Differences between revisions 42 and 112 (spanning 70 versions)
Revision 42 as of 2012-03-16 06:42:11
Size: 57329
Editor: jason
Comment:
Revision 112 as of 2020-06-02 14:44:51
Size: 62986
Editor: kcrisman
Comment:
Deletions are marked like this. Additions are marked like this.
Line 6: Line 6:
{{{#!html
<b>html test!</b>
}}}
Line 13: Line 10:
{{{ {{{#!sagecell
Line 30: Line 27:
            raise ValueError, "f must have a sign change in the interval (%s,%s)"%(a,b)             raise ValueError("f must have a sign change in the interval (%s,%s)"%(a,b))
Line 32: Line 29:
html("<h1>Double Precision Root Finding Using Bisection</h1>")
@interact
def _(f = cos(x) - x, a = float(0), b = float(1), eps=(-3,(-16..-1))):
pretty_print(html("<h1>Double Precision Root Finding Using Bisection</h1>"))
@interact
def _(f = cos(x) - x, a = float(0), b = float(1), eps=(-3,(-16, -1))):
Line 36: Line 33:
     print "eps = %s"%float(eps)      print("eps = %s" % float(eps))
Line 38: Line 35:
         time c, intervals = bisect_method(f, a, b, eps)          c, intervals = bisect_method(f, a, b, eps)
Line 40: Line 37:
         print "f must have opposite sign at the endpoints of the interval"          print("f must have opposite sign at the endpoints of the interval")
Line 43: Line 40:
         print "root =", c
         print "f(c) = %r"%f(
c)
         print "iterations =", len(intervals)
         print("root =", c)
         print("f(c) = %r" % f(x=c))
         print(
"iterations =", len(intervals))
Line 60: Line 57:
http://sagenb.org/home/pub/2824/

{{{
https://cloud.sagemath.com/projects/19575ea0-317e-402b-be57-368d04c113db/files/pub/2801-2901/2824-Double%20Precision%20Root%20Finding%20Using%20Newton's%20Method.sagews

{{{#!sagecell
Line 72: Line 69:
    for i in xrange(maxiter):     for i in range(maxiter):
Line 80: Line 77:
html("<h1>Double Precision Root Finding Using Newton's Method</h1>")
@interact
def _(f = x^2 - 2, c = float(0.5), eps=(-3,(-16..-1)), interval=float(0.5)):
pretty_print(html("<h1>Double Precision Root Finding Using Newton's Method</h1>"))
@interact
def _(f = x^2 - 2, c = float(0.5), eps=(-3,(-16, -1)), interval=float(0.5)):
Line 84: Line 81:
     print "eps = %s"%float(eps)
     time z, iterates = newton_method(f, c, eps)
     print "root =", z
     print "f(c) = %r"%f(x=z)
     print("eps = %s"%float(eps))
     z, iterates = newton_method(f, c, eps)
     print("root = {}".format(z))
     print("f(c) = %r" % f(x=z))
Line 89: Line 86:
     print "iterations =", n
     html(iterates)
     print("iterations = {}".format(n))
     pretty_print(html(iterates))
Line 102: Line 99:
http://sagenb.org/home/pub/2823/

{{{
https://cloud.sagemath.com/projects/19575ea0-317e-402b-be57-368d04c113db/files/pub/2801-2901/2823.sagews

{{{#!sagecell
Line 120: Line 117:
{{{
html('<h2>Tangent line grapher</h2>')
{{{#!sagecell
pretty_print(html('<h2>Tangent line grapher</h2>'))
Line 128: Line 125:
    tanf = f(x0i) + df(x0i)*(x-x0i)     tanf = f(x=x0i) + df(x=x0i)*(x-x0i)
Line 130: Line 127:
    print 'Tangent line is y = ' + tanf._repr_()     print('Tangent line is y = ' + tanf._repr_())
Line 132: Line 129:
    fmax = f.find_maximum_on_interval(prange[0], prange[1])[0]
    fmin = f.find_minimum_on_interval(prange[0], prange[1])[0]
    fmax = f.find_local_maximum(prange[0], prange[1])[0]
    fmin = f.find_local_minimum(prange[0], prange[1])[0]
Line 140: Line 137:
{{{ {{{#!sagecell
Line 149: Line 146:
    midys = [func(x_val) for x_val in midxs]     midys = [func(x=x_val) for x_val in midxs]
Line 155: Line 152:
    min_y = find_minimum_on_interval(func,a,b)[0]
    max_y = find_maximum_on_interval(func,a,b)[0]
    html('<h3>Numerical integrals with the midpoint rule</h3>')
    html('$\int_{a}^{b}{f(x) dx} {\\approx} \sum_i{f(x_i) \Delta x}$')
    print "\n\nSage numerical answer: " + str(integral_numerical(func,a,b,max_points = 200)[0])
    print "Midpoint estimated answer: " + str(RDF(dx*sum([midys[q] for q in range(n)])))
    min_y = min(0, find_local_minimum(func,a,b)[0])
    max_y = max(0, find_local_maximum(func,a,b)[0])
    pretty_print(html('<h3>Numerical integrals with the midpoint rule</h3>'))
    pretty_print(html(r'$\int_{a}^{b}{f(x) dx} {\approx} \sum_i{f(x_i) \Delta x}$'))
    print("\n\nSage numerical answer: " + str(integral_numerical(func,a,b,max_points = 200)[0]))
    print("Midpoint estimated answer: " + str(RDF(dx*sum([midys[q] for q in range(n)]))))
Line 168: Line 165:
{{{
# by Nick Alexander (based on the work of Marshall Hampton)
{{{#!sagecell
Line 179: Line 174:
    t = sage.calculus.calculus.var('t')     t = var('t')
Line 193: Line 188:
            x = find_maximum_on_interval(func, q*dx + a, q*dx + dx + a)[1]             x = find_local_maximum(func, q*dx + a, q*dx + dx + a)[1]
Line 196: Line 191:
            x = find_minimum_on_interval(func, q*dx + a, q*dx + dx + a)[1]             x = find_local_minimum(func, q*dx + a, q*dx + dx + a)[1]
Line 207: Line 202:
    min_y = min(0, find_minimum_on_interval(func,a,b)[0])
    max_y = max(0, find_maximum_on_interval(func,a,b)[0])
    min_y = min(0, find_local_minimum(func,a,b)[0])
    max_y = max(0, find_local_maximum(func,a,b)[0])
Line 224: Line 219:
    html(r'''
    <div class="math">
    \begin{align*}
  
\int_{a}^{b} {f(x) \, dx} & = %s \\\
  
\sum_{i=1}^{%s} {f(x_i) \, \Delta x}
     
& = %s \\\
  
& = %s \\\
  
& = %s .
   
