Differences between revisions 5 and 9 (spanning 4 versions)
Revision 5 as of 2008-06-23 16:48:16
Size: 26468
Comment:
Revision 9 as of 2009-01-28 20:21:34
Size: 29334
Editor: DavidHansen
Comment:
Deletions are marked like this. Additions are marked like this.
Line 2: Line 2:
goto [:interact:interact main page]

[[TableOfContents]]
goto [[interact|interact main page]]

<<TableOfContents>>
Line 53: Line 53:
attachment:factortree.png

=== Continued Fraction Plotter ===
{{attachment:factortree.png}}

== Continued Fraction Plotter ==
Line 63: Line 63:
attachment:contfracplot.png

=== Illustrating the prime number thoerem ===
{{attachment:contfracplot.png}}

== Illustrating the prime number theorem ==
Line 73: Line 73:
attachment:primes.png

=== Computing Generalized Bernoulli Numbers ===
{{attachment:primes.png}}

== Computing Generalized Bernoulli Numbers ==
Line 93: Line 93:
attachment:bernoulli.png


=== Fundamental Domains of SL_2(ZZ) ===
{{attachment:bernoulli.png}}


== Fundamental Domains of SL_2(ZZ) ==
Line 123: Line 123:
attachment:fund_domain.png

=== Computing modular forms ===
{{attachment:fund_domain.png}}

== Computing modular forms ==
Line 145: Line 145:
attachment:modformbasis.png


=== Computing the cuspidal subgroup ===
{{attachment:modformbasis.png}}


== Computing the cuspidal subgroup ==
Line 158: Line 158:
attachment:cuspgroup.png

=== A Charpoly and Hecke Operator Graph ===
{{attachment:cuspgroup.png}}

== A Charpoly and Hecke Operator Graph ==
Line 180: Line 180:
attachment:heckegraph.png

=== Demonstrating the Diffie-Hellman Key Exchange Protocol ===
{{attachment:heckegraph.png}}

== Demonstrating the Diffie-Hellman Key Exchange Protocol ==
Line 224: Line 224:
attachment:dh.png

=== Plotting an elliptic curve over a finite field ===
{{attachment:dh.png}}

== Plotting an elliptic curve over a finite field ==
Line 236: Line 236:
attachment:ellffplot.png

=== Prime Spiral - Square ===
{{attachment:ellffplot.png}}

== Prime Spiral - Square ==
Line 373: Line 373:
attachment:SquareSpiral.PNG

=== Prime Spiral - Polar ===
{{attachment:SquareSpiral.PNG}}

== Prime Spiral - Polar ==
Line 444: Line 444:
attachment:PolarSpiral.PNG

=== Quadratic Residue Table ===
{{attachment:PolarSpiral.PNG}}

== Quadratic Residue Table ==
Line 495: Line 495:
attachment:quadres.png

attachment:quadresbig.png

=== Cubic Residue Table ===
{{attachment:quadres.png}}

{{attachment:quadresbig.png}}

== Cubic Residue Table ==
Line 579: Line 579:
attachment:cubres.png

=== Gauss and Jacobi Sums in Complex Plane ===
{{attachment:cubres.png}}

== Gauss and Jacobi Sums in Complex Plane ==
Line 659: Line 659:
attachment:jacobising.png

=== Exhaustive Jacobi Plotter ===
{{attachment:jacobising.png}}

== Exhaustive Jacobi Plotter ==
Line 749: Line 749:
attachment:jacobiexh.png {{attachment:jacobiexh.png}}

== Adding points on an elliptic curve ==
by David Møller Hansen
{{{
def point_txt(P,name,rgbcolor):
    if (P.xy()[1]) < 0:
        r = text(name,[float(P.xy()[0]),float(P.xy()[1])-1],rgbcolor=rgbcolor)
    elif P.xy()[1] == 0:
        r = text(name,[float(P.xy()[0]),float(P.xy()[1])+1],rgbcolor=rgbcolor)
    else:
        r = text(name,[float(P.xy()[0]),float(P.xy()[1])+1],rgbcolor=rgbcolor)
    return r

E = EllipticCurve('37a')
list_of_points = E.integral_points()
html("Graphical addition of two points $P$ and $Q$ on the curve $ E: %s $"%latex(E))
@interact
def _(P=selector(list_of_points,label='Point P'),Q=selector(list_of_points,label='Point Q'), marked_points = checkbox(default=True,label = 'Points'), Lines = selector([0..2],nrows=1), Axes=True):
 curve = E.plot(rgbcolor = (0,0,1),xmin=25,xmax=25,plot_points=300)
 R = P + Q
 Rneg = -R
 l1 = line_from_curve_points(E,P,Q)
 l2 = line_from_curve_points(E,R,Rneg,style='--')
 p1 = plot(P,rgbcolor=(1,0,0),pointsize=40)
 p2 = plot(Q,rgbcolor=(1,0,0),pointsize=40)
 p3 = plot(R,rgbcolor=(1,0,0),pointsize=40)
 p4 = plot(Rneg,rgbcolor=(1,0,0),pointsize=40)
 textp1 = point_txt(P,"$P$",rgbcolor=(0,0,0))
 textp2 = point_txt(Q,"$Q$",rgbcolor=(0,0,0))
 textp3 = point_txt(R,"$P+Q$",rgbcolor=(0,0,0))
 if Lines==0:
  g=curve
 elif Lines ==1:
  g=curve+l1
 elif Lines == 2:
  g=curve+l1+l2
 if marked_points:
  g=g+p1+p2+p3+p4
 if P != Q:
  g=g+textp1+textp2+textp3
 else:
  g=g+textp1+textp3
 g.axes_range(xmin=-5,xmax=5,ymin=-13,ymax=13)
 show(g,axes = Axes)

