input_box(default=y<sin(3*x),label='$Constraint_2=$'),
        show_3d=('Stereographic',false), show_vol=('Shade volume',true), 
        dospin = ('Spin?',true), 
        clr = color_selector('#faff00', label='Volume Color', widget='colorpicker', hide_box=True), 
        xx = range_slider(-5, 5, 1, default=(-3,3), label='X Range'),
        yy = range_slider(-5, 5, 1, default=(-3,3), label='Y Range'),
        auto_update=false):
    
    #  This is the top function actually graphed by using NaN outside domain
    def F(x,y):
        if condition1(x=x,y=y):
            if condition2(x=x,y=y):
                return f(x=x,y=y)
            else:
                return -NaN
        else:
            return -NaN

    # This is the bottom function actually graphed by using NaN outside domain
    def G(x,y):
        if condition1(x=x,y=y):
            if condition2(x=x,y=y):
                return g(x=x,y=y)
            else:
                return -NaN
        else:
            return -NaN
        
    P = Graphics()      
      
#  The graph of the top and bottom surfaces
    P_list = []
    P_list.append(plot3d(F,(x,xx[0],xx[1]),(y,yy[0],yy[1]),color='blue',opacity=0.9))
    P_list.append(plot3d(G,(x,xx[0],xx[1]),(y,yy[0],yy[1]),color='gray',opacity=0.9))
    
#  Interpolate "layers" between the top and bottom if desired

    if show_vol:
        ratios = range(10)

        def H(x,y,r):
            return (1-r)*F(x=x,y=y)+r*G(x=x,y=y)
        P_list.extend([
        plot3d(lambda x,y: H(x,y,ratios[1]/10),(x,xx[0],xx[1]),(y,yy[0],yy[1]),opacity=0.2,color=clr),
        plot3d(lambda x,y: H(x,y,ratios[2]/10),(x,xx[0],xx[1]),(y,yy[0],yy[1]),opacity=0.2,color=clr),
        plot3d(lambda x,y: H(x,y,ratios[3]/10),(x,xx[0],xx[1]),(y,yy[0],yy[1]),opacity=0.2,color=clr),
        plot3d(lambda x,y: H(x,y,ratios[4]/10),(x,xx[0],xx[1]),(y,yy[0],yy[1]),opacity=0.2,color=clr),
        plot3d(lambda x,y: H(x,y,ratios[5]/10),(x,xx[0],xx[1]),(y,yy[0],yy[1]),opacity=0.2,color=clr),
        plot3d(lambda x,y: H(x,y,ratios[6]/10),(x,xx[0],xx[1]),(y,yy[0],yy[1]),opacity=0.2,color=clr),
        plot3d(lambda x,y: H(x,y,ratios[7]/10),(x,xx[0],xx[1]),(y,yy[0],yy[1]),opacity=0.2,color=clr),
        plot3d(lambda x,y: H(x,y,ratios[8]/10),(x,xx[0],xx[1]),(y,yy[0],yy[1]),opacity=0.2,color=clr),
        plot3d(lambda x,y: H(x,y,ratios[9]/10),(x,xx[0],xx[1]),(y,yy[0],yy[1]),opacity=0.2,color=clr)
        ])
#            P = plot3d(lambda x,y: H(x,y,ratio/10),(x,xx[0],xx[1]),(y,yy[0],yy[1]),opacity=0.1)
             
           
#  Now, accumulate all of the graphs into one grouped graph.        
    P = sum(P_list[i] for i in range(len(P_list)))


    if show_3d:
        show(P,frame=true,axes=false,xmin=xx[0],xmax=xx[1],ymin=yy[0],ymax=yy[1],stereo='redcyan',figsize=(6,9),viewer='jmol',spin=dospin)
    else:
        show(P,frame=true,axes=false,xmin=xx[0],xmax=xx[1],ymin=yy[0],ymax=yy[1],figsize=(6,9),viewer='jmol',spin=dospin)

3D_Irregular_Volume.png

Lateral Surface Area

by John Travis

http://www.sagenb.org/home/pub/2826/

##  Display and compute the area of the lateral surface between two surfaces
##  corresponding to the (scalar) line integral
##  John Travis
##  Spring 2011

var('x,y,t,s')
@interact
def _(f=input_box(default=6-4*x^2-y^2*2/5,label='$f(x,y) = $'),
        g=input_box(default=-2+sin(x)+sin(y),label='$g(x,y) = $'),
        u=input_box(default=cos(t),label='$u(t) = $'),
        v=input_box(default=2*sin(t),label='$v(t) = $'),
        a=input_box(default=0,label='$a = $'),
        b=input_box(default=3*pi/2,label='$b = $'),
        xx = range_slider(-5, 5, 1, default=(-1,1), label='x view'),
        yy = range_slider(-5, 5, 1, default=(-2,2), label='y view'),
        smoother=checkbox(default=false)):
        
    ds = sqrt(derivative(u(t),t)^2+derivative(v(t),t)^2)
    
#   Set up the integrand to compute the line integral, making all attempts
#   to simplify the result so that it looks as nice as possible.    
    A = (f(x=u(t),y=v(t))-g(x=u(t),y=v(t)))*ds.simplify_trig().simplify()
    