\end{align*}
   
</div>
    '''
% (numerical_answer, number_of_subdivisions, sum_html, num_html, estimated_answer))
    pretty_print(html(r'''
    <div class="math"> 
    \begin{align*}   \int_{a}^{b} {f(x) \, dx} & = %s \\\   \sum_{i=1}^{%s} {f(x_i) \, \Delta x} & = %s \\\   & = %s \\\   & = %s . \end{align*} </div>'''
                     
% (numerical_answer, number_of_subdivisions, sum_html, num_html, estimated_answer)))
Line 241: Line 233:
{{{ {{{#!sagecell
Line 245: Line 237:
    html('$r=' + latex(b+sin(a1*t)^n1 + cos(a2*t)^n2)+'$')     pretty_print(html('$r=' + latex(b+sin(a1*t)^n1 + cos(a2*t)^n2)+'$'))
Line 254: Line 246:
{{{ {{{#!sagecell
Line 265: Line 257:
    except TypeError, msg:
        print msg[-200:]
        print "Unable to make sense of f,g, or a as symbolic expressions."
    except TypeError as msg:
        print(msg[-200:])
        print("Unable to make sense of f,g, or a as symbolic expressions.")
Line 332: Line 324:
    html('<center><font color="red">$f = %s$</font></center>'%latex(f))
    html('<center><font color="green">$g = %s$</font></center>'%latex(g))
    html('<center><font color="blue"><b>$h = %s = %s$</b></font></center>'%(lbl, latex(h)))
    pretty_print(html('<center><font color="red">$f = %s$</font></center>'%latex(f)))
    pretty_print(html('<center><font color="green">$g = %s$</font></center>'%latex(g)))
    pretty_print(html('<center><font color="blue"><b>$h = %s = %s$</b></font></center>'%(lbl, latex(h))))
Line 352: Line 344:
{{{ {{{#!sagecell
Line 382: Line 374:
                     vertical_alignment="bottom" if f(x0) < 0 else "top" )                      vertical_alignment="bottom" if f(x=x0) < 0 else "top" )
Line 398: Line 390:
        fi = RR(f(xi))
        fpi = RR(df(xi))
        fi = RR(f(x=xi))
        fpi = RR(df(x=xi))
Line 434: Line 426:
                             vertical_alignment="bottom" if f(xip1) < 0 else "top" )                              vertical_alignment="bottom" if f(x=xip1) < 0 else "top" )
Line 450: Line 442:
            html( t )             pretty_print(html( t ))
Line 458: Line 450:
{{{ {{{#!sagecell
Line 460: Line 452:
# polar coordinates
#(x,y)=(u*cos(v),u*sin(v)); (u_range,v_range)=([0..6],[0..2*pi,step=pi/12])

# weird example
(x,y)=(u^2-v^2,u*v+cos(u*v)); (u_range,v_range)=([-5..5],[-5..5])

thickness=4
square_length=.05
Line 463: Line 464:
def trans(x=input_box(u^2-v^2, label="x=",type=SR), \
         y=input_box(u*v+cos(u*v), label="y=",type=SR), \
         t_val=slider(0,10,0.2,6, label="Length of curves"), \
         u_percent=slider(0,1,0.05,label="<font color='red'>u</font>", default=.7),
         v_percent=slider(0,1,0.05,label="<font color='blue'>v</font>", default=.7),
         u_range=input_box(range(-5,5,1), label="u lines"),
         v_range=input_box(range(-5,5,1), label="v lines")):
     thickness=4
     u_val = min(u_range)+(max(u_range)-min(u_range))*u_percent
     v_val = min(v_range)+(max(v_range)-min(v_range))*v_percent
     t_min = -t_val
     t_max = t_val
     g1=sum([parametric_plot((i,v), (v,t_min,t_max), rgbcolor=(1,0,0)) for i in u_range])
     g2=sum([parametric_plot((u,i), (u,t_min,t_max), rgbcolor=(0,0,1)) for i in v_range])
     vline_straight=parametric_plot((u,v_val), (u,t_min,t_max), rgbcolor=(0,0,1), linestyle='-',thickness=thickness)
     uline_straight=parametric_plot((u_val, v), (v,t_min,t_max),rgbcolor=(1,0,0), linestyle='-',thickness=thickness)
 
     (g1+g2+vline_straight+uline_straight).save("uv_coord.png",aspect_ratio=1, figsize=[5,5], axes_labels=['$u$','$v$'])
     xuv = fast_float(x,'u','v')
     yuv = fast_float(y,'u','v')
     xvu = fast_float(x,'v','u')
     yvu = fast_float(y,'v','u')
     g3=sum([parametric_plot((partial(xuv,i),partial(yuv,i)), (v,t_min,t_max), rgbcolor=(1,0,0)) for i in u_range])
     g4=sum([parametric_plot((partial(xvu,i),partial(yvu,i)), (u,t_min,t_max), rgbcolor=(0,0,1)) for i in v_range])
     uline=parametric_plot((partial(xuv,u_val),partial(yuv,u_val)),(v,t_min,t_max),rgbcolor=(1,0,0), linestyle='-',thickness=thickness)
     vline=parametric_plot((partial(xvu,v_val),partial(yvu,v_val)), (u,t_min,t_max), rgbcolor=(0,0,1), linestyle='-',thickness=thickness)
     (g3+g4+vline+uline).save("xy_coord.png", aspect_ratio=1, figsize=[5,5], axes_labels=['$x$','$y$'])
     print jsmath("x=%s, \: y=%s"%(latex(x), latex(y)))
     print "<html><table><tr><td><img src='cell://uv_coord.png'/></td><td><img src='cell://xy_coord.png'/></td></tr></table></html>"
def trans(x=input_box(x, label="x",type=SR),
         y=input_box(y, label="y",type=SR),
         u_percent=slider(0,1,0.05,label="u", default=.7),
         v_percent=slider(0,1,0.05,label="v", default=.7),
         t_val=slider(0,10,0.2,6, label="Length"),
         u_range=input_box(u_range, label="u lines"),
         v_range=input_box(v_range, label="v lines")):

    x(u,v)=x
    y(u,v)=y
    u_val = min(u_range)+(max(u_range)-min(u_range))*u_percent
    v_val = min(v_range)+(max(v_range)-min(v_range))*v_percent
    t_min = -t_val
    t_max = t_val
    uvplot=sum([parametric_plot((i,v), (v,t_min,t_max), color='red',axes_labels=['u','v'],figsize=[5,5]) for i in u_range])
    uvplot+=sum([parametric_plot((u,i), (u,t_min,t_max), color='blue',axes_labels=['u','v']) for i in v_range])
    uvplot+=parametric_plot((u,v_val), (u,t_min,t_max), rgbcolor=(0,0,1), linestyle='-',thickness=thickness)
    uvplot+=parametric_plot((u_val, v), (v,t_min,t_max),rgbcolor=(1,0,0), linestyle='-',thickness=thickness)
    pt=vector([u_val,v_val])
    du=vector([(t_max-t_min)*square_length,0])
    dv=vector([0,(t_max-t_min)*square_length])
    uvplot+=polygon([pt,pt+dv,pt+du+dv,pt+du],color='purple',alpha=0.7)
    uvplot+=line([pt,pt+dv,pt+du+dv,pt+du],color='green')