def line_from_curve_points(E,P,Q,style='-',rgb=(1,0,0),length=25):
 """
 P,Q two points on an elliptic curve.
 Output is a graphic representation of the straight line intersecting with P,Q.
 """
 # The function tangent to P=Q on E
 if P == Q:
  if P[2]==0:
   return line([(1,-length),(1,length)],linestyle=style,rgbcolor=rgb)
  else:
   # Compute slope of the curve E in P
   l=-(3*P[0]^2 + 2*E.a2()*P[0] + E.a4() - E.a1()*P[1])/((-2)*P[1] - E.a1()*P[0] - E.a3())
   f(x) = l * (x - P[0]) + P[1]
   return plot(f(x),-length,length,linestyle=style,rgbcolor=rgb)
 # Trivial case of P != R where P=O or R=O then we get the vertical line from the other point
 elif P[2] == 0:
  return line([(Q[0],-length),(Q[0],length)],linestyle=style,rgbcolor=rgb)
 elif Q[2] == 0:
  return line([(P[0],-length),(P[0],length)],linestyle=style,rgbcolor=rgb)
 # Non trivial case where P != R
 else:
  # Case where x_1 = x_2 return vertical line evaluated in Q
  if P[0] == Q[0]:
   return line([(P[0],-length),(P[0],length)],linestyle=style,rgbcolor=rgb)
  
  #Case where x_1 != x_2 return line trough P,R evaluated in Q"
  l=(Q[1]-P[1])/(Q[0]-P[0])
  f(x) = l * (x - P[0]) + P[1]
  return plot(f(x),-length,length,linestyle=style,rgbcolor=rgb)
}}}

Sage Interactions - Number Theory

goto interact main page

Factor Trees

by William Stein

import random
def ftree(rows, v, i, F):
    if len(v) > 0: # add a row to g at the ith level.
        rows.append(v)
    w = []
    for i in range(len(v)):
        k, _, _ = v[i]
        if k is None or is_prime(k):
            w.append((None,None,None))
        else:
            d = random.choice(divisors(k)[1:-1])
            w.append((d,k,i))
            e = k//d
            if e == 1:
                w.append((None,None))
            else:
                w.append((e,k,i))
    if len(w) > len(v):
        ftree(rows, w, i+1, F)
def draw_ftree(rows,font):
    g = Graphics()
    for i in range(len(rows)):
        cur = rows[i]
        for j in range(len(cur)):
            e, f, k = cur[j]
            if not e is None:
                if is_prime(e):
                     c = (1,0,0)
                else:
                     c = (0,0,.4)
                g += text(str(e), (j*2-len(cur),-i), fontsize=font, rgbcolor=c)
                if not k is None and not f is None:
                    g += line([(j*2-len(cur),-i), ((k*2)-len(rows[i-1]),-i+1)], 
                    alpha=0.5)
    return g

@interact
def factor_tree(n=100, font=(10, (8..20)), redraw=['Redraw']):
    n = Integer(n)
    rows = []
    v = [(n,None,0)]
    ftree(rows, v, 0, factor(n))
    show(draw_ftree(rows, font), axes=False)

factortree.png

Continued Fraction Plotter

by William Stein

@interact
def _(number=e, ymax=selector([None,5,20,..,400],nrows=2), clr=Color('purple'), prec=[500,1000,..,5000]):
    c = list(continued_fraction(RealField(prec)(number))); print c
    show(line([(i,z) for i, z in enumerate(c)],rgbcolor=clr),ymax=ymax,figsize=[10,2])

contfracplot.png

Illustrating the prime number theorem

by William Stein

@interact
def _(N=(100,(2..2000))):
    html("<font color='red'>$\pi(x)$</font> and <font color='blue'>$x/(\log(x)-1)$</font> for $x < %s$"%N)
    show(plot(prime_pi, 0, N, rgbcolor='red') + plot(x/(log(x)-1), 5, N, rgbcolor='blue'))

primes.png

Computing Generalized Bernoulli Numbers

by William Stein (Sage-2.10.3)

