Differences between revisions 44 and 58 (spanning 14 versions)
Revision 44 as of 2012-03-16 06:46:28
Size: 57805
Editor: jason
Comment:
Revision 58 as of 2013-04-24 18:48:01
Size: 61047
Editor: travis
Comment:
Deletions are marked like this. Additions are marked like this.
Line 6: Line 6:
{{{#!html
<script type="text/javascript" src="http://aleph.sagemath.org/static/jquery.min.js"></script>
<script type="text/javascript" src="http://aleph.sagemath.org/embedded_sagecell.js"></script>
    <script>
$(function() {
    var makecells = function() {
        sagecell.makeSagecell({
            inputLocation: '#interact1',
            evalButtonText: 'Interact'});
    }
    sagecell.init(makecells);
})</script>

}}}
Line 24: Line 10:
{{{#!html
<div id="interact1"><script type="text/code">
{{{#!sagecell
Line 64: Line 49:
</script></div>
Line 75: Line 59:
{{{ {{{#!sagecell
Line 117: Line 101:
{{{ {{{#!sagecell
Line 133: Line 117:
{{{ {{{#!sagecell
Line 153: Line 137:
{{{ {{{#!sagecell
Line 181: Line 165:
{{{ {{{#!sagecell
Line 254: Line 238:
{{{ {{{#!sagecell
Line 267: Line 251:
{{{ {{{#!sagecell
Line 365: Line 349:
{{{ {{{#!sagecell
Line 471: Line 455:
{{{ {{{#!sagecell
Line 473: Line 457:
# polar coordinates
#(x,y)=(u*cos(v),u*sin(v)); (u_range,v_range)=([0..6],[0..2*pi,step=pi/12])

# weird example
(x,y)=(u^2-v^2,u*v+cos(u*v)); (u_range,v_range)=([-5..5],[-5..5])

thickness=4
square_length=.05
Line 476: Line 469:
def trans(x=input_box(u^2-v^2, label="x=",type=SR), \
         y=input_box(u*v+cos(u*v), label="y=",type=SR), \
         t_val=slider(0,10,0.2,6, label="Length of curves"), \
def trans(x=input_box(x, label="x",type=SR),
         y=input_box(y, label="y",type=SR),
Line 481: Line 473:
         u_range=input_box(range(-5,5,1), label="u lines"),
         v_range=input_box(range(-5,5,1), label="v lines")):
     thickness=4
     u_val = min(u_range)+(max(u_range)-min(u_range))*u_percent
     v_val = min(v_range)+(max(v_range)-min(v_range))*v_percent
     t_min = -t_val
     t_max = t_val
     g1=sum([parametric_plot((i,v), (v,t_min,t_max), rgbcolor=(1,0,0)) for i in u_range])
     g2=sum([parametric_plot((u,i), (u,t_min,t_max), rgbcolor=(0,0,1)) for i in v_range])
     vline_straight=parametric_plot((u,v_val), (u,t_min,t_max), rgbcolor=(0,0,1), linestyle='-',thickness=thickness)
     uline_straight=parametric_plot((u_val, v), (v,t_min,t_max),rgbcolor=(1,0,0), linestyle='-',thickness=thickness)
 
     (g1+g2+vline_straight+uline_straight).save("uv_coord.png",aspect_ratio=1, figsize=[5,5], axes_labels=['$u$','$v$'])
     xuv = fast_float(x,'u','v')
     yuv = fast_float(y,'u','v')
     xvu = fast_float(x,'v','u')
     yvu = fast_float(y,'v','u')
     g3=sum([parametric_plot((partial(xuv,i),partial(yuv,i)), (v,t_min,t_max), rgbcolor=(1,0,0)) for i in u_range])
     g4=sum([parametric_plot((partial(xvu,i),partial(yvu,i)), (u,t_min,t_max), rgbcolor=(0,0,1)) for i in v_range])
     uline=parametric_plot((partial(xuv,u_val),partial(yuv,u_val)),(v,t_min,t_max),rgbcolor=(1,0,0), linestyle='-',thickness=thickness)
     vline=parametric_plot((partial(xvu,v_val),partial(yvu,v_val)), (u,t_min,t_max), rgbcolor=(0,0,1), linestyle='-',thickness=thickness)
     (g3+g4+vline+uline).save("xy_coord.png", aspect_ratio=1, figsize=[5,5], axes_labels=['$x$','$y$'])
     print jsmath("x=%s, \: y=%s"%(latex(x), latex(y)))
     print "<html><table><tr><td><img src='cell://uv_coord.png'/></td><td><img src='cell://xy_coord.png'/></td></tr></table></html>"
}}}
         t_val=slider(0,10,0.2,6, label="Length"),
         u_range=input_box(u_range, label="u lines"),
         v_range=input_box(v_range, label="v lines")):