#   It is not expected that Sage can actually perform the line integral calculation.
#   So, the result displayed may not be a numerical value as expected.
#   Creating a good but harder example that "works" is desirable.
    line_integral = integral(A,t,a,b)
    line_integral_approx = numerical_integral(A,a,b)[0]
       
    html(r'<h4 align=center>Lateral Surface Area = $ %s $ </h4>'%latex(line_integral))

    html(r'<h4 align=center>Lateral Surface $ \approx $ %s</h2>'%str(line_integral_approx))

#   Plot the top function z = f(x,y) that is being integrated.
    G = plot3d(f,(x,xx[0],xx[1]),(y,yy[0],yy[1]),opacity=0.2)
    G += plot3d(g,(x,xx[0],xx[1]),(y,yy[0],yy[1]),opacity=0.2)

#   Add space curves on the surfaces "above" the domain curve (u(t),v(t)) 
    G += parametric_plot3d([u,v,g(x=u(t),y=v(t))],(t,a,b),thickness=2,color='red')
    G += parametric_plot3d([u,v,f(x=u(t),y=v(t))],(t,a,b),thickness=2,color='red')
    k=0
    if smoother:
        delw = 0.025
        lat_thick = 3
    else:
        delw = 0.10
        lat_thick = 10
    for w in (a,a+delw,..,b):
        G += parametric_plot3d([u(w),v(w),s*f(x=u(w),y=v(w))+(1-s)*g(x=u(w),y=v(w))],(s,0,1),thickness=lat_thick,color='yellow',opacity=0.9)
    show(G,spin=true)

Lateral_Surface.png

Parametric surface example

by Marshall Hampton

var('u,v')
npi = RDF(pi)
@interact
def viewer(mesh = checkbox(default = False, label = 'Show u,v meshlines'), uc = slider(-2,2,1/10,0, label = '<span style="color:red">Constant u value</span>'), vc = slider(-2,2,1/10,0, label = '<span style="color:green">Constant v value</span>'), functions = input_box([u,v^2,u^2+v])):
    f1(u,v) = functions[0]
    f2(u,v) = functions[1]
    f3(u,v) = functions[2]
    surface_plot = parametric_plot3d([f1,f2,f3], (u,-2,2), (v,-2,2), mesh = mesh, opacity = .8)
    constant_u = line3d([[f1(uc,q), f2(uc,q), f3(uc,q)] for q in srange(-2,2,.01)], rgbcolor = (1,0,0), thickness = 3)
    constant_v = line3d([[f1(q,vc), f2(q,vc), f3(q,vc)] for q in srange(-2,2,.01)], rgbcolor = (0,1,0), thickness = 3)
    show(surface_plot + constant_u + constant_v, frame = False)

parametric_surface.png

Line Integrals in 3D Vector Field

by John Travis

http://www.sagenb.org/home/pub/2827/

##  This worksheet interactively computes and displays the line integral of a 3D vector field 
##  over a given smooth curve C
##  
##  John Travis
##  Mississippi College
##  06/16/11
##
##  An updated version of this worksheet may be available at http://sagenb.mc.edu
##

var('x,y,z,t,s')

@interact
def _(M=input_box(default=x*y*z,label="$M(x,y,z)$"),
        N=input_box(default=-y*z,label="$N(x,y,z)$"),
        P=input_box(default=z*y,label="$P(x,y,z)$"),
        u=input_box(default=cos(t),label="$x=u(t)$"),
        v=input_box(default=2*sin(t),label="$y=v(t)$"),
        w=input_box(default=t*(t-2*pi)/pi,label="$z=w(t)$"),
        tt = range_slider(-2*pi, 2*pi, pi/6, default=(0,2*pi), label='t Range'),
        xx = range_slider(-5, 5, 1, default=(-1,1), label='x Range'),
        yy = range_slider(-5, 5, 1, default=(-2,2), label='y Range'),
        zz = range_slider(-5, 5, 1, default=(-3,1), label='z Range'),
        in_3d=checkbox(true)):

#   setup the parts and then compute the line integral
    dr = [derivative(u(t),t),derivative(v(t),t),derivative(w(t),t)]
    A = (M(x=u(t),y=v(t),z=w(t))*dr[0]
        +N(x=u(t),y=v(t),z=w(t))*dr[1]
        +P(x=u(t),y=v(t),z=w(t))*dr[2])
    global line_integral
    line_integral = integral(A(t=t),t,tt[0],tt[1])
    
    html(r'<h2 align=center>$ \int_{C} \left \langle M,N,P \right \rangle dr $ = $ %s $ </h2>'%latex(line_integral))
    G = plot_vector_field3d((M,N,P),(x,xx[0],xx[1]),(y,yy[0],yy[1]),(z,zz[0],zz[1]),plot_points=6)
    G += parametric_plot3d([u,v,w],(t,tt[0],tt[1]),thickness='5',color='yellow')
    if in_3d:
        show(G,stereo='redcyan',spin=true)
    else:
        show(G,perspective_depth=true)

3D_Line_Integral.png

interact/calculus (last edited 2020-08-11 14:10:09 by kcrisman)