@interact
def _(m=selector([1..15],nrows=2), n=(7,(3..10))):
    G = DirichletGroup(m)
    s = "<h3>First n=%s Bernoulli numbers attached to characters with modulus m=%s</h3>"%(n,m)
    s += '<table border=1>'
    s += '<tr bgcolor="#edcc9c"><td align=center>$\\chi$</td><td>Conductor</td>' + \
           ''.join('<td>$B_{%s,\chi}$</td>'%k for k in [1..n]) + '</tr>'
    for eps in G.list():
        v = ''.join(['<td align=center bgcolor="#efe5cd">$%s$</td>'%latex(eps.bernoulli(k)) for k in [1..n]])
        s += '<tr><td bgcolor="#edcc9c">%s</td><td bgcolor="#efe5cd" align=center>%s</td>%s</tr>\n'%(
             eps, eps.conductor(), v)
    s += '</table>'
    html(s)

bernoulli.png

Fundamental Domains of SL_2(ZZ)

by Robert Miller

L = [[-0.5, 2.0^(x/100.0) - 1 + sqrt(3.0)/2] for x in xrange(1000, -1, -1)]
R = [[0.5, 2.0^(x/100.0) - 1 + sqrt(3.0)/2] for x in xrange(1000)]
xes = [x/1000.0 for x in xrange(-500,501,1)]
M = [[x,abs(sqrt(x^2-1))] for x in xes]
fundamental_domain = L+M+R
fundamental_domain = [[x-1,y] for x,y in fundamental_domain]
@interact
def _(gen = selector(['t+1', 't-1', '-1/t'], nrows=1)):
    global fundamental_domain
    if gen == 't+1':
        fundamental_domain = [[x+1,y] for x,y in fundamental_domain]
    elif gen == 't-1':
        fundamental_domain = [[x-1,y] for x,y in fundamental_domain]
    elif gen == '-1/t':
        new_dom = []
        for x,y in fundamental_domain:
            sq_mod = x^2 + y^2
            new_dom.append([(-1)*x/sq_mod, y/sq_mod])
        fundamental_domain = new_dom
    P = polygon(fundamental_domain)
    P.ymax(1.2); P.ymin(-0.1)
    P.show()

fund_domain.png

Computing modular forms

by William Stein

j = 0
@interact
def _(N=[1..100], k=selector([2,4,..,12],nrows=1), prec=(3..40), 
      group=[(Gamma0, 'Gamma0'), (Gamma1, 'Gamma1')]):
    M = CuspForms(group(N),k)
    print j; global j; j += 1
    print M; print '\n'*3
    print "Computing basis...\n\n"
    if M.dimension() == 0:
         print "Space has dimension 0"
    else:
        prec = max(prec, M.dimension()+1)
        for f in M.basis():
             view(f.q_expansion(prec))
    print "\n\n\nDone computing basis."

modformbasis.png

Computing the cuspidal subgroup

by William Stein

html('<h1>Cuspidal Subgroups of Modular Jacobians J0(N)</h1>')
@interact
def _(N=selector([1..8*13], ncols=8, width=10, default=10)):
    A = J0(N)
    print A.cuspidal_subgroup()

cuspgroup.png

A Charpoly and Hecke Operator Graph

by William Stein

# Note -- in Sage-2.10.3; multiedges are missing in plots; loops are missing in 3d plots
@interact
def f(N = prime_range(11,400),
      p = selector(prime_range(2,12),nrows=1),
      three_d = ("Three Dimensional", False)):
    S = SupersingularModule(N)
    T = S.hecke_matrix(p)
    G = Graph(T, multiedges=True, loops=not three_d)
    html("<h1>Charpoly and Hecke Graph: Level %s, T_%s</h1>"%(N,p))
    show(T.charpoly().factor())
    if three_d:
        show(G.plot3d(), aspect_ratio=[1,1,1])
    else:
        show(G.plot(),figsize=7)

heckegraph.png

Demonstrating the Diffie-Hellman Key Exchange Protocol

by Timothy Clemans (refereed by William Stein)

@interact
def diffie_hellman(button=selector(["New example"],label='',buttons=True), 
    bits=("Number of bits of prime", (8,12,..512))):
    maxp = 2^bits
    p = random_prime(maxp)
    k = GF(p)
    if bits>100:
        g = k(2)
    else:
        g = k.multiplicative_generator()
    a = ZZ.random_element(10, maxp)
    b = ZZ.random_element(10, maxp)

    print """
<html>
<style>
.gamodp {
background:yellow
}
.gbmodp {
background:orange
}
.dhsame {
color:green;
font-weight:bold
}
</style>
<h2>%s-Bit Diffie-Hellman Key Exchange</h2>
<ol style="color:#000;font:12px Arial, Helvetica, sans-serif">
<li>Alice and Bob agree to use the prime number p=%s and base g=%s.</li>
<li>Alice chooses the secret integer a=%s, then sends Bob (<span class="gamodp">g<sup>a</sup> mod p</span>):<br/>%s<sup>%s</sup> mod %s = <span class="gamodp">%s</span>.</li>
<li>Bob chooses the secret integer b=%s, then sends Alice (<span class="gbmodp">g<sup>b</sup> mod p</span>):<br/>%s<sup>%s</sup> mod %s = <span class="gbmodp">%s</span>.</li>
<li>Alice computes (<span class="gbmodp">g<sup>b</sup> mod p</span>)<sup>a</sup> mod p:<br/>%s<sup>%s</sup> mod %s = <span class="dhsame">%s</span>.</li>
<li>Bob computes (<span class="gamodp">g<sup>a</sup> mod p</span>)<sup>b</sup> mod p:<br/>%s<sup>%s</sup> mod %s = <span class="dhsame">%s</span>.</li>
</ol></html>
    """ % (bits, p, g, a, g, a, p, (g^a), b, g, b, p, (g^b), (g^b), a, p, 
       (g^ b)^a, g^a, b, p, (g^a)^b)

dh.png

Plotting an elliptic curve over a finite field

E = EllipticCurve('37a')
@interact
def _(p=slider(prime_range(1000), default=389)):
    show(E)
    print "p = %s"%p
    show(E.change_ring(GF(p)).plot(),xmin=0,ymin=0)

ellffplot.png

Prime Spiral - Square

by David Runde

@interact
def square_prime_spiral(start=1, end=100, size_limit = 10, show_lines=false, invert=false, x_cord=0, y_cord=0, n = 0):