    x(u,v)=x
    y(u,v)=y
    u_val = min(u_range)+(max(u_range)-min(u_range))*u_percent
    v_val = min(v_range)+(max(v_range)-min(v_range))*v_percent
    t_min = -t_val
    t_max = t_val
    uvplot=sum([parametric_plot((i,v), (v,t_min,t_max), color='red',axes_labels=['u','v'],figsize=[5,5]) for i in u_range])
    uvplot+=sum([parametric_plot((u,i), (u,t_min,t_max), color='blue',axes_labels=['u','v']) for i in v_range])
    uvplot+=parametric_plot((u,v_val), (u,t_min,t_max), rgbcolor=(0,0,1), linestyle='-',thickness=thickness)
    uvplot+=parametric_plot((u_val, v), (v,t_min,t_max),rgbcolor=(1,0,0), linestyle='-',thickness=thickness)
    pt=vector([u_val,v_val])
    du=vector([(t_max-t_min)*square_length,0])
    dv=vector([0,(t_max-t_min)*square_length])
    uvplot+=polygon([pt,pt+dv,pt+du+dv,pt+du],color='purple',alpha=0.7)
    uvplot+=line([pt,pt+dv,pt+du+dv,pt+du],color='green')

    T(u,v)=(x,y)
    xuv = fast_float(x,'u','v')
    yuv = fast_float(y,'u','v')
    xvu = fast_float(x,'v','u')
    yvu = fast_float(y,'v','u')
    xyplot=sum([parametric_plot((partial(xuv,i),partial(yuv,i)), (v,t_min,t_max), color='red', axes_labels=['x','y'],figsize=[5,5]) for i in u_range])
    xyplot+=sum([parametric_plot((partial(xvu,i),partial(yvu,i)), (u,t_min,t_max), color='blue') for i in v_range])
    xyplot+=parametric_plot((partial(xuv,u_val),partial(yuv,u_val)),(v,t_min,t_max),color='red', linestyle='-',thickness=thickness)
    xyplot+=parametric_plot((partial(xvu,v_val),partial(yvu,v_val)), (u,t_min,t_max), color='blue', linestyle='-',thickness=thickness)
    jacobian=abs(T.diff().det()).simplify_full()
    t_vals=[0..1,step=t_val*.01]
    vertices=[(x(*c),y(*c)) for c in [pt+t*dv for t in t_vals]]
    vertices+=[(x(*c),y(*c)) for c in [pt+dv+t*du for t in t_vals]]
    vertices+=[(x(*c),y(*c)) for c in [pt+(1-t)*dv+du for t in t_vals]]
    vertices+=[(x(*c),y(*c)) for c in [pt+(1-t)*du for t in t_vals]]
    xyplot+=polygon(vertices,color='purple',alpha=0.7)
    xyplot+=line(vertices,color='green')
    html("$T(u,v)=%s$"%(latex(T(u,v))))
    html("Jacobian: $%s$"%latex(jacobian(u,v)))
    html("A very small region in $xy$ plane is approximately %0.4g times the size of the corresponding region in the $uv$ plane"%jacobian(u_val,v_val).n())
    html.table([[uvplot,xyplot]])}}}
Line 513: Line 521:
{{{ {{{#!sagecell
Line 536: Line 544:
{{{ {{{#!sagecell
Line 563: Line 571:
{{{ {{{#!sagecell
Line 589: Line 597:
{{{ {{{#!sagecell
Line 604: Line 612:
{{{ {{{#!sagecell
Line 650: Line 658:
{{{
from scipy.special.orthogonal import p_roots
{{{#!sagecell
import scipy
import numpy

