Differences between revisions 12 and 40 (spanning 28 versions)
Revision 12 as of 2009-05-30 17:03:32
Size: 30302
Editor: was
Comment:
Revision 40 as of 2014-12-20 19:23:26
Size: 33100
Editor: akhi
Comment:
Deletions are marked like this. Additions are marked like this.
Line 7: Line 7:
{{{ {{{#!sagecell
Line 18: Line 18:
{{{ {{{#!sagecell
Line 51: Line 51:
                    g += line([(j*2-len(cur),-i), ((k*2)-len(rows[i-1]),-i+1)],                      g += line([(j*2-len(cur),-i), ((k*2)-len(rows[i-1]),-i+1)],
Line 72: Line 72:
{{{ {{{#!sagecell
Line 86: Line 86:
{{{ {{{#!sagecell
Line 94: Line 94:
== Prime Spiral - Square == == Prime Spiral - Square FIXME ==
Line 96: Line 96:
{{{ {{{#!sagecell
Line 101: Line 101:
    REFERENCES:      REFERENCES:
Line 106: Line 106:
        Weisstein, Eric W. "Prime-Generating Polynomial." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Prime-GeneratingPolynomial.html          Weisstein, Eric W. "Prime-Generating Polynomial." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Prime-GeneratingPolynomial.html
Line 114: Line 114:
        elif y<0 and -x >= y and y<x: return 4*(y+1)^2 -11*(y+1) + (start+7) +x          elif y<0 and -x >= y and y<x: return 4*(y+1)^2 -11*(y+1) + (start+7) +x
Line 117: Line 117:
    #Takes in an n and the start value of the spiral and gives its (x,y) coordinate      #Takes in an n and the start value of the spiral and gives its (x,y) coordinate
Line 119: Line 119:
        num = num - start +1          num = num - start +1
Line 121: Line 121:
        top = ceil(sqrt(num))             top = ceil(sqrt(num))
Line 126: Line 126:
            else:              else:
Line 133: Line 133:
            else:              else:
Line 145: Line 145:
        N = M.copy()         N = copy(M)
Line 149: Line 149:
 
    #These functions return an int based on where the t is located in the spiral 

    #These functions return an int based on where the t is located in the spiral
Line 162: Line 162:
    if n !=0: x_cord, y_cord = find_xy(n, start) #Overrides the user given x and y coordinates      if n !=0: x_cord, y_cord = find_xy(n, start) #Overrides the user given x and y coordinates
Line 170: Line 170:
    
Line 173: Line 173:
    if show_lines: 
        for t in [(-size-1)..size+1]: 
    if show_lines:
        for t in [(-size-1)..size+1]:
Line 176: Line 176:
            if m.is_pseudoprime(): main_list.add(m)              if m.is_pseudoprime(): main_list.add(m)
Line 181: Line 181:
    #This for loop changes the matrix by spiraling out from the center and changing each entry as it goes. It is faster than the find_xy function above.      #This for loop changes the matrix by spiraling out from the center and changing each entry as it goes. It is faster than the find_xy function above.
Line 186: Line 186:
            else: x-=1              else: x-=1
Line 188: Line 188:
        
        elif county < overcount: 

        elif county < overcount:
Line 191: Line 191:
            else: y-=1              else: y-=1
Line 193: Line 193:
        else:          else:
Line 199: Line 199:
    
        if not invert and num in main_list: 

        if not invert and num in main_list:
Line 207: Line 207:
    
    if n != 0: 

    if n != 0:
Line 224: Line 224:
    else:      else:
Line 233: Line 233:
{{{
@interact
def polar_prime_spiral(start=1, end=2000, show_factors = false, highlight_primes = false, show_curves=true, n = 0): 

    #For more information about the factors in the spiral, visit http://www.dcs.gla.ac.uk/~jhw/spirals/index.html by John Williamson. 
{{{#!sagecell
@interact
def polar_prime_spiral(start=1, end=2000, show_factors = false, highlight_primes = false, show_curves=true, n = 0):

    #For more information about the factors in the spiral, visit http://www.dcs.gla.ac.uk/~jhw/spirals/index.html by John Williamson.
Line 243: Line 243:
    
Line 251: Line 251:
        R = points(list2, alpha = .1) #Faded Composites 
    else: 
        R = points(list2, alpha = .1) #Faded Composites
    else:
Line 259: Line 259:
        R=points(list2, hue = .1, pointsize = p_size) 
    