    """
    REFERENCES: 
        Alpern, Dario. "Ulam's Spiral". http://www.alpertron.com.ar/ULAM.HTM
        Sacks, Robert. http://www.NumberSpiral.com
        Ventrella, Jeffery. "Prime Numbers are the Holes Behind Complex Composite Patterns". http://www.divisorplot.com
        Williamson, John. Number Spirals. http://www.dcs.gla.ac.uk/~jhw/spirals/index.html jhw@dcs.gla.ac.uk
        Weisstein, Eric W. "Prime-Generating Polynomial." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Prime-GeneratingPolynomial.html 
    """

    #Takes an (x,y) coordinate (and the start of the spiral) and gives its corresponding n value
    def find_n(x,y, start):
        if x>0 and y>-x and y<=x: return 4*(x-1)^2 + 5*(x-1) + (start+1) + y
        elif x<=0 and y>=x and y<=-x: return 4*x^2 - x + (start) -y
        elif y>=0 and -y+1 <= x and y-1 >= x: return 4*y^2 -y + start -x
        elif y<0 and -x >= y and y<x: return 4*(y+1)^2 -11*(y+1) + (start+7) +x 
        else: print 'NaN'

    #Takes in an n and the start value of the spiral and gives its (x,y) coordinate 
    def find_xy(num, start):
        num = num - start +1 
        bottom = floor(sqrt(num))
        top = ceil(sqrt(num))    
        if bottom^2 < num and num<=bottom^2+bottom+1:
            if bottom%2 == 0:
                x=-bottom/2
                y=-x-(num-bottom^2)+1
            else: 
                x=bottom/2+1/2
                y=-x + (num-bottom^2)
        else:
            if top%2 == 0:
                y=top/2
                x=-top/2+1+top^2-num
            else: 
                y=-top/2+1/2
                x=top/2 -1/2 - (top^2-num)
        x = Integer(x)
        y = Integer(y)
        return (x,y)

    if start < 1 or end <=start: print "invalid start or end value"
    if n > end: print "WARNING: n is larger than the end value"

    #Changes the entry of a matrix by taking the old matrix and the (x,y) coordinate (in matrix coordinates) and returns the changed matrix
    def matrix_morph(M, x, y, set):
        N = M.copy()
        N[x-1,y] = set
        M = N
        return M
 
    #These functions return an int based on where the t is located in the spiral 
    def SW_NE(t, x, y, start):
        if -y<x: return 4*t^2 + 2*t -x+y+start
        else: return 4*t^2 + 2*t +x-y+start
    def NW_SE(t, x, y, start):
        if x<y: return 4*t^2 -x-y+start
        else: return 4*t^2 + 4*t +x+y+start

    size = ceil(sqrt(end-start+1)) #Size of the matrix
    num=copy(start) # Start number (might not be used)
    x = ceil(size/2)   #starting center x of the matrix (in matrix coordinates)
    y = copy(x)        #starting center y of the matrix (in matrix coordinates)
    if n !=0: x_cord, y_cord = find_xy(n, start) #Overrides the user given x and y coordinates 
    xt = copy(x_cord)
    yt = copy(y_cord)
    countx=0
    county=0
    overcount = 1
    if size <= size_limit: M = matrix(ZZ, size+1) # Allows the numbers to be seen in the smaller matricies
    else: M = matrix(GF(2), size+1) # Restricts the entries to 0 or 1
    
    main_list = set()
    #print x_cord, y_cord
    if show_lines: 
        for t in [(-size-1)..size+1]: 
            m= SW_NE(t, xt, yt, start)
            if m.is_pseudoprime(): main_list.add(m) 
            m= NW_SE(t, xt, yt, start)
            if m.is_pseudoprime(): main_list.add(m)
    else: main_list = set(prime_range(end))

    #This for loop changes the matrix by spiraling out from the center and changing each entry as it goes. It is faster than the find_xy function above. 
    for num in [start..end]:
        #print x, "=x  y=", y, " num =", num
        if countx < overcount:
            if overcount % 2 == 1: x+=1
            else: x-=1 
            countx += 1
        
        elif county < overcount: 
            if overcount % 2 == 1: y+=1
            else: y-=1 
            county += 1
        else: 
            overcount += 1
            countx=2
            county=0
            if overcount % 2 == 1: x+=1
            else: x-=1
    
        if not invert and num in main_list: 
            if size <= size_limit: M = matrix_morph(M, x, y, num)
            else: M = matrix_morph(M, x, y, 1)