from scipy.special.orthogonal import p_roots, t_roots, u_roots
Line 660: Line 670:
            'Chebyshev': {'w': 1/sqrt(1-x**2), 'xmin': -1, 'xmax': 1, 'func': t_roots},
                'Chebyshev2': {'w': sqrt(1-x**2), 'xmin': -1, 'xmax': 1, 'func': u_roots},
                'Trapezoid': {'w': 1, 'xmin': -1, 'xmax': 1, 'func': lambda n: (linspace(-1r,1,n), numpy.array([1.0r]+[2.0r]*(n-2)+[1.0r])*1.0r/n)},
                'Simpson': {'w': 1, 'xmin': -1, 'xmax': 1, 'func': lambda n: (linspace(-1r,1,n), numpy.array([1.0r]+[4.0r,2.0r]*int((n-3.0r)/2.0r)+[4.0r,1.0r])*2.0r/(3.0r*n))}}
     'Chebyshev': {'w': 1/sqrt(1-x**2), 'xmin': -1, 'xmax': 1, 'func': t_roots},
     'Chebyshev2': {'w': sqrt(1-x**2), 'xmin': -1, 'xmax': 1, 'func': u_roots},
     'Trapezoid': {'w': 1, 'xmin': -1, 'xmax': 1,          'func': lambda n: (linspace(-1r,1,n), numpy.array([1.0r]+[2.0r]*(n-2)+[1.0r])*1.0r/n)},
     'Simpson': {'w': 1, 'xmin': -1, 'xmax': 1,          'func': lambda n: (linspace(-1r,1,n),
            
numpy.array([1.0r]+[4.0r,2.0r]*int((n-3.0r)/2.0r)+[4.0r,1.0r])*2.0r/(3.0r*n))}}
Line 667: Line 680:
    return polygon([(center-width2,0),(center+width2,0),(center+width2,height),(center-width2,height)],**kwds)     return polygon([(center-width2,0),
        
(center+width2,0),(center+width2,height),(center-width2,height)],**kwds)
Line 671: Line 685:
def weights(n=slider(1,30,1,default=10),f=input_box(default=3*x+cos(10*x)),show_method=["Legendre", "Chebyshev", "Chebyshev2", "Trapezoid","Simpson"]): def weights(n=slider(1,30,1,default=10),f=input_box(default=3*x+cos(10*x),type=SR),
    
show_method=["Legendre", "Chebyshev", "Chebyshev2", "Trapezoid","Simpson"]):
Line 680: Line 695:
    scaled_ff = fast_float(scaled_func)     scaled_ff = fast_float(scaled_func, 'x')
Line 688: Line 703:
    stems = sum(line([(x,0),(x,scaled_ff(x))],rgbcolor=(1-y,1-y,1-y),thickness=2,markersize=6,alpha=y) for x,y in coords_scaled)
    points = sum([point([(x,0),(x,scaled_ff(x))],rgbcolor='black',pointsize=30) for x,_ in coords])
    stems = sum(line([(x,0),(x,scaled_ff(x))],rgbcolor=(1-y,1-y,1-y),
        
thickness=2,markersize=6,alpha=y) for x,y in coords_scaled)
    points = sum([point([(x,0),
        
(x,scaled_ff(x))],rgbcolor='black',pointsize=30) for x,_ in coords])
Line 694: Line 711:
    show(graph,xmin=plot_min,xmax=plot_max)     show(graph,xmin=plot_min,xmax=plot_max,aspect_ratio="auto")
Line 702: Line 719:
    html("$$\sum_{i=1}^{i=%s}w_i\left(%s\\right)= %s\\approx %s =\int_{-1}^{1}%s \,dx$$"%(n,latex(f.subs(x="x_i")), approximation, integral, latex(scaled_func)))     html("$$\sum_{i=1}^{i=%s}w_i\left(%s\\right)= %s\\approx %s =\int_{-1}^{1}%s \,dx$$"%(n,
        
latex(f), approximation, integral, latex(scaled_func)))
Line 710: Line 728:
== Vector Calculus, 2-D Motion == == Vector Calculus, 2-D Motion FIXME ==
Line 715: Line 733:
{{{ {{{#!sagecell
Line 827: Line 845:
{{{ {{{#!sagecell
Line 864: Line 882:
velocity = derivative( position(t) )
acceleration = derivative(velocity(t))
velocity = derivative( position(t), t)
acceleration = derivative(velocity(t), t)
Line 867: Line 885:
speed_deriv = derivative(speed) speed_deriv = derivative(speed, t)
Line 869: Line 887:
dT = derivative(tangent(t)) dT = derivative(tangent(t), t)
Line 872: Line 890:
## dB = derivative(binormal(t)) ## dB = derivative(binormal(t), t)
Line 950: Line 968:
== Multivariate Limits by Definition == == Multivariate Limits by Definition FIXME ==
Line 953: Line 971:
http://www.sagenb.org/home/pub/2828/

