Size: 30130
Comment:
|
Size: 30437
Comment: removed j in Computing modular forms (fixed)
|
Deletions are marked like this. | Additions are marked like this. |
Line 4: | Line 4: |
== Divisibility Poset == by William Stein {{{#!sagecell @interact def _(n=(5..100)): Poset(([1..n], lambda x, y: y%x == 0) ).show() }}} {{attachment:divposet.png}} |
|
Line 7: | Line 18: |
{{{ | {{{#!sagecell |
Line 61: | Line 72: |
{{{ | {{{#!sagecell |
Line 75: | Line 86: |
{{{ | {{{#!sagecell |
Line 83: | Line 94: |
== Prime Spiral - Square == | == Prime Spiral - Square FIXME == |
Line 85: | Line 96: |
{{{ | {{{#!sagecell |
Line 134: | Line 145: |
N = M.copy() | N = copy(M) |
Line 222: | Line 233: |
{{{ | {{{#!sagecell |
Line 296: | Line 307: |
{{{ j = 0 |
{{{#!sagecell |
Line 302: | Line 312: |
print j; global j; j += 1 | |
Line 319: | Line 328: |
{{{ | {{{#!sagecell |
Line 329: | Line 338: |
== A Charpoly and Hecke Operator Graph == | == A Charpoly and Hecke Operator Graph FIXME == |
Line 332: | Line 341: |
{{{ | {{{#!sagecell |
Line 353: | Line 362: |
== Quadratic Residue Table == | == Quadratic Residue Table FIXME == |
Line 355: | Line 364: |
{{{ | {{{#!sagecell |
Line 406: | Line 415: |
== Cubic Residue Table == | == Cubic Residue Table FIXME == |
Line 408: | Line 417: |
{{{ | {{{#!sagecell |
Line 426: | Line 435: |
if Mod(a,3)!=0 and Mod(b,3)==0: return True else: return False |
return Mod(a,3)!=0 and Mod(b,3)==0 |
Line 492: | Line 498: |
{{{ | {{{#!sagecell |
Line 541: | Line 547: |
S = circle((0,0),1,rgbcolor='yellow') \ + line([e_pt,e_gs_pt], rgbcolor='red', thickness=4) \ + line([f_pt,f_gs_pt], rgbcolor='blue', thickness=3) \ + line([ef_pt,ef_gs_pt], rgbcolor='purple',thickness=2) \ + point(e_pt,pointsize=50, rgbcolor='red') \ + point(f_pt,pointsize=50, rgbcolor='blue') \ + point(ef_pt,pointsize=50,rgbcolor='purple') \ + point(f_gs_pt,pointsize=75, rgbcolor='black') \ + point(e_gs_pt,pointsize=75, rgbcolor='black') \ + point(ef_gs_pt,pointsize=75, rgbcolor='black') \ + point(js_pt,pointsize=100,rgbcolor='green') |
S = circle((0,0),1,rgbcolor='yellow') S += line([e_pt,e_gs_pt], rgbcolor='red', thickness=4) S += line([f_pt,f_gs_pt], rgbcolor='blue', thickness=3) S += line([ef_pt,ef_gs_pt], rgbcolor='purple',thickness=2) S += point(e_pt,pointsize=50, rgbcolor='red') S += point(f_pt,pointsize=50, rgbcolor='blue') S += point(ef_pt,pointsize=50,rgbcolor='purple') S += point(f_gs_pt,pointsize=75, rgbcolor='black') S += point(e_gs_pt,pointsize=75, rgbcolor='black') S += point(ef_gs_pt,pointsize=75, rgbcolor='black') S += point(js_pt,pointsize=100,rgbcolor='green') |
Line 553: | Line 559: |
S += text('$J(%s,%s) = %s$'%(latex2(e),latex2(f),latex(js)), \ | S += text('$J(%s,%s) = %s$'%(latex2(e),latex2(f),latex(js)), |
Line 572: | Line 578: |
{{{ | {{{#!sagecell |
Line 621: | Line 627: |
S = circle((0,0),1,rgbcolor='yellow') \ + line([e_pt,e_gs_pt], rgbcolor='red', thickness=4) \ + line([f_pt,f_gs_pt], rgbcolor='blue', thickness=3) \ + line([ef_pt,ef_gs_pt], rgbcolor='purple',thickness=2) \ + point(e_pt,pointsize=50, rgbcolor='red') \ + point(f_pt,pointsize=50, rgbcolor='blue') \ + point(ef_pt,pointsize=50,rgbcolor='purple') \ + point(f_gs_pt,pointsize=75, rgbcolor='black') \ + point(e_gs_pt,pointsize=75, rgbcolor='black') \ + point(ef_gs_pt,pointsize=75, rgbcolor='black') \ + point(js_pt,pointsize=100,rgbcolor='green') |