    T(u,v)=(x,y)
    xuv = fast_float(x,'u','v')
    yuv = fast_float(y,'u','v')
    xvu = fast_float(x,'v','u')
    yvu = fast_float(y,'v','u')
    xyplot=sum([parametric_plot((partial(xuv,i),partial(yuv,i)), (v,t_min,t_max), color='red', axes_labels=['x','y'],figsize=[5,5]) for i in u_range])
    xyplot+=sum([parametric_plot((partial(xvu,i),partial(yvu,i)), (u,t_min,t_max), color='blue') for i in v_range])
    xyplot+=parametric_plot((partial(xuv,u_val),partial(yuv,u_val)),(v,t_min,t_max),color='red', linestyle='-',thickness=thickness)
    xyplot+=parametric_plot((partial(xvu,v_val),partial(yvu,v_val)), (u,t_min,t_max), color='blue', linestyle='-',thickness=thickness)
    jacobian(u,v)=abs(T.diff().det()).simplify_full()
    t_vals=[0..1,step=t_val*.01]
    vertices=[(x(*c),y(*c)) for c in [pt+t*dv for t in t_vals]]
    vertices+=[(x(*c),y(*c)) for c in [pt+dv+t*du for t in t_vals]]
    vertices+=[(x(*c),y(*c)) for c in [pt+(1-t)*dv+du for t in t_vals]]
    vertices+=[(x(*c),y(*c)) for c in [pt+(1-t)*du for t in t_vals]]
    xyplot+=polygon(vertices,color='purple',alpha=0.7)
    xyplot+=line(vertices,color='green')
    pretty_print(html("$T(u,v)=%s$"%(latex(T(u,v)))))
    pretty_print(html("Jacobian: $%s$"%latex(jacobian(u,v))))
    pretty_print(html("A very small region in $xy$ plane is approximately %0.4g times the size of the corresponding region in the $uv$ plane"%jacobian(u_val,v_val).n()))
    show(graphics_array([uvplot,xyplot]))
Line 500: Line 517:
{{{ {{{#!sagecell
Line 505: Line 522:
dot = point((x0,f(x0)),pointsize=80,rgbcolor=(1,0,0))
@interact
def _(order=(1..12)):
dot = point((x0,f(x=x0)),pointsize=80,rgbcolor=(1,0,0))
@interact
def _(order=[1..12]):
Line 510: Line 527:
    html('$f(x)\;=\;%s$'%latex(f))
    html('$\hat{f}(x;%s)\;=\;%s+\mathcal{O}(x^{%s})$'%(x0,latex(ft),order+1))
    pretty_print(html(r'$f(x)\;=\;%s$'%latex(f)))
    pretty_print(html(r'$\hat{f}(x;%s)\;=\;%s+\mathcal{O}(x^{%s})$'%(x0,latex(ft),order+1)))
Line 523: Line 540:
{{{
html("<h2>Limits: <i>ε-δ</i></h2>")
html("This allows you to estimate which values of <i>δ</i> guarantee that <i>f</i> is within <i>ε</i> units of a limit.")
html("<ul><li>Modify the value of <i>f</i> to choose a function.</li>")
html("<li>Modify the value of <i>a</i> to change the <i>x</i>-value where the limit is being estimated.</li>")
html("<li>Modify the value of <i>L</i> to change your guess of the limit.</li>")
html("<li>Modify the values of <i>δ</i> and <i>ε</i> to modify the rectangle.</li></ul>")
html("If the blue curve passes through the pink boxes, your values for <i>δ</i> and/or <i>ε</i> are probably wrong.")
@interact
def delta_epsilon(f = input_box(default=(x^2-x)/(x-1)), a=input_box(default=1), L = input_box(default=1), delta=input_box(label="δ",default=0.1), epsilon=input_box(label=",default=0.1), xm=input_box(label="<i>x</i><sub>min</sub>",default=-1), xM=input_box(label="<i>x</i><sub>max</sub>",default=4)):
{{{#!sagecell
pretty_print(html("<h2>Limits: <i>ε-δ</i></h2>"))
pretty_print(html("This allows you to estimate which values of <i>δ</i> guarantee that <i>f</i> is within <i>ε</i> units of a limit."))
pretty_print(html("<ul><li>Modify the value of <i>f</i> to choose a function.</li>"))
pretty_print(html("<li>Modify the value of <i>a</i> to change the <i>x</i>-value where the limit is being estimated.</li>"))
pretty_print(html("<li>Modify the value of <i>L</i> to change your guess of the limit.</li>"))
pretty_print(html("<li>Modify the values of <i>δ</i> and <i>ε</i> to modify the rectangle.</li></ul>"))
pretty_print(html("If the blue curve passes through the pink boxes, your values for <i>δ</i> and/or <i>ε</i> are probably wrong."))
@interact
def delta_epsilon(f = input_box(default=(x^2-x)/(x-1), label="$f$"), a=input_box(default=1, label="$a$"), L = input_box(default=1, label="$L$"), delta=input_box(label=r"$\delta$",default=0.1), epsilon=input_box(label=r"$\varepsilon$",default=0.1), xm=input_box(label=r"$x_{min}$",default=-1), xM=input_box(label=r"$x_{max}$",default=4)):
Line 550: Line 567:
{{{ {{{#!sagecell
Line 554: Line 571:
    html('<h3>A graphical illustration of $\lim_{x -> 0} \sin(x)/x =1$</h3>')
    html('Below is the unit circle, so the length of the <font color=red>red line</font> is |sin(x)|')
    html('and the length of the <font color=blue>blue line</font> is |tan(x)| where x is the length of the arc.') 
    html('From the picture, we see that |sin(x)| $\le$ |x| $\le$ |tan(x)|.')
    html('It follows easily from this that cos(x) $\le$ sin(x)/x $\le$ 1 when x is near 0.')
    html('As $\lim_{x ->0} \cos(x) =1$, we conclude that $\lim_{x -> 0} \sin(x)/x =1$.')
    pretty_print(html(r'<h3>A graphical illustration of $\lim_{x -> 0} \sin(x)/x =1$</h3>'))
    pretty_print(html(r'Below is the unit circle, so the length of the <font color=red>red line</font> is |sin(x)|'))
    pretty_print(html(r'and the length of the <font color=blue>blue line</font> is |tan(x)| where x is the length of the arc.'))
    pretty_print(html(r'From the picture, we see that |sin(x)| $\le$ |x| $\le$ |tan(x)|.'))
    pretty_print(html(r'It follows easily from this that cos(x) $\le$ sin(x)/x $\le$ 1 when x is near 0.'))
    pretty_print(html(r'As $\lim_{x ->0} \cos(x) =1$, we conclude that $\lim_{x -> 0} \sin(x)/x =1$.'))
Line 576: Line 593:
{{{ {{{#!sagecell
Line 580: Line 597:
def quads(q = selector(quadrics.keys()), a = slider(0,5,1/2,default = 1)): def quads(q = selector(list(quadrics)), a = slider(0,5,1/2,default = 1)):
Line 582: Line 599:
    if a==0 or q=='Cone': html('<center>$'+latex(f)+' \ $'+ '(degenerate)</center>')
    else: html('<center>$'+latex(f)+'$ </center>')
    if a==0 or q=='Cone': pretty_print(latex(f), "   (degenerate)")
    else: pretty_print(latex(f))
Line 591: Line 608:
{{{ {{{#!sagecell
Line 610: Line 627:
sin,cos = math.sin,math.cos
html("<h1>The midpoint rule for a function of two variables</h1>")