{{{
http://sagenb.mc.edu/home/pub/97/

{{{#!sagecell
Line 963: Line 981:
## An updated version of this worksheet may be available at http://sagenb.mc.edu
Line 968: Line 985:
var('x,y,z')
Rmin=1/10
Line 970: Line 988:
@interact
def _(f=input_box(default=(x^3-y^3)/(x^2+y^2)),R=slider(0.1/10,Rmax,1/10,2),x0=(0),y0=(0)):
@interact(layout=dict(top=[['f'],['x0'],['y0']],
bottom=[['in_3d','curves','R','graphjmol']]))
def _(f=input_box((x^2-y^2)/(x^2+y^2),width=30,label='$f(x)$'),
        R=slider(Rmin,Rmax,1/10,Rmax,label=',   $R$'),
        x0=input_box(0,width=10,label='$x_0$'),
        y0=input_box(0,width=10,label='$y_0$'),
        curves=checkbox(default=false,label='Show curves'),
        in_3d=checkbox(default=false,label='3D'),
        graphjmol=checkbox(default=true,label='Interactive graph')):
    if graphjmol:
        view_method = 'jmol'
    else:
        view_method = 'tachyon'
Line 979: Line 1008:
    
Line 981: Line 1010:
    limit = plot3d(g,(t,0,2*pi),(r,1/100,R),transformation=cylinder,rgbcolor=(0,1,0))     collapsing_surface = plot3d(g,(t,0,2*pi),(r,1/100,R),transformation=cylinder,rgbcolor=(0,1,0))
Line 983: Line 1012:
    show(surface+limit)
    print html('Enter $(x_0 ,y_0 )$ above and see what happens as R approaches zero.')
    print html('The surface has a limit as $(x,y)$ approaches ('+str(x0)+','+str(y0)+') if the green region collapses to a point')
    G = surface+collapsing_surface
    html('Enter $(x_0 ,y_0 )$ above and see what happens as $ R \\rightarrow 0 $.')
    html('The surface has a limit as $(x,y) \\rightarrow $ ('+str(x0)+','+str(y0)+') if the green region collapses to a point.')

# If checked, add a couple of curves on the surface corresponding to limit as x->x0 for y=x^(3/5),
# and as y->y0 for x=y^(3/5). Should make this more robust but perhaps using
# these relatively obtuse curves could eliminate problems.

    if curves:
        curve_x = parametric_plot3d([x0-t,y0-t^(3/5),f(x=x0-t,y=y0-t^(3/5))],(t,Rmin,Rmax),color='red',thickness=10)
        curve_y = parametric_plot3d([x0+t^(3/5),y0+t,f(x=x0+t^(3/5),y=y0+t)],(t,Rmin,Rmax),color='red',thickness=10)
        R2 = Rmin/4
        G += arrow((x0-Rmin,y0-Rmin^(3/5),f(x=x0-Rmin,y=y0-Rmin^(3/5))),(x0-R2,y0-R2^(3/5),f(x=x0-R2,y=y0-R2^(3/5))),size=30 )
        G += arrow((x0+Rmin^(3/5),y0+Rmin,f(x=x0+Rmin^(3/5),y=y0+Rmin)),(x0+R2^(3/5),y0+R2,f(x=x0+R2^(3/5),y=y0+R2)),size=30 )

        limit_x = limit(f(x=x0-t,y=y0-t^(3/5)),t=0)
        limit_y = limit(f(x=x0+t^(3/5),y=y0+t),t=0)
        text_x = text3d(limit_x,(x0,y0,limit_x))
        text_y = text3d(limit_y,(x0,y0,limit_y))
        G += curve_x+curve_y+text_x+text_y
 
    
        html('The red curves represent a couple of trajectories on the surface. If they do not meet, then')
        html('there is also no limit. (If computer hangs up, likely the computer can not do these limits.)')
        html('\n<center><font color="red">$\lim_{(x,?)\\rightarrow(x_0,y_0)} f(x,y) =%s$</font>'%str(limit_x)+' and <font color="red">$\lim_{(?,y)\\rightarrow(x_0,y_0)} f(x,y) =%s$</font></center>'%str(limit_y))
        