S = circle((0,0),1,rgbcolor='yellow') S += line([e_pt,e_gs_pt], rgbcolor='red', thickness=4) S += line([f_pt,f_gs_pt], rgbcolor='blue', thickness=3) S += line([ef_pt,ef_gs_pt], rgbcolor='purple',thickness=2) S += point(e_pt,pointsize=50, rgbcolor='red') S += point(f_pt,pointsize=50, rgbcolor='blue') S += point(ef_pt,pointsize=50,rgbcolor='purple') S += point(f_gs_pt,pointsize=75, rgbcolor='black') S += point(e_gs_pt,pointsize=75, rgbcolor='black') S += point(ef_gs_pt,pointsize=75, rgbcolor='black') S += point(js_pt,pointsize=100,rgbcolor='green') |
Line 633: | Line 639: |
S += text('$J(%s,%s) = %s$'%(latex2(e),latex2(f),latex(js)), \ | S += text('$J(%s,%s) = %s$'%(latex2(e),latex2(f),latex(js)), |
Line 645: | Line 651: |
ga[i].save('j%d.PNG'%i,figsize=4,aspect_ratio=1, \ | ga[i].save('j%d.png'%i,figsize=4,aspect_ratio=1, |
Line 651: | Line 657: |
html('<table bgcolor=lightgrey cellpadding=2>') | s='<table bgcolor=lightgrey cellpadding=2>' |
Line 653: | Line 659: |
html('<tr><td align="center"><img src="cell://j%d.PNG"></td>'%(2*i)) html('<td align="center"><img src="cell://j%d.PNG"></td></tr>'%(2*i+1)) html('</table>') }}} |
s+='<tr><td align="center"><img src="cell://j%d.png"></td>'%(2*i) s+='<td align="center"><img src="cell://j%d.png"></td></tr>'%(2*i+1) s+='</table>' html(s)}}} |
Line 662: | Line 668: |
== Adding points on an elliptic curve == | == Adding points on an elliptic curve FIXME == |
Line 664: | Line 670: |
{{{ | {{{#!sagecell |
Line 740: | Line 746: |
{{{ | {{{#!sagecell |
Line 755: | Line 761: |
{{{ | {{{#!sagecell |
Line 769: | Line 775: |
print """ <html> |
html(""" |
Line 794: | Line 799: |
</ol></html> | </ol> |
Line 796: | Line 801: |
(g^ b)^a, g^a, b, p, (g^a)^b) | (g^ b)^a, g^a, b, p, (g^a)^b)) |
Line 804: | Line 809: |
== Continued Fraction Plotter == | == Continued Fraction Plotter FIXME == |
Line 806: | Line 811: |
{{{ | {{{#!sagecell |
Line 816: | Line 821: |
{{{ | {{{#!sagecell |
Line 837: | Line 842: |
{{{ | {{{#!sagecell |
Line 845: | Line 850: |
def _(gen = selector(['t+1', 't-1', '-1/t'], nrows=1)): | def _(gen = selector(['t+1', 't-1', '-1/t'], buttons=True,nrows=1)): |
Contents
Integer Factorization
Divisibility Poset
by William Stein
Factor Trees
by William Stein
More complicated demonstration using Mathematica: http://demonstrations.wolfram.com/FactorTrees/
Factoring an Integer
by Timothy Clemans
Sage implementation of the Mathematica demonstration of the same name. http://demonstrations.wolfram.com/FactoringAnInteger/
Prime Numbers
Illustrating the prime number theorem
by William Stein
Prime Spiral - Square FIXME
by David Runde
Prime Spiral - Polar
by David Runde
Modular Forms
Computing modular forms
by William Stein
Computing the cuspidal subgroup
by William Stein
A Charpoly and Hecke Operator Graph FIXME
by William Stein
Modular Arithmetic
Quadratic Residue Table FIXME
by Emily Kirkman
Cubic Residue Table FIXME
by Emily Kirkman
Cyclotomic Fields
Gauss and Jacobi Sums in Complex Plane
by Emily Kirkman
Exhaustive Jacobi Plotter
by Emily Kirkman
Elliptic Curves
Adding points on an elliptic curve FIXME
by David Møller Hansen
Plotting an elliptic curve over a finite field
Cryptography
The Diffie-Hellman Key Exchange Protocol
by Timothy Clemans and William Stein
Other
Continued Fraction Plotter FIXME
by William Stein
Computing Generalized Bernoulli Numbers
by William Stein (Sage-2.10.3)
Fundamental Domains of SL_2(ZZ)
by Robert Miller