pretty_pr
int(html(r"<h1>The midpoint rule for a function of two variables</h1>"))
Line 626: Line 643:
    html("$$\int_{"+str(R16(y_start))+"}^{"+str(R16(y_end))+"} "+ "\int_{"+str(R16(x_start))+"}^{"+str(R16(x_end))+"} "+func+"\ dx \ dy$$")
    html('<p style="text-align: center;">Numerical approximation: ' + str(num_approx)+'</p>')
    pretty_print(html(r"$\int_{"+str(R16(y_start))+r"}^{"+str(R16(y_end))+r"} "+ r"\int_{"+str(R16(x_start))+r"}^{"+str(R16(x_end))+r"} "+latex(SR(func))+r"\ dx \ dy$"))
    pretty_print(html(r'<p style="text-align: center;">Numerical approximation: ' + str(num_approx)+r'</p>'))
Line 637: Line 654:
{{{
from scipy.special.orthogonal import p_roots
{{{#!sagecell
import scipy
import numpy

from scipy.special.orthogonal import p_roots, t_roots, u_roots
Line 641: Line 660:
from numpy import linspace from numpy import linspace, asanyarray, diff
Line 647: Line 666:
            'Chebyshev': {'w': 1/sqrt(1-x**2), 'xmin': -1, 'xmax': 1, 'func': t_roots},
                'Chebyshev2': {'w': sqrt(1-x**2), 'xmin': -1, 'xmax': 1, 'func': u_roots},
                'Trapezoid': {'w': 1, 'xmin': -1, 'xmax': 1, 'func': lambda n: (linspace(-1r,1,n), numpy.array([1.0r]+[2.0r]*(n-2)+[1.0r])*1.0r/n)},
                'Simpson': {'w': 1, 'xmin': -1, 'xmax': 1, 'func': lambda n: (linspace(-1r,1,n), numpy.array([1.0r]+[4.0r,2.0r]*int((n-3.0r)/2.0r)+[4.0r,1.0r])*2.0r/(3.0r*n))}}
     'Chebyshev': {'w': 1/sqrt(1-x**2), 'xmin': -1, 'xmax': 1, 'func': t_roots},
     'Chebyshev2': {'w': sqrt(1-x**2), 'xmin': -1, 'xmax': 1, 'func': u_roots},
     'Trapezoid': {'w': 1, 'xmin': -1, 'xmax': 1,          'func': lambda n: (linspace(-1r,1,n), numpy.array([1.0r]+[2.0r]*(n-2)+[1.0r])*1.0r/n)},
     'Simpson': {'w': 1, 'xmin': -1, 'xmax': 1,          'func': lambda n: (linspace(-1r,1,n),
            
numpy.array([1.0r]+[4.0r,2.0r]*int((n-3.0r)/2.0r)+[4.0r,1.0r])*2.0r/(3.0r*n))}}
Line 654: Line 676:
    return polygon([(center-width2,0),(center+width2,0),(center+width2,height),(center-width2,height)],**kwds)     return polygon([(center-width2,0),
        
(center+width2,0),(center+width2,height),(center-width2,height)],**kwds)
Line 658: Line 681:
def weights(n=slider(1,30,1,default=10),f=input_box(default=3*x+cos(10*x)),show_method=["Legendre", "Chebyshev", "Chebyshev2", "Trapezoid","Simpson"]): def weights(n=slider(1,30,1,default=10),f=input_box(default=3*x+cos(10*x),type=SR),
    
show_method=["Legendre", "Chebyshev", "Chebyshev2", "Trapezoid","Simpson"]):
Line 667: Line 691:
    scaled_ff = fast_float(scaled_func)     scaled_ff = fast_float(scaled_func, 'x')
Line 675: Line 699:
    stems = sum(line([(x,0),(x,scaled_ff(x))],rgbcolor=(1-y,1-y,1-y),thickness=2,markersize=6,alpha=y) for x,y in coords_scaled)
    points = sum([point([(x,0),(x,scaled_ff(x))],rgbcolor='black',pointsize=30) for x,_ in coords])
    stems = sum(line([(x,0),(x,scaled_ff(x))],rgbcolor=(1-y,1-y,1-y),
        
thickness=2,markersize=6,alpha=y) for x,y in coords_scaled)
    points = sum([point([(x,0),
        