        elif invert and num not in main_list: #This does the opposite of the above if statement by changing the matrix only when a number is not in the list of allowable primes
            if size <= size_limit: M = matrix_morph(M, x, y, num)
            else: M = matrix_morph(M, x, y, 1)
    
    if n != 0: 
        print '(to go from x,y coords to an n, reset by setting n=0)'
        (x_cord, y_cord) = find_xy(n, start)
        #print 'if n =', n, 'then (x,y) =', (x_cord, y_cord)

    print '(x,y) =', (x_cord, y_cord), '<=> n =', find_n(x_cord, y_cord, start)
    print ' '
    print "SW/NE line"
    if -y_cord<x_cord: print '4*t^2 + 2*t +', -x_cord+y_cord+start
    else: print '4*t^2 + 2*t +', +x_cord-y_cord+start

    print "NW/SE line"
    if x_cord<y_cord: print '4*t^2 +', -x_cord-y_cord+start
    else: print '4*t^2 + 4*t +', +x_cord+y_cord+start

    if size <= size_limit: show(M) #Displays the matrix with integer entries
    else: 
        M.visualize_structure() # Displays the final resulting matrix as a series of pixels (1 <=> pixel on)
        #matrix_plot(M)

SquareSpiral.PNG

Prime Spiral - Polar

by David Runde

@interact
def polar_prime_spiral(start=1, end=2000, show_factors = false, highlight_primes = false, show_curves=true, n = 0): 

    #For more information about the factors in the spiral, visit http://www.dcs.gla.ac.uk/~jhw/spirals/index.html by John Williamson. 

    if start < 1 or end <=start: print "invalid start or end value"
    if n > end: print "WARNING: n is greater than end value"
    def f(n):
        return (sqrt(n)*cos(2*pi*sqrt(n)), sqrt(n)*sin(2*pi*sqrt(n)))
    
    list =[]
    list2=[]
    if show_factors == false:
        for i in [start..end]:
            if i.is_pseudoprime(): list.append(f(i-start+1)) #Primes list
            else: list2.append(f(i-start+1)) #Composites list
        P = points(list)
        R = points(list2, alpha = .1) #Faded Composites 
    else: 
        for i in [start..end]:
            list.append(disk((f(i-start+1)),0.05*pow(2,len(factor(i))-1), (0,2*pi))) #resizes each of the dots depending of the number of factors of each number
            if i.is_pseudoprime() and highlight_primes: list2.append(f(i-start+1))
        P = plot(list)
        p_size = 5 #the orange dot size of the prime markers
        if not highlight_primes: list2 = [(f(n-start+1))]
        R=points(list2, hue = .1, pointsize = p_size) 
    
    if n > 0:
        print 'n =', factor(n)
        
        p = 1
    #The X which marks the given n
        W1 = disk((f(n-start+1)), p, (pi/6, 2*pi/6))
        W2 = disk((f(n-start+1)), p, (4*pi/6, 5*pi/6))
        W3 = disk((f(n-start+1)), p, (7*pi/6, 8*pi/6))
        W4 = disk((f(n-start+1)), p, (10*pi/6, 11*pi/6))
        Q = plot(W1+W2+W3+W4, alpha = .1)          

        n=n-start+1        #offsets the n for different start values to ensure accurate plotting
        if show_curves: 
            begin_curve = 0
            t = var('t')
            a=1
            b=0
            if n > (floor(sqrt(n)))^2 and n <= (floor(sqrt(n)))^2 + floor(sqrt(n)): 
                c = -((floor(sqrt(n)))^2 - n)
                c2= -((floor(sqrt(n)))^2 + floor(sqrt(n)) - n)
            else: 
                c = -((ceil(sqrt(n)))^2 - n)
                c2= -((floor(sqrt(n)))^2 + floor(sqrt(n)) - n)
            print 'Pink Curve:  n^2 +', c
            print 'Green Curve: n^2 + n +', c2
            def g(m): return (a*m^2+b*m+c); 
            def r(m) : return sqrt(g(m))
            def theta(m) : return r(m)- m*sqrt(a)
            S1 = parametric_plot(((r(t))*cos(2*pi*(theta(t))),(r(t))*sin(2*pi*(theta(t)))), begin_curve, ceil(sqrt(end-start)), rgbcolor=hue(0.8), thickness = .2) #Pink Line

            b=1
            c= c2; 
            S2 = parametric_plot(((r(t))*cos(2*pi*(theta(t))),(r(t))*sin(2*pi*(theta(t)))), begin_curve, ceil(sqrt(end-start)), rgbcolor=hue(0.6), thickness = .2) #Green Line

            show(R+P+S1+S2+Q, aspect_ratio = 1, axes = false)
        else: show(R+P+Q, aspect_ratio = 1, axes = false)
    else: show(R+P, aspect_ratio = 1, axes = false)

PolarSpiral.PNG

Quadratic Residue Table

by Emily Kirkman

from numpy import array as narray
@interact
def quad_res_plot(first_n_odd_primes = (20,200),display_size=[7..15]):

    # Compute numpy matrix of legendre symbols
    r = int(first_n_odd_primes)
    np = [nth_prime(i+2) for i in range(r)]
    leg = [[legendre_symbol(np[i], np[j]) for i in range(r)] for j in range(r)]
    na = narray(leg)
    for i in range(r):
        for j in range(r):
            if na[i][j] == 1 and Mod((np[i]-1)*(np[j]-1)//4,2) == 0:
                na[i][j] = 2
    m = matrix(na)