        R=points(list2, hue = .1, pointsize = p_size)
Line 263: Line 263:
        
Line 270: Line 270:
        Q = plot(W1+W2+W3+W4, alpha = .1)                   Q = plot(W1+W2+W3+W4, alpha = .1)
Line 273: Line 273:
        if show_curves:          if show_curves:
Line 278: Line 278:
            if n > (floor(sqrt(n)))^2 and n <= (floor(sqrt(n)))^2 + floor(sqrt(n)):              if n > (floor(sqrt(n)))^2 and n <= (floor(sqrt(n)))^2 + floor(sqrt(n)):
Line 281: Line 281:
            else:              else:
Line 286: Line 286:
            def g(m): return (a*m^2+b*m+c);              def g(m): return (a*m^2+b*m+c);
Line 292: Line 292:
            c= c2;              c= c2;
Line 307: Line 307:
{{{
j = 0

@interact
def _(N=[1..100], k=selector([2,4,..,12],nrows=1), prec=(3..40), 
{{{#!sagecell
@interact
def _(N=[1..100], k=selector([2,4,..,12],nrows=1), prec=(3..40),
Line 313: Line 312:
    print j; global j; j += 1
Line 330: Line 328:
{{{ {{{#!sagecell
Line 343: Line 341:
{{{ {{{#!sagecell
Line 351: Line 349:
    G = Graph(T, multiedges=True, loops=not three_d)     G = DiGraph(T, multiedges=not three_d)
    if three_d:
        G.remove_loops()
Line 364: Line 364:
== Quadratic Residue Table == == Quadratic Residue Table FIXME ==
Line 366: Line 366:
{{{ {{{#!sagecell
Line 417: Line 417:
== Cubic Residue Table == == Cubic Residue Table FIXME ==
Line 419: Line 419:
{{{ {{{#!sagecell
Line 437: Line 437:
    if Mod(a,3)!=0 and Mod(b,3)==0:
        return True
    else:
        return False
    return Mod(a,3)!=0 and Mod(b,3)==0
Line 475: Line 472:
        MP += line([(i,0),(i,r)], rgbcolor='black')          MP += line([(i,0),(i,r)], rgbcolor='black')
Line 503: Line 500:
{{{ {{{#!sagecell
Line 552: Line 549:
    S = circle((0,0),1,rgbcolor='yellow')  \
    +
line([e_pt,e_gs_pt], rgbcolor='red', thickness=4) \
    +
line([f_pt,f_gs_pt], rgbcolor='blue', thickness=3) \
    +
line([ef_pt,ef_gs_pt], rgbcolor='purple',thickness=2) \
    +
point(e_pt,pointsize=50, rgbcolor='red')  \
    +
point(f_pt,pointsize=50, rgbcolor='blue') \
    +
point(ef_pt,pointsize=50,rgbcolor='purple') \
    +
point(f_gs_pt,pointsize=75, rgbcolor='black') \
    +
point(e_gs_pt,pointsize=75, rgbcolor='black') \
    +
point(ef_gs_pt,pointsize=75, rgbcolor='black') \
    +
point(js_pt,pointsize=100,rgbcolor='green')
    S = circle((0,0),1,rgbcolor='yellow')
    S +=
line([e_pt,e_gs_pt], rgbcolor='red', thickness=4)
    S +=
line([f_pt,f_gs_pt], rgbcolor='blue', thickness=3)
    S +=
line([ef_pt,ef_gs_pt], rgbcolor='purple',thickness=2)
    S +=
point(e_pt,pointsize=50, rgbcolor='red')
    S +=
point(f_pt,pointsize=50, rgbcolor='blue')
    S +=
point(ef_pt,pointsize=50,rgbcolor='purple')
    S +=
point(f_gs_pt,pointsize=75, rgbcolor='black')
    S +=
point(e_gs_pt,pointsize=75, rgbcolor='black')
    S +=
point(ef_gs_pt,pointsize=75, rgbcolor='black')
    S +=
point(js_pt,pointsize=100,rgbcolor='green')
Line 564: Line 561:
        S += text('$J(%s,%s) = %s$'%(latex2(e),latex2(f),latex(js)), \         S += text('$J(%s,%s) = %s$'%(latex2(e),latex2(f),latex(js)),
Line 583: Line 580:
{{{ {{{#!sagecell
Line 632: Line 629:
    S = circle((0,0),1,rgbcolor='yellow')  \
    +
line([e_pt,e_gs_pt], rgbcolor='red', thickness=4) \
    +
line([f_pt,f_gs_pt], rgbcolor='blue', thickness=3) \
    +
line([ef_pt,ef_gs_pt], rgbcolor='purple',thickness=2) \
    +
point(e_pt,pointsize=50, rgbcolor='red')  \
    +
point(f_pt,pointsize=50, rgbcolor='blue') \
    +
point(ef_pt,pointsize=50,rgbcolor='purple') \
    +
point(f_gs_pt,pointsize=75, rgbcolor='black') \
    +
point(e_gs_pt,pointsize=75, rgbcolor='black') \
    +
point(ef_gs_pt,pointsize=75, rgbcolor='black') \
    +
point(js_pt,pointsize=100,rgbcolor='green')
    S = circle((0,0),1,rgbcolor='yellow')
    S +=
line([e_pt,e_gs_pt], rgbcolor='red', thickness=4)
    S +=
line([f_pt,f_gs_pt], rgbcolor='blue', thickness=3)
    S +=
line([ef_pt,ef_gs_pt], rgbcolor='purple',thickness=2)
    S +=
point(e_pt,pointsize=50, rgbcolor='red')
    S +=
point(f_pt,pointsize=50, rgbcolor='blue')
    S +=
point(ef_pt,pointsize=50,rgbcolor='purple')
    S +=
point(f_gs_pt,pointsize=75, rgbcolor='black')
    S +=
point(e_gs_pt,pointsize=75, rgbcolor='black')
    S +=
point(ef_gs_pt,pointsize=75, rgbcolor='black')
    S +=
point(js_pt,pointsize=100,rgbcolor='green')
Line 644: Line 641:
        S += text('$J(%s,%s) = %s$'%(latex2(e),latex2(f),latex(js)), \         S += text('$J(%s,%s) = %s$'%(latex2(e),latex2(f),latex(js)),
Line 656: Line 653:
        ga[i].save('j%d.PNG'%i,figsize=4,aspect_ratio=1, \         ga[i].save('j%d.png'%i,figsize=4,aspect_ratio=1,
Line 662: Line 659:
    html('<table bgcolor=lightgrey cellpadding=2>')     s='<table bgcolor=lightgrey cellpadding=2>'
Line 664: Line 661:
        html('<tr><td align="center"><img src="cell://j%d.PNG"></td>'%(2*i))
        html('<td align="center"><img src="cell://j%d.PNG"></td></tr>'%(2*i+1))
    html('</table>')
}}}
        s+='<tr><td align="center"><img src="cell://j%d.png"></td>'%(2*i)
        s+='<td align="center"><img src="cell://j%d.png"></td></tr>'%(2*i+1)
    s+='</table>'