(x,scaled_ff(x))],rgbcolor='black',pointsize=30) for x,_ in coords])
Line 681: Line 707:
    show(graph,xmin=plot_min,xmax=plot_max)     show(graph,xmin=plot_min,xmax=plot_max,aspect_ratio="auto")
Line 686: Line 712:
    y_val = map(scaled_ff,x_val)     y_val = [*map(scaled_ff,x_val)]
Line 689: Line 715:
    html("$$\sum_{i=1}^{i=%s}w_i\left(%s\\right)= %s\\approx %s =\int_{-1}^{1}%s \,dx$$"%(n,latex(f.subs(x="x_i")), approximation, integral, latex(scaled_func)))     pretty_print(html(r"$$\sum_{i=1}^{i=%s}w_i\left(%s\right)= %s\approx %s =\int_{-1}^{1}%s \,dx$$"%(n,
        
latex(f), approximation, integral, latex(scaled_func))))
Line 691: Line 718:
    print "Trapezoid: %s, Simpson: %s, \nMethod: %s, Real: %s"%tuple(error_data)     print("Trapezoid: %s, Simpson: %s, \nMethod: %s, Real: %s" % tuple(error_data))
Line 702: Line 729:
{{{ {{{#!sagecell
Line 729: Line 756:
path = parametric_plot( position(t).list(), (t, start, stop), color = "black" ) path = parametric_plot( position.list(), (t, start, stop), color = "black" )
Line 733: Line 760:
velocity = derivative( position(t) )
acceleration = derivative(velocity(t))
velocity = derivative(position, t)
acceleration = derivative(velocity, t)
Line 736: Line 763:
speed_deriv = derivative(speed) speed_deriv = derivative(speed, t)
Line 738: Line 765:
dT = derivative(tangent(t)) dT = derivative(tangent, t)
Line 759: Line 786:
    pos_tzero = position(t0)     pos_tzero = position(t=t0)
Line 763: Line 790:
    speed_component = speed(t0)
    tangent_component = speed_deriv(t0)
    normal_component = sqrt( acceleration(t0).norm()^2 - tangent_component^2 )
    speed_component = speed(t=t0)
    tangent_component = speed_deriv(t=t0)
    normal_component = sqrt( acceleration(t=t0).norm()^2 - tangent_component^2 )
Line 771: Line 798:
    tan = arrow(pos_tzero, pos_tzero + tangent(t0), rgbcolor=(0,1,0) )
    vel = arrow(pos_tzero, pos_tzero + velocity(t0), rgbcolor=(0,0.5,0))
    nor = arrow(pos_tzero, pos_tzero + normal(t0), rgbcolor=(0.5,0,0))
    acc = arrow(pos_tzero, pos_tzero + acceleration(t0), rgbcolor=(1,0,1))
    tancomp = arrow(pos_tzero, pos_tzero + tangent_component*tangent(t0), rgbcolor=(1,0,1) )
    norcomp = arrow(pos_tzero, pos_tzero + normal_component*normal(t0), rgbcolor=(1,0,1))
    tan = arrow(pos_tzero, pos_tzero + tangent(t=t0), rgbcolor=(0,1,0) )
    vel = arrow(pos_tzero, pos_tzero + velocity(t=t0), rgbcolor=(0,0.5,0))
    nor = arrow(pos_tzero, pos_tzero + normal(t=t0), rgbcolor=(0.5,0,0))
    acc = arrow(pos_tzero, pos_tzero + acceleration(t=t0), rgbcolor=(1,0,1))
    tancomp = arrow(pos_tzero, pos_tzero + tangent_component*tangent(t=t0), rgbcolor=(1,0,1) )
    norcomp = arrow(pos_tzero, pos_tzero + normal_component*normal(t=t0), rgbcolor=(1,0,1))
Line 798: Line 825:
    print "Position vector defined as r(t)=", position(t)
    print "Speed is ", N(speed(t0
))
    print "Curvature is ", N(curvature)
    print("Position vector defined as r(t)={}".format(position))
    print("Speed is {}".format(N(speed(t=t0))))
    print(
"Curvature is {}".format(N(curvature)))
Line 814: Line 841:
{{{ {{{#!sagecell
Line 830: Line 857:
assume(t, 'real')
Line 847: Line 875:
path = parametric_plot3d( position(t).list(), (t, start, stop), color = "black" ) path = parametric_plot3d( position.list(), (t, start, stop), color = "black" )
Line 851: Line 879:
velocity = derivative( position(t) )
acceleration = derivative(velocity(t))
velocity = derivative( position, t)
acceleration = derivative(velocity, t)
Line 854: Line 882:
speed_deriv = derivative(speed) speed_deriv = derivative(speed, t)
Line 856: Line 884:
dT = derivative(tangent(t)) dT = derivative(tangent, t)
Line 859: Line 887:
## dB = derivative(binormal(t)) ## dB = derivative(binormal, t)
Line 880: Line 908:
    pos_tzero = position(t0)     pos_tzero = position(t=t0)
Line 884: Line 912:
    speed_component = speed(t0)
    tangent_component = speed_deriv(t0)
    normal_component = sqrt( acceleration(t0).norm()^2 - tangent_component^2 )
    speed_component = speed(t=t0)
    tangent_component = speed_deriv(t=t0)
    normal_component = sqrt( acceleration(t=t0).norm()^2 - tangent_component^2 )
Line 893: Line 921:
    tan = arrow3d(pos_tzero, pos_tzero + tangent(t0), rgbcolor=(0,1,0) )
    vel = arrow3d(pos_tzero, pos_tzero + velocity(t0), rgbcolor=(0,0.5,0))
    nor = arrow3d(pos_tzero, pos_tzero + normal(t0), rgbcolor=(0.5,0,0))
    bin = arrow3d(pos_tzero, pos_tzero + binormal(t0), rgbcolor=(0,0,0.5))
    acc = arrow3d(pos_tzero, pos_tzero + acceleration(t0), rgbcolor=(1,0,1))
    tancomp = arrow3d(pos_tzero, pos_tzero + tangent_component*tangent(t0), rgbcolor=(1,0,1) )
    norcomp = arrow3d(pos_tzero, pos_tzero + normal_component*normal(t0), rgbcolor=(1,0,1))
    tan = arrow3d(pos_tzero, pos_tzero + tangent(t=t0), rgbcolor=(0,1,0) )
    vel = arrow3d(pos_tzero, pos_tzero + velocity(t=t0), rgbcolor=(0,0.5,0))
    nor = arrow3d(pos_tzero, pos_tzero + normal(t=t0), rgbcolor=(0.5,0,0))
    bin = arrow3d(pos_tzero, pos_tzero + binormal(t=t0), rgbcolor=(0,0,0.5))
    acc = arrow3d(pos_tzero, pos_tzero + acceleration(t=t0), rgbcolor=(1,0,1))
    tancomp = arrow3d(pos_tzero, pos_tzero + tangent_component*tangent(t=t0), rgbcolor=(1,0,1) )
    norcomp = arrow3d(pos_tzero, pos_tzero + normal_component*normal(t=t0), rgbcolor=(1,0,1))
Line 923: Line 951:
    print "Position vector: r(t)=", position(t)
    print
"Speed is ", N(speed(t0))
    print
"Curvature is ", N(curvature)
    ## print "Torsion is ", N(torsion)
    print
    print
"Right-click on graphic to zoom to 400%"
    print
"Drag graphic to rotate"
    print("Position vector: r(t)=", position)
    print(
"Speed is ", N(speed(t=t0)))
    print(
"Curvature is ", N(curvature))
    ## print("Torsion is ", N(torsion))
    print()
    print(
"Right-click on graphic to zoom to 400%")
    print(
"Drag graphic to rotate")
Line 940: Line 968:
http://www.sagenb.org/home/pub/2828/