    # Define plot structure
    MP = matrix_plot(m, cmap='Oranges')
    for i in range(r):
        if np[-1] < 100:
            MP += text('%d'%nth_prime(i+2),(-.75,r-i-.5), rgbcolor='black')
            MP += text('%d'%nth_prime(i+2), (i+.5,r+.5), rgbcolor='black')
        if len(np) < 75:
            MP += line([(0,i),(r,i)], rgbcolor='black')
            MP += line([(i,0),(i,r)], rgbcolor='black')
    if np[-1] < 100:
        for i in range(r): # rows
            for j in range(r): # cols
                if m[j][i] == 0:
                    MP += text('0',(i+.5,r-j-.5),rgbcolor='black')
                elif m[j][i] == -1:
                    MP += text('N',(i+.5,r-j-.5),rgbcolor='black')
                elif m[j][i] == 1:
                    MP += text('A',(i+.5,r-j-.5),rgbcolor='black')
                elif m[j][i] == 2:
                    MP += text('S',(i+.5,r-j-.5),rgbcolor='black')
    MP += line([(0,r),(r,r)], rgbcolor='black')
    MP += line([(r,0),(r,r)], rgbcolor='black')
    MP += line([(0,0),(r,0)], rgbcolor='black')
    MP += line([(0,0),(0,r)], rgbcolor='black')
    if len(np) < 75:
        MP += text('q',(r/2,r+2), rgbcolor='black', fontsize=15)
        MP += text('p',(-2.5,r/2), rgbcolor='black', fontsize=15)
    MP.show(axes=False, ymax=r, figsize=[display_size,display_size])
    html('Symmetry of Prime Quadratic Residues mod the first %d odd primes.'%r)

quadres.png

quadresbig.png

Cubic Residue Table

by Emily Kirkman

def power_residue_symbol(alpha, p, m):
    if p.divides(alpha): return 0
    if not p.is_prime():
        return prod(power_residue_symbol(alpha,ell,m)^e
                for ell, e in p.factor())
    F = p.residue_field()
    N = p.norm()
    r = F(alpha)^((N-1)/m)
    k = p.number_field()
    for kr in k.roots_of_unity():
        if r == F(kr):
            return kr


def cubic_is_primary(n):
    g = n.gens_reduced()[0]
    a,b = g.polynomial().coefficients()
    if Mod(a,3)!=0 and Mod(b,3)==0:
        return True
    else:
        return False


from numpy import array as narray
@interact
def cubic_sym(n=(10..35),display_size=[7..15]):

    # Compute numpy matrix of primary cubic residue symbols
    r = n
    m=3
    D.<w> = NumberField(x^2+x+1)
    it = D.primes_of_degree_one_iter()
    pp = []
    while len(pp) < r:
        k = it.next()
        if cubic_is_primary(k):
            pp.append(k)
    n = narray([ [ power_residue_symbol(pp[i].gens_reduced()[0], pp[j], m) \
                        for i in range(r) ] for j in range(r) ])

    # Convert to integer matrix for gradient colors
    for i in range(r):
        for j in range(r):
            if n[i][j] == w:
                n[i][j] = int(-1)
            elif n[i][j] == w^2:
                n[i][j] = int(-2)
            elif n[i][j] == 1:
                n[i][j] = int(1)
    m = matrix(n)

    # Define plot structure
    MP = matrix_plot(m,cmap="Blues")
    for i in range(r):
        MP += line([(0,i),(r,i)], rgbcolor='black')
        MP += line([(i,0),(i,r)], rgbcolor='black') 
        for j in range(r):
            if m[i][j] == -2:
                MP += text('$\omega^2$',(i+.5,r-j-.5),rgbcolor='black')
            if m[i][j] == -1:
                MP += text('$\omega $',(i+.5,r-j-.5),rgbcolor='black')
            if m[i][j] == 0:
                MP += text('0',(i+.5,r-j-.5),rgbcolor='black')
            if m[i][j] == 1:
                MP += text('R',(i+.5,r-j-.5),rgbcolor='white')
    MP += line([(0,r),(r,r)], rgbcolor='black')
    MP += line([(r,0),(r,r)], rgbcolor='black')
    MP += line([(0,0),(r,0)], rgbcolor='black')
    MP += line([(0,0),(0,r)], rgbcolor='black')
    MP += text('$ \pi_1$',(r/2,r+2), rgbcolor='black', fontsize=25)
    MP += text('$ \pi_2$',(-2.5,r/2), rgbcolor='black', fontsize=25)

    html('Symmetry of Primary Cubic Residues mod ' \
          + '%d primary primes in $ \mathbf Z[\omega]$.'%r)
    MP.show(axes=False, figsize=[display_size,display_size])

cubres.png

Gauss and Jacobi Sums in Complex Plane

by Emily Kirkman

def jacobi_sum(e,f):
    # If they are both trivial, return p
    if e.is_trivial() and f.is_trivial():
        return (e.parent()).order() + 1