    html(s)}}}
Line 675: Line 672:
{{{ {{{#!sagecell
Line 681: Line 678:
    else:      else:
Line 688: Line 685:

def line_from_curve_points(E,P,Q,style='-',rgb=(1,0,0),length=25):
 """
 P,Q two points on an elliptic curve.
 Output is a graphic representation of the straight line intersecting with P,Q.
 """
 # The function tangent to P=Q on E
 if P == Q:
  if P[2]==0:
   return line([(1,-length),(1,length)],linestyle=style,rgbcolor=rgb)
  else:
   # Compute slope of the curve E in P
   l=-(3*P[0]^2 + 2*E.a2()*P[0] + E.a4() - E.a1()*P[1])/((-2)*P[1] - E.a1()*P[0] - E.a3())
   f(x) = l * (x - P[0]) + P[1]
   return plot(f(x),-length,length,linestyle=style,rgbcolor=rgb)
 # Trivial case of P != R where P=O or R=O then we get the vertical line from the other point
 elif P[2] == 0:
  return line([(Q[0],-length),(Q[0],length)],linestyle=style,rgbcolor=rgb)
 elif Q[2] == 0:
  return line([(P[0],-length),(P[0],length)],linestyle=style,rgbcolor=rgb)
 # Non trivial case where P != R
 else:
  # Case where x_1 = x_2 return vertical line evaluated in Q
  if P[0] == Q[0]:
   return line([(P[0],-length),(P[0],length)],linestyle=style,rgbcolor=rgb)