{{{
http://sagenb.mc.edu/home/pub/97/

{{{#!sagecell
Line 950: Line 978:
## An updated version of this worksheet may be available at http://sagenb.mc.edu
Line 955: Line 982:
var('x,y,z')
Rmin=1/10
Line 957: Line 985:
@interact
def _(f=input_box(default=(x^3-y^3)/(x^2+y^2)),R=slider(0.1/10,Rmax,1/10,2),x0=(0),y0=(0)):
@interact(layout=dict(top=[['f'],['x0'],['y0']],
bottom=[['in_3d','curves','R','graphjmol']]))
def _(f=input_box((x^2-y^2)/(x^2+y^2),width=30,label='$f(x)$'),
        R=slider(Rmin,Rmax,1/10,Rmax,label=',   $R$'),
        x0=input_box(0,width=10,label='$x_0$'),
        y0=input_box(0,width=10,label='$y_0$'),
        curves=checkbox(default=false,label='Show curves'),
        in_3d=checkbox(default=false,label='3D'),
        graphjmol=checkbox(default=true,label='Interactive graph')):
    if graphjmol:
        view_method = 'jmol'
    else:
        view_method = 'tachyon'
Line 966: Line 1005:
    
Line 968: Line 1007:
    limit = plot3d(g,(t,0,2*pi),(r,1/100,R),transformation=cylinder,rgbcolor=(0,1,0))     collapsing_surface = plot3d(g,(t,0,2*pi),(r,1/100,R),transformation=cylinder,rgbcolor=(0,1,0))
Line 970: Line 1009:
    show(surface+limit)
    print html('Enter $(x_0 ,y_0 )$ above and see what happens as R approaches zero.')
    print html('The surface has a limit as $(x,y)$ approaches ('+str(x0)+','+str(y0)+') if the green region collapses to a point')
    G = surface+collapsing_surface
    pretty_print(html('Enter $(x_0 ,y_0 )$ above and see what happens as $ R \\rightarrow 0 $.'))
    pretty_print(html('The surface has a limit as $(x,y) \\rightarrow $ ('+str(x0)+','+str(y0)+') if the green region collapses to a point.'))

# If checked, add a couple of curves on the surface corresponding to limit as x->x0 for y=x^(3/5),
# and as y->y0 for x=y^(3/5). Should make this more robust but perhaps using
# these relatively obtuse curves could eliminate problems.

    if curves:
        curve_x = parametric_plot3d([x0-t,y0-t^(3/5),f(x=x0-t,y=y0-t^(3/5))],(t,Rmin,Rmax),color='red',thickness=10)
        curve_y = parametric_plot3d([x0+t^(3/5),y0+t,f(x=x0+t^(3/5),y=y0+t)],(t,Rmin,Rmax),color='red',thickness=10)
        R2 = Rmin/4
        G += arrow((x0-Rmin,y0-Rmin^(3/5),f(x=x0-Rmin,y=y0-Rmin^(3/5))),(x0-R2,y0-R2^(3/5),f(x=x0-R2,y=y0-R2^(3/5))),size=30 )
        G += arrow((x0+Rmin^(3/5),y0+Rmin,f(x=x0+Rmin^(3/5),y=y0+Rmin)),(x0+R2^(3/5),y0+R2,f(x=x0+R2^(3/5),y=y0+R2)),size=30 )

        limit_x = limit(f(x=x0-t,y=y0-t^(3/5)),t=0)
        limit_y = limit(f(x=x0+t^(3/5),y=y0+t),t=0)
        text_x = text3d(limit_x,(x0,y0,limit_x))
        text_y = text3d(limit_y,(x0,y0,limit_y))
        G += curve_x+curve_y+text_x+text_y
 
    
        pretty_print(html('The red curves represent a couple of trajectories on the surface. If they do not meet, then'))
        pretty_print(html('there is also no limit. (If computer hangs up, likely the computer can not do these limits.)'))
        pretty_print(html('\n<center><font color="red">$\lim_{(x,?)\\rightarrow(x_0,y_0)} f(x,y) =%s$</font>'%str(limit_x)+' and <font color="red">$\lim_{(?,y)\\rightarrow(x_0,y_0)} f(x,y) =%s$</font></center>'%str(limit_y)))
        
    if in_3d:
        show(G,stereo="redcyan",viewer=view_method)
    else:
        show(G,perspective_depth=true,viewer=view_method)
Line 977: Line 1043:
{{{ {{{#!sagecell
Line 994: Line 1061:
Rmax=2
@interact
def _(f=input_box(default=(x^3-y^3)/(x^2+y^2)),
      N=slider(5,100,1,10,label='Number of Contours'),
      x0=(0),y0=(0)):

    print html('Enter $(x_0 ,y_0 )$ above and see what happens as the number of contour levels increases.')
    print html('A surface will have a limit in the center of this graph provided there is not a sudden change in color there.')
var('x,y,z,u')
@interact(layout=dict(top=[['f'],['x0'],['y0']],
bottom=[['N'],['R']]))
def _(f=input_box(default=(x*y^2)/(x^2+y^4),width=30,label='$f(x)$'),
        N=slider(5,100,1,10,label='Number of Contours'),
        R=slider(0.1,1,0.01,1,label='Radius of circular neighborhood'),
        x0=input_box(0,width=10,label='$x_0$'),
        y0=input_box(0,width=10,label='$y_0$')):

    pretty_print(html('Enter $(x_0 ,y_0 )$ above and see what happens as the number of contour levels $\\rightarrow \infty $.'))
    pretty_print(html('A surface will have a limit in the center of this graph provided there is not a sudden change in color there.'))