    # If they are inverses of each other, return -e(-1)
    g = e*f
    if g.is_trivial():
        return -e(-1)

    # If both are nontrivial, apply mult. formula:
    elif not e.is_trivial() and not f.is_trivial():
        return e.gauss_sum()*f.gauss_sum()/g.gauss_sum()

    # If exactly one is trivial, return 0
    else:
        return 0


def latex2(e):
    return latex(list(e.values_on_gens()))


def jacobi_plot(p, e_index, f_index, with_text=True):
    # Set values
    G = DirichletGroup(p)
    e = G[e_index]
    f = G[f_index]
    ef = e*f
    js = jacobi_sum(e,f)
    e_gs = e.gauss_sum()
    f_gs = f.gauss_sum()
    ef_gs = (e*f).gauss_sum()

    # Compute complex coordinates
    f_pt = list(f.values_on_gens()[0].complex_embedding())
    e_pt = list(e.values_on_gens()[0].complex_embedding())
    ef_pt = list(ef.values_on_gens()[0].complex_embedding())
    f_gs_pt = list(f_gs.complex_embedding())
    e_gs_pt = list(e_gs.complex_embedding())
    ef_gs_pt = list(ef_gs.complex_embedding())
    try:
        js = int(js)
        js_pt = [CC(js)]
    except:
        js_pt = list(js.complex_embedding())

    # Define plot structure
    S = circle((0,0),1,rgbcolor='yellow')  \ 
    + line([e_pt,e_gs_pt], rgbcolor='red', thickness=4) \
    + line([f_pt,f_gs_pt], rgbcolor='blue', thickness=3) \
    + line([ef_pt,ef_gs_pt], rgbcolor='purple',thickness=2) \
    + point(e_pt,pointsize=50, rgbcolor='red')  \
    + point(f_pt,pointsize=50, rgbcolor='blue') \
    + point(ef_pt,pointsize=50,rgbcolor='purple') \
    + point(f_gs_pt,pointsize=75, rgbcolor='black') \        
    + point(e_gs_pt,pointsize=75, rgbcolor='black') \
    + point(ef_gs_pt,pointsize=75, rgbcolor='black') \
    + point(js_pt,pointsize=100,rgbcolor='green')
    if with_text:
        S += text('$J(%s,%s) = %s$'%(latex2(e),latex2(f),latex(js)), \
            (3,2.5),fontsize=15, rgbcolor='black')
    else:
        html('$$J(%s,%s) = %s$$'%(latex2(e),latex2(f),latex(js)))

    return S

@interact
def single_jacobi_plot(p=prime_range(3,100), e_range=(0..100), f_range=(0..100)):
    e_index = floor((p-2)*e_range/100)
    f_index = floor((p-2)*f_range/100)
    S = jacobi_plot(p,e_index,f_index,with_text=False)
    S.show(aspect_ratio=1)

jacobising.png

Exhaustive Jacobi Plotter

by Emily Kirkman

def jacobi_sum(e,f):
    # If they are both trivial, return p
    if e.is_trivial() and f.is_trivial():
        return (e.parent()).order() + 1

    # If they are inverses of each other, return -e(-1)
    g = e*f
    if g.is_trivial():
        return -e(-1)

    # If both are nontrivial, apply mult. formula:
    elif not e.is_trivial() and not f.is_trivial():
        return e.gauss_sum()*f.gauss_sum()/g.gauss_sum()

    # If exactly one is trivial, return 0
    else:
        return 0


def latex2(e):
    return latex(list(e.values_on_gens()))


def jacobi_plot(p, e_index, f_index, with_text=True):
    # Set values
    G = DirichletGroup(p)
    e = G[e_index]
    f = G[f_index]
    ef = e*f
    js = jacobi_sum(e,f)
    e_gs = e.gauss_sum()
    f_gs = f.gauss_sum()
    ef_gs = (e*f).gauss_sum()

    # Compute complex coordinates
    f_pt = list(f.values_on_gens()[0].complex_embedding())
    e_pt = list(e.values_on_gens()[0].complex_embedding())
    ef_pt = list(ef.values_on_gens()[0].complex_embedding())
    f_gs_pt = list(f_gs.complex_embedding())
    e_gs_pt = list(e_gs.complex_embedding())
    ef_gs_pt = list(ef_gs.complex_embedding())
    try:
        js = int(js)
        js_pt = [CC(js)]
    except:
        js_pt = list(js.complex_embedding())

    # Define plot structure
    S = circle((0,0),1,rgbcolor='yellow')  \ 
    + line([e_pt,e_gs_pt], rgbcolor='red', thickness=4) \
    + line([f_pt,f_gs_pt], rgbcolor='blue', thickness=3) \
    + line([ef_pt,ef_gs_pt], rgbcolor='purple',thickness=2) \
    + point(e_pt,pointsize=50, rgbcolor='red')  \
    + point(f_pt,pointsize=50, rgbcolor='blue') \
    + point(ef_pt,pointsize=50,rgbcolor='purple') \
    + point(f_gs_pt,pointsize=75, rgbcolor='black') \        
    + point(e_gs_pt,pointsize=75, rgbcolor='black') \
    + point(ef_gs_pt,pointsize=75, rgbcolor='black') \
    + point(js_pt,pointsize=100,rgbcolor='green')
    if with_text:
        S += text('$J(%s,%s) = %s$'%(latex2(e),latex2(f),latex(js)), \
            (3,2.5),fontsize=15, rgbcolor='black')
    else:
        html('$$J(%s,%s) = %s$$'%(latex2(e),latex2(f),latex(js)))

    return S

@interact
def exhaustive_jacobi_plot(p=prime_range(3,8)):
    ga = [jacobi_plot(p,i,j) for i in range(p-1) for j in range(p-1)[i:]]

    for i in range(len(ga)):
        ga[i].save('j%d.PNG'%i,figsize=4,aspect_ratio=1, \
                    xmin=-2.5,xmax=5, ymin=-2.5, ymax=2.5)