    if in_3d:
        show(G,stereo="redcyan",viewer=view_method)
    else:
        show(G,perspective_depth=true,viewer=view_method)
Line 990: Line 1046:
{{{ {{{#!sagecell
Line 1027: Line 1083:
{{{ {{{#!sagecell
Line 1080: Line 1136:
{{{
%hide
%auto
{{{#!sagecell
Line 1141: Line 1195:
{{{ {{{#!sagecell
Line 1179: Line 1233:
{{{ {{{#!sagecell
Line 1219: Line 1273:
{{{ {{{#!sagecell
Line 1324: Line 1378:
http://www.sagenb.org/home/pub/2826/

{{{
http://sagenb.mc.edu/home/pub/89/

{{{#!sagecell
Line 1331: Line 1385:
##
Line 1333: Line 1388:
@interact
def _(f=input_box(default=6-4*x^2-y^2*2/5,label='$f(x,y) = $'),
        g=input_box(default=-2+sin(x)+sin(y),label='$g(x,y) = $'),
        u=input_box(default=cos(t),label='$u(t) = $'),
        v=input_box(default=2*sin(t),label='$v(t) = $'),
        a=input_box(default=0,label='$a = $'
),
        b=input_box(default=3*pi/2,label='$b = $'),
@interact(layout=dict(top=[['f','u'],['g','v']],
left=[['a'],['b'],['in_3d'],['smoother']],
bottom=[['xx','yy']]))

def _(f=input_box(default=6-4*x^2-y^2*2/5,label='Top = $f(x,y) = $',width=30),
        g=input_box(default=-2+sin(x)+sin(y),label='Bottom = $g(x,y) = $',width=30),
        u=input_box(default=cos(t),label='   $ x = u(t) = $',width=20),
        v=input_box(default=2*sin(t),label='   $ y = v(t) = $',width=20),
        a=input_box(default=0,label='$a = $',width=10
),
        b=input_box(default=3*pi/2,label='$b = $',width=10),
Line 1342: Line 1399:
        smoother=checkbox(default=false)):         in_3d = checkbox(default=true,label='3D'),
smoother=checkbox(default=false),
        auto_update=true
):
Line 1344: Line 1403:
    ds = sqrt(derivative(u(t),t)^2+derivative(v(t),t)^2)     ds = sqrt(derivative(u,t)^2+derivative(v,t)^2)
Line 1348: Line 1407:
    A = (f(x=u(t),y=v(t))-g(x=u(t),y=v(t)))*ds.simplify_trig().simplify()     A = (f(x=u,y=v)-g(x=u,y=v))*ds.simplify_trig().simplify()
Line 1353: Line 1412:
    line_integral = integral(A,t,a,b) # If you want Sage to try, uncomment the lines below.

# line_integral = integrate(A,t,a,b)
# html(r'<align=center size=+1>Lateral Surface Area = $ %s $ </font>'%latex(line_integral))
Line 1355: Line 1418:
       
    html(r'<h4 align=center>Lateral Surface Area = $ %s $ </h4>'%latex(line_integral))

    html(r'<h4 align=center
>Lateral Surface $ \approx $ %s</h2>'%str(line_integral_approx))

    html(r'<font align=center size=+1>Lateral Surface $ \approx $ %s</font>'%str(line_integral_approx))
Line 1365: Line 1426:
    G += parametric_plot3d([u,v,g(x=u(t),y=v(t))],(t,a,b),thickness=2,color='red')
    G += parametric_plot3d([u,v,f(x=u(t),y=v(t))],(t,a,b),thickness=2,color='red')
    G += parametric_plot3d([u,v,g(x=u,y=v)],(t,a,b),thickness=2,color='red')
    G += parametric_plot3d([u,v,f(x=u,y=v)],(t,a,b),thickness=2,color='red')
Line 1375: Line 1436:
        G += parametric_plot3d([u(w),v(w),s*f(x=u(w),y=v(w))+(1-s)*g(x=u(w),y=v(w))],(s,0,1),thickness=lat_thick,color='yellow',opacity=0.9)
    show(G,spin=true)
        G += parametric_plot3d([u(t=w),v(t=w),s*f(x=u(t=w),y=v(t=w))+(1-s)*g(x=u(t=w),y=v(t=w))],(s,0,1),thickness=lat_thick,color='yellow',opacity=0.9)
             if in_3d:
        
show(G,stereo='redcyan',spin=true)
    else:
        show(G,perspective_depth=true,spin=true)
Line 1383: Line 1448:
{{{ {{{#!sagecell
Line 1404: Line 1469:
{{{ {{{#!sagecell