# Need to make certain the min and max contour lines are not huge due to asymptotes. If so, clip and start contours at some reasonable
# values so that there are a nice collection of contours to show around the desired point.
Line 1004: Line 1077:
    surface += parametric_plot([R*cos(u),R*sin(u)],[0,2*pi],color='black')
# Nice to use if f=x*y^2/(x^2 + y^4)
# var('u')
# surface += parametric_plot([u^2,u],[u,-1,1],color='black')
Line 1005: Line 1082:
    show(limit_point+surface)}}} # show(limit_point+surface)
    pretty_print(table([[surface],['hi']]))
}}}
Line 1014: Line 1093:
{{{ {{{#!sagecell
Line 1067: Line 1146:
{{{
%hide
%auto
{{{#!sagecell
Line 1084: Line 1161:
 html(r'Function $ f(x,y)=%s$ '%latex(f(x,y)))  pretty_print(html(r'Function $ f(x,y)=%s$ '%latex(f(x,y))))
Line 1098: Line 1175:
              html(r'<tr><td>$\quad f(%s,%s)\quad $</td><td>$\quad %s$</td>\
              </tr>'%(latex(x0),latex(y0),z0.n()))
              pretty_print(html(r'<tr><td>$\quad f(%s,%s)\quad $</td><td>$\quad %s$</td>\
              </tr>'%(latex(x0),latex(y0),z0.n())))
Line 1128: Line 1205:
{{{ {{{#!sagecell
Line 1132: Line 1209:
html('Points x0 and y0 are values where the exact value of the function \ pretty_print(html('Points x0 and y0 are values where the exact value of the function \
Line 1134: Line 1211:
and approximation by differential at shifted point are compared.') and approximation by differential at shifted point are compared.'))
Line 1152: Line 1229:
  html(r'Function $ f(x,y)=%s \approx %s $ '%(latex(f(x,y)),latex(tangent(x,y))))
  html(r' $f %s = %s$'%(latex((x0,y0)),latex(exact_value_ori)))
  html(r'Shifted point $%s$'%latex(((x0+deltax),(y0+deltay))))
  html(r'Value of the function in shifted point is $%s$'%f(x0+deltax,y0+deltay))
  html(r'Value on the tangent plane in shifted point is $%s$'%latex(approx_value))
  html(r'Error is $%s$'%latex(abs_error)) 
  pretty_print(html(r'Function $ f(x,y)=%s \approx %s $ '%(latex(f(x,y)),latex(tangent(x,y)))))
  pretty_print(html(r' $f %s = %s$'%(latex((x0,y0)),latex(exact_value_ori))))
  pretty_print(html(r'Shifted point $%s$'%latex(((x0+deltax),(y0+deltay)))))
  pretty_print(html(r'Value of the function in shifted point is $%s$'%f(x0+deltax,y0+deltay)))
  pretty_print(html(r'Value on the tangent plane in shifted point is $%s$'%latex(approx_value)))
  pretty_print(html(r'Error is $%s$'%latex(abs_error)))
Line 1166: Line 1243:
{{{ {{{#!sagecell
Line 1175: Line 1252:
      order=(1..10)):       order=[1..10]):
Line 1194: Line 1271:
    html('$F(x,y) = e^{-(x^2+y^2)/2} \\cos(y) \\sin(x^2+y^2)$')     pretty_print(html('$F(x,y) = e^{-(x^2+y^2)/2} \\cos(y) \\sin(x^2+y^2)$'))
Line 1204: Line 1281:
http://www.sagenb.org/home/pub/2829/

{{{
https://cloud.sagemath.com/projects/19575ea0-317e-402b-be57-368d04c113db/files/pub/2801-2901/2829.sagews

{{{#!sagecell
Line 1307: Line 1384:
== Lateral Surface Area == == Lateral Surface Area (FIXME in Jupyter) ==
Line 1311: Line 1388:
http://www.sagenb.org/home/pub/2826/

{{{
http://sagenb.mc.edu/home/pub/89/

{{{#!sagecell
Line 1318: Line 1395:
##
Line 1320: Line 1398:
@interact
def _(f=input_box(default=6-4*x^2-y^2*2/5,label='$f(x,y) = $'),
        g=input_box(default=-2+sin(x)+sin(y),label='$g(x,y) = $'),
        u=input_box(default=cos(t),label='$u(t) = $'),
        v=input_box(default=2*sin(t),label='$v(t) = $'),
        a=input_box(default=0,label='$a = $'
),
        b=input_box(default=3*pi/2,label='$b = $'),
@interact(layout=dict(top=[['f','u'],['g','v']],
left=[['a'],['b'],['in_3d'],['smoother']],
bottom=[['xx','yy']]))

def _(f=input_box(default=6-4*x^2-y^2*2/5,label='Top = $f(x,y) = $',width=30),
        g=input_box(default=-2+sin(x)+sin(y),label='Bottom = $g(x,y) = $',width=30),
        u=input_box(default=cos(t),label='   $ x = u(t) = $',width=20),
        v=input_box(default=2*sin(t),label='   $ y = v(t) = $',width=20),
        a=input_box(default=0,label='$a = $',width=10
),
        b=input_box(default=3*pi/2,label='$b = $',width=10),
Line 1329: Line 1409:
        smoother=checkbox(default=false)):         in_3d = checkbox(default=true,label='3D'),
smoother=checkbox(default=false),
        auto_update=true
):
Line 1331: Line 1413:
    ds = sqrt(derivative(u(t),t)^2+derivative(v(t),t)^2)     ds = sqrt(derivative(u,t)^2+derivative(v,t)^2)
Line 1335: Line 1417:
    A = (f(x=u(t),y=v(t))-g(x=u(t),y=v(t)))*ds.simplify_trig().simplify()     A = (f(x=u,y=v)-g(x=u,y=v))*ds.simplify_trig().simplify()
Line 1340: Line 1422:
    line_integral = integral(A,t,a,b) # If you want Sage to try, uncomment the lines below.