    # Since p is odd, will have n = p-1 even.  So 1+2+...+n = (n/2)*(n+1).
    # We divide this by rows of 2.
    rows = ceil(p*(p-1)/4)
    html('<table bgcolor=lightgrey cellpadding=2>')
    for i in range(rows):
        html('<tr><td align="center"><img src="cell://j%d.PNG"></td>'%(2*i))
        html('<td align="center"><img src="cell://j%d.PNG"></td></tr>'%(2*i+1))
    html('</table>')

jacobiexh.png

Adding points on an elliptic curve

by David Møller Hansen

def point_txt(P,name,rgbcolor):
    if (P.xy()[1]) < 0:
        r = text(name,[float(P.xy()[0]),float(P.xy()[1])-1],rgbcolor=rgbcolor)
    elif P.xy()[1] == 0:
        r = text(name,[float(P.xy()[0]),float(P.xy()[1])+1],rgbcolor=rgbcolor)
    else: 
        r = text(name,[float(P.xy()[0]),float(P.xy()[1])+1],rgbcolor=rgbcolor)
    return r

E = EllipticCurve('37a')
list_of_points = E.integral_points()
html("Graphical addition of two points $P$ and $Q$ on the curve $ E: %s $"%latex(E))
@interact
def _(P=selector(list_of_points,label='Point P'),Q=selector(list_of_points,label='Point Q'), marked_points = checkbox(default=True,label = 'Points'), Lines = selector([0..2],nrows=1), Axes=True):
        curve = E.plot(rgbcolor = (0,0,1),xmin=25,xmax=25,plot_points=300)
        R = P + Q
        Rneg = -R
        l1 = line_from_curve_points(E,P,Q)
        l2 = line_from_curve_points(E,R,Rneg,style='--')
        p1 = plot(P,rgbcolor=(1,0,0),pointsize=40)
        p2 = plot(Q,rgbcolor=(1,0,0),pointsize=40)
        p3 = plot(R,rgbcolor=(1,0,0),pointsize=40)
        p4 = plot(Rneg,rgbcolor=(1,0,0),pointsize=40)
        textp1 = point_txt(P,"$P$",rgbcolor=(0,0,0))
        textp2 = point_txt(Q,"$Q$",rgbcolor=(0,0,0))
        textp3 = point_txt(R,"$P+Q$",rgbcolor=(0,0,0))
        if Lines==0:
                g=curve
        elif Lines ==1:
                g=curve+l1
        elif Lines == 2:
                g=curve+l1+l2
        if marked_points:
                g=g+p1+p2+p3+p4
        if P != Q:
                g=g+textp1+textp2+textp3
        else:
                g=g+textp1+textp3
        g.axes_range(xmin=-5,xmax=5,ymin=-13,ymax=13)
        show(g,axes = Axes)

def line_from_curve_points(E,P,Q,style='-',rgb=(1,0,0),length=25):
        """
        P,Q two points on an elliptic curve.
        Output is a graphic representation of the straight line intersecting with P,Q.
        """
        # The function tangent to P=Q on E
        if P == Q:
                if P[2]==0:
                        return line([(1,-length),(1,length)],linestyle=style,rgbcolor=rgb)
                else:
                        # Compute slope of the curve E in P
                        l=-(3*P[0]^2 + 2*E.a2()*P[0] + E.a4() - E.a1()*P[1])/((-2)*P[1] - E.a1()*P[0] - E.a3())
                        f(x) = l * (x - P[0]) + P[1]
                        return plot(f(x),-length,length,linestyle=style,rgbcolor=rgb)
        # Trivial case of P != R where P=O or R=O then we get the vertical line from the other point
        elif P[2] == 0:
                return line([(Q[0],-length),(Q[0],length)],linestyle=style,rgbcolor=rgb)
        elif Q[2] == 0:
                return line([(P[0],-length),(P[0],length)],linestyle=style,rgbcolor=rgb)
        # Non trivial case where P != R
        else:   
                # Case where x_1 = x_2 return vertical line evaluated in Q
                if P[0] == Q[0]:
                        return line([(P[0],-length),(P[0],length)],linestyle=style,rgbcolor=rgb)
                
                #Case where x_1 != x_2 return line trough P,R evaluated in Q"
                l=(Q[1]-P[1])/(Q[0]-P[0])
                f(x) = l * (x - P[0]) + P[1]
                return plot(f(x),-length,length,linestyle=style,rgbcolor=rgb)

interact/number_theory (last edited 2020-06-14 09:10:48 by chapoton)