Sage Interactions - Calculus

goto interact main page

Root Finding Using Bisection

by William Stein

bisect.png

Newton's Method

Note that there is a more complicated Newton's method below.

by William Stein

http://sagenb.org/home/pub/2824/

newton.png

A contour map and 3d plot of two inverse distance functions

by William Stein

http://sagenb.org/home/pub/2823/

mountains.png

A simple tangent line grapher

by Marshall Hampton

tangents.png

Numerical integrals with the midpoint rule

by Marshall Hampton

num_int.png

Numerical integrals with various rules

by Nick Alexander (based on the work of Marshall Hampton)

num_int2.png

Some polar parametric curves

by Marshall Hampton. This is not very general, but could be modified to show other families of polar curves.

polarcurves1.png

Function tool

Enter symbolic functions f, g, and a, a range, then click the appropriate button to compute and plot some combination of f, g, and a along with f and g. This is inspired by the Matlab funtool GUI.

funtool.png

Newton-Raphson Root Finding

by Neal Holtz

This allows user to display the Newton-Raphson procedure one step at a time. It uses the heuristic that, if any of the values of the controls change, then the procedure should be re-started, else it should be continued.

newtraph.png

Coordinate Transformations

by Jason Grout

coordinate-transform-1.png coordinate-transform-2.png

Taylor Series

by Harald Schilly

taylor_series_animated.gif

Illustration of the precise definition of a limit

by John Perry

I'll break tradition and put the image first. Apologies if this is Not A Good Thing.

snapshot_epsilon_delta.png

A graphical illustration of sin(x)/x -> 1 as x-> 0

by Wai Yan Pong

sinelimit.png

Quadric Surface Plotter

by Marshall Hampton. This is pretty simple, so I encourage people to spruce it up. In particular, it isn't set up to show all possible types of quadrics.

quadrics.png

The midpoint rule for numerically integrating a function of two variables

by Marshall Hampton

numint2d.png

Gaussian (Legendre) quadrature

by Jason Grout

The output shows the points evaluated using Gaussian quadrature (using a weight of 1, so using Legendre polynomials). The vertical bars are shaded to represent the relative weights of the points (darker = more weight). The error in the trapezoid, Simpson, and quadrature methods is both printed out and compared through a bar graph. The "Real" error is the error returned from scipy on the definite integral.

quadrature1.png quadrature2.png

Vector Calculus, 2-D Motion FIXME

By Rob Beezer

A fast_float() version is available in a worksheet

motion2d.png

Vector Calculus, 3-D Motion

by Rob Beezer

Available as a worksheet

motion3d.png

Multivariate Limits by Definition FIXME

by John Travis

http://sagenb.mc.edu/home/pub/97/

3D_Limit_Defn.png

3D_Limit_Defn_Contours.png

Directional Derivatives

This interact displays graphically a tangent line to a function, illustrating a directional derivative (the slope of the tangent line).

directional derivative.png

3D graph with points and curves

By Robert Marik

This sagelet is handy when showing local, constrained and absolute maxima and minima in two variables. Available as a worksheet

3Dgraph_with_points.png

Approximating function in two variables by differential

by Robert Marik

3D_differential.png

Taylor approximations in two variables

by John Palmieri

This displays the nth order Taylor approximation, for n from 1 to 10, of the function sin(x2 + y2) cos(y) exp(-(x2+y2)/2).

taylor-3d.png

Volumes over non-rectangular domains

by John Travis

http://www.sagenb.org/home/pub/2829/

3D_Irregular_Volume.png

Lateral Surface Area

by John Travis

http://sagenb.mc.edu/home/pub/89/

Lateral_Surface.png

Parametric surface example

by Marshall Hampton

parametric_surface.png

Line Integrals in 3D Vector Field

by John Travis

http://www.sagenb.org/home/pub/2827/

3D_Line_Integral.png

interact/calculus (last edited 2020-08-11 14:10:09 by kcrisman)