  #Case where x_1 != x_2 return line trough P,R evaluated in Q"
  l=(Q[1]-P[1])/(Q[0]-P[0])
  f(x) = l * (x - P[0]) + P[1]
  return plot(f(x),-length,length,linestyle=style,rgbcolor=rgb)
Line 690: Line 718:
 curve = E.plot(rgbcolor = (0,0,1),xmin=25,xmax=25,plot_points=300)  curve = E.plot(rgbcolor = (0,0,1),xmin=-5,xmax=5,plot_points=300)
Line 716: Line 744:

def line_from_curve_points(E,P,Q,style='-',rgb=(1,0,0),length=25):
 """
 P,Q two points on an elliptic curve.
 Output is a graphic representation of the straight line intersecting with P,Q.
 """
 # The function tangent to P=Q on E
 if P == Q:
  if P[2]==0:
   return line([(1,-length),(1,length)],linestyle=style,rgbcolor=rgb)
  else:
   # Compute slope of the curve E in P
   l=-(3*P[0]^2 + 2*E.a2()*P[0] + E.a4() - E.a1()*P[1])/((-2)*P[1] - E.a1()*P[0] - E.a3())
   f(x) = l * (x - P[0]) + P[1]
   return plot(f(x),-length,length,linestyle=style,rgbcolor=rgb)
 # Trivial case of P != R where P=O or R=O then we get the vertical line from the other point
 elif P[2] == 0:
  return line([(Q[0],-length),(Q[0],length)],linestyle=style,rgbcolor=rgb)
 elif Q[2] == 0:
  return line([(P[0],-length),(P[0],length)],linestyle=style,rgbcolor=rgb)
 # Non trivial case where P != R
 else:
  # Case where x_1 = x_2 return vertical line evaluated in Q
  if P[0] == Q[0]:
   return line([(P[0],-length),(P[0],length)],linestyle=style,rgbcolor=rgb)
  
  #Case where x_1 != x_2 return line trough P,R evaluated in Q"
  l=(Q[1]-P[1])/(Q[0]-P[0])
  f(x) = l * (x - P[0]) + P[1]
  return plot(f(x),-length,length,linestyle=style,rgbcolor=rgb)
Line 751: Line 749:
{{{ {{{#!sagecell
Line 766: Line 764:
{{{ {{{#!sagecell
Line 780: Line 778:
    print """
<
html>
    html("""
Line 805: Line 802:
</ol></html>
    """ % (bits, p, g, a, g, a, p, (g^a), b, g, b, p, (g^b), (g^b), a, p, 
       (g^ b)^a, g^a, b, p, (g^a)^b)
</ol>
    """ % (bits, p, g, a, g, a, p, (g^a), b, g, b, p, (g^b), (g^b), a, p,
       (g^ b)^a, g^a, b, p, (g^a)^b))
Line 817: Line 814:
{{{
@interact
def _(number=e, ymax=selector([None,5,20,..,400],nrows=2), clr=Color('purple'), prec=[500,1000,..,5000]):
{{{#!sagecell
@interact
def _(number=e, ymax=selector([5,20,..,400],nrows=2), clr=Color('purple'), prec=[500,1000,..,5000]):
Line 827: Line 824:
{{{ {{{#!sagecell
Line 848: Line 845:
{{{ {{{#!sagecell
Line 856: Line 853:
def _(gen = selector(['t+1', 't-1', '-1/t'], nrows=1)): def _(gen = selector(['t+1', 't-1', '-1/t'], buttons=True,nrows=1)):
Line 874: Line 871:

= Multiple Zeta Values =
by Akhilesh P.
== Word to composition ==
{{{#!sagecell
@interact
def _( weight=(7,(2..30))):
 n=weight
 a=[0 for i in range(n-1)]
 a.append(1)
 @interact
 def _(v=('word', input_grid(1, n, default=[a], to_value=lambda x: vector(flatten(x))))):
  a=[v[i] for i in range(len(v))]
  def bintocomp(a):
 b=[]
 count=1
 for j in range(len(a)):
  if(a[j]==0):
   count=count+1
  else:
   b.append(count)
   count=1
 return(b)
  print "Composition is ",bintocomp(a)
}}}