# line_integral = integrate(A,t,a,b)
# html(r'<align=center size=+1>Lateral Surface Area = $ %s $ </font>'%latex(line_integral))
Line 1342: Line 1428:
       
    html(r'<h4 align=center>Lateral Surface Area = $ %s $ </h4>'%latex(line_integral))

    html(r'<h4 align=center
>Lateral Surface $ \approx $ %s</h2>'%str(line_integral_approx))

    pretty_print(html(r'<font align=center size=+1>Lateral Surface $ \approx $ %s</font>'%str(line_integral_approx)))
Line 1352: Line 1436:
    G += parametric_plot3d([u,v,g(x=u(t),y=v(t))],(t,a,b),thickness=2,color='red')
    G += parametric_plot3d([u,v,f(x=u(t),y=v(t))],(t,a,b),thickness=2,color='red')
    G += parametric_plot3d([u,v,g(x=u,y=v)],(t,a,b),thickness=2,color='red')
    G += parametric_plot3d([u,v,f(x=u,y=v)],(t,a,b),thickness=2,color='red')
Line 1362: Line 1446:
        G += parametric_plot3d([u(w),v(w),s*f(x=u(w),y=v(w))+(1-s)*g(x=u(w),y=v(w))],(s,0,1),thickness=lat_thick,color='yellow',opacity=0.9)
    show(G,spin=true)
        G += parametric_plot3d([u(t=w),v(t=w),s*f(x=u(t=w),y=v(t=w))+(1-s)*g(x=u(t=w),y=v(t=w))],(s,0,1),thickness=lat_thick,color='yellow',opacity=0.9)
             if in_3d:
        
show(G,stereo='redcyan',spin=true)
    else:
        show(G,perspective_depth=true,spin=true)
Line 1368: Line 1456:
== Parametric surface example == == Parametric surface example (FIXME in Jupyter) ==
Line 1370: Line 1458:
{{{ {{{#!sagecell
Line 1389: Line 1477:
http://www.sagenb.org/home/pub/2827/

{{{
https://cloud.sagemath.com/projects/19575ea0-317e-402b-be57-368d04c113db/files/pub/2801-2901/2827-$%20%5Cint_%7BC%7D%20%5Cleft%20%5Clangle%20M,N,P%20%5Cright%20%5Crangle%20dr%20$%20=%20$%20%25s%20$.sagews

{{{#!sagecell
Line 1425: Line 1513:
    html(r'<h2 align=center>$ \int_{C} \left \langle M,N,P \right \rangle dr $ = $ %s $ </h2>'%latex(line_integral))     pretty_print(html(r'<h2 align=center>$ \int_{C} \left \langle M,N,P \right \rangle dr $ = $ %s $ </h2>'%latex(line_integral)))

Sage Interactions - Calculus

goto interact main page

Root Finding Using Bisection

by William Stein

bisect.png

Newton's Method

Note that there is a more complicated Newton's method below.

by William Stein

https://cloud.sagemath.com/projects/19575ea0-317e-402b-be57-368d04c113db/files/pub/2801-2901/2824-Double%20Precision%20Root%20Finding%20Using%20Newton's%20Method.sagews

newton.png

A contour map and 3d plot of two inverse distance functions

by William Stein

https://cloud.sagemath.com/projects/19575ea0-317e-402b-be57-368d04c113db/files/pub/2801-2901/2823.sagews

mountains.png

A simple tangent line grapher

by Marshall Hampton

tangents.png

Numerical integrals with the midpoint rule

by Marshall Hampton

num_int.png

Numerical integrals with various rules

by Nick Alexander (based on the work of Marshall Hampton)

num_int2.png

Some polar parametric curves

by Marshall Hampton. This is not very general, but could be modified to show other families of polar curves.

polarcurves1.png

Function tool

Enter symbolic functions f, g, and a, a range, then click the appropriate button to compute and plot some combination of f, g, and a along with f and g. This is inspired by the Matlab funtool GUI.

funtool.png

Newton-Raphson Root Finding

by Neal Holtz

This allows user to display the Newton-Raphson procedure one step at a time. It uses the heuristic that, if any of the values of the controls change, then the procedure should be re-started, else it should be continued.

newtraph.png

Coordinate Transformations

by Jason Grout

coordinate-transform-1.png coordinate-transform-2.png

Taylor Series

by Harald Schilly

taylor_series_animated.gif

Illustration of the precise definition of a limit

by John Perry

I'll break tradition and put the image first. Apologies if this is Not A Good Thing.

snapshot_epsilon_delta.png

A graphical illustration of sin(x)/x -> 1 as x-> 0

by Wai Yan Pong

sinelimit.png

Quadric Surface Plotter

by Marshall Hampton. This is pretty simple, so I encourage people to spruce it up. In particular, it isn't set up to show all possible types of quadrics.

quadrics.png

The midpoint rule for numerically integrating a function of two variables

by Marshall Hampton

numint2d.png

Gaussian (Legendre) quadrature

by Jason Grout

The output shows the points evaluated using Gaussian quadrature (using a weight of 1, so using Legendre polynomials). The vertical bars are shaded to represent the relative weights of the points (darker = more weight). The error in the trapezoid, Simpson, and quadrature methods is both printed out and compared through a bar graph. The "Real" error is the error returned from scipy on the definite integral.

quadrature1.png quadrature2.png

Vector Calculus, 2-D Motion

By Rob Beezer

A fast_float() version is available in a worksheet

motion2d.png

Vector Calculus, 3-D Motion

by Rob Beezer

Available as a worksheet

motion3d.png

Multivariate Limits by Definition

by John Travis

http://sagenb.mc.edu/home/pub/97/

3D_Limit_Defn.png

3D_Limit_Defn_Contours.png

Directional Derivatives

This interact displays graphically a tangent line to a function, illustrating a directional derivative (the slope of the tangent line).

directional derivative.png

3D graph with points and curves

By Robert Marik

This sagelet is handy when showing local, constrained and absolute maxima and minima in two variables. Available as a worksheet

3Dgraph_with_points.png

Approximating function in two variables by differential

by Robert Marik

3D_differential.png

Taylor approximations in two variables

by John Palmieri

This displays the nth order Taylor approximation, for n from 1 to 10, of the function sin(x2 + y2) cos(y) exp(-(x2+y2)/2).

taylor-3d.png

Volumes over non-rectangular domains

by John Travis

https://cloud.sagemath.com/projects/19575ea0-317e-402b-be57-368d04c113db/files/pub/2801-2901/2829.sagews

3D_Irregular_Volume.png

Lateral Surface Area (FIXME in Jupyter)

by John Travis

http://sagenb.mc.edu/home/pub/89/

Lateral_Surface.png

Parametric surface example (FIXME in Jupyter)

by Marshall Hampton

parametric_surface.png

Line Integrals in 3D Vector Field

by John Travis

https://cloud.sagemath.com/projects/19575ea0-317e-402b-be57-368d04c113db/files/pub/2801-2901/2827-$%20%5Cint_%7BC%7D%20%5Cleft%20%5Clangle%20M,N,P%20%5Cright%20%5Crangle%20dr%20$%20=%20$%20%25s%20$.sagews

3D_Line_Integral.png

interact/calculus (last edited 2020-08-11 14:10:09 by kcrisman)