{{attachment:akhi2.png}}
== Composition to Word ==
{{{#!sagecell
@interact
def _( Depth=(7,(1..30))):
 n=Depth
 a=[]
 a.append(2)
 a=[1 for i in range(1,n)]
 @interact
 def _(v=('composition', input_grid(1, n, default=[a], to_value=lambda x: vector(flatten(x))))):
  a=[v[i] for i in range(len(v))]
  def comptobin(a):
 word=[]
 for i in range(len(a)):
  word=word+[0]*(a[i]-1)+[1]
 return(word)

  print "Word is is ",comptobin(a)
}}}

{{attachment:akhi2.png}}


== Computing Multiple Zeta values ==
{{{#!sagecell
R=RealField(10)
@interact
def _( weight=(5,(2..20))):
 n=weight
 a=[0 for i in range(n-1)]
 a.append(1)
 @interact
 def _(v=('word', input_grid(1, n, default=[a], to_value=lambda x: vector(flatten(x)))), accuracy=(100..100000)):
  D=accuracy
  a=[v[i] for i in range(len(v))]
  DD=int(3.321928*D)+int(R(log(3.321928*D))/R(log(10)))+4
  RIF=RealIntervalField(DD)
  def Li(word):
        n=int(DD*log(10)/log(2))+1
        B=[]
        L=[]
        S=[]
        count=-1
        k=len(word)
        for i in range(k):
                B.append(RIF('0'))
                L.append(RIF('0'))
                if(word[i]==1 and i<k-1):
                        S.append(RIF('0'))
                        count=count+1
        T=RIF('1')
        for m in range(n):
                T=T/2
                B[k-1]=RIF('1')/(m+1)
                j=count
                for i in range(k-2,-1,-1):
                        if(word[i]==0):
                                B[i]=B[i+1]/(m+1)
                        elif(word[i]==1):
                                B[i]=S[j]/(m+1)
                                S[j]=S[j]+B[i+1]
                                j=j-1
                        L[i]=T*B[i]+L[i]
                L[k-1]=T*B[k-1]+L[k-1]
        return(L)
  def dual(a):
        b=list()
        b=a
        b=b[::-1]
        for i in range(len(b)):
                b[i]=1-b[i]
        return(b)
  def zeta(a):
        b=dual(a)
        l1=Li(a)+[1]
        l2=Li(b)+[1]
        Z=RIF('0')
        for i in range(len(l1)):
                Z=Z+l1[i]*l2[len(a)-i]
        return(Z)
  print zeta(a)
}}}
{{attachment:akhi1.png}}

Integer Factorization

Divisibility Poset

by William Stein

divposet.png

Factor Trees

by William Stein

factortree.png

More complicated demonstration using Mathematica: http://demonstrations.wolfram.com/FactorTrees/

Factoring an Integer

by Timothy Clemans

Sage implementation of the Mathematica demonstration of the same name. http://demonstrations.wolfram.com/FactoringAnInteger/

Prime Numbers

Illustrating the prime number theorem

by William Stein

primes.png

Prime Spiral - Square FIXME

by David Runde

SquareSpiral.PNG

Prime Spiral - Polar

by David Runde

PolarSpiral.PNG

Modular Forms

Computing modular forms

by William Stein

modformbasis.png

Computing the cuspidal subgroup

by William Stein

cuspgroup.png

A Charpoly and Hecke Operator Graph

by William Stein

heckegraph.png

Modular Arithmetic

Quadratic Residue Table FIXME

by Emily Kirkman

quadres.png

quadresbig.png

Cubic Residue Table FIXME

by Emily Kirkman

cubres.png

Cyclotomic Fields

Gauss and Jacobi Sums in Complex Plane

by Emily Kirkman

jacobising.png

Exhaustive Jacobi Plotter

by Emily Kirkman

jacobiexh.png

Elliptic Curves

Adding points on an elliptic curve

by David Møller Hansen

PointAddEllipticCurve.png

Plotting an elliptic curve over a finite field

ellffplot.png

Cryptography

The Diffie-Hellman Key Exchange Protocol

by Timothy Clemans and William Stein

dh.png

Other

Continued Fraction Plotter

by William Stein

contfracplot.png

Computing Generalized Bernoulli Numbers

by William Stein (Sage-2.10.3)

bernoulli.png

Fundamental Domains of SL_2(ZZ)

by Robert Miller

fund_domain.png

Multiple Zeta Values

by Akhilesh P.

Word to composition

akhi2.png

Composition to Word

akhi2.png

Computing Multiple Zeta values

akhi1.png

interact/number_theory (last edited 2020-06-14 09:10:48 by chapoton)