Size: 45948
Comment:
|
Size: 48431
Comment:
|
Deletions are marked like this. | Additions are marked like this. |
Line 872: | Line 872: |
= Multiple Zeta Values = | = Multiple Zeta Values = |
Line 874: | Line 874: |
== Computing Multiple Zeta values == | == Computing Multiple Zeta values (Euler-Zagier numbers) == |
Line 879: | Line 879: |
def _( weight=(5,(2..20))): | def _( weight=(5,(2..100))): |
Line 932: | Line 932: |
print zeta(a) | u=zeta(a) RIF=RealIntervalField(int(3.321928*D)) u=u/1 print u |
Line 939: | Line 942: |
def _( Depth=(5,(2..20))): | def _( Depth=(5,(2..100))): |
Line 998: | Line 1001: |
print zeta(a) |
u=zeta(a) RIF=RealIntervalField(int(3.321928*D)) u=u/1 print u |
Line 1002: | Line 1007: |
== Program to Compute Integer Relation between Multiple Zeta Values (Euler-Zagier numbers) == {{{#!sagecell from mpmath import * print "Enter the number of composition" @interact def _( n=(5,(2..100))): a=[] for i in range(n): a.append([i+2,1]) print "In each box Enter composition as an array" @interact def _(v=('Compositions', input_box( default=a, to_value=lambda x: vector(flatten(x)))), accuracy=(100..100000)): D=accuracy R=RealField(10) a=v def comptobin(a): word=[] for i in range(len(a)): word=word+[0]*(a[i]-1)+[1] return(word) DD=int(D)+int(R(log(3.321928*D))/R(log(10)))+4 RIF=RealIntervalField(DD) mp.dps=DD def Li(word): n=int(DD*log(10)/log(2))+1 B=[] L=[] S=[] count=-1 k=len(word) for i in range(k): B.append(mpf('0')) L.append(mpf('0')) if(word[i]==1 and i<k-1): S.append(mpf('0')) count=count+1 T=mpf('1') for m in range(n): T=T/2 B[k-1]=mpf('1')/(m+1) j=count for i in range(k-2,-1,-1): if(word[i]==0): B[i]=B[i+1]/(m+1) elif(word[i]==1): B[i]=S[j]/(m+1) S[j]=S[j]+B[i+1] j=j-1 L[i]=T*B[i]+L[i] L[k-1]=T*B[k-1]+L[k-1] return(L) def dual(a): b=list() b=a b=b[::-1] for i in range(len(b)): b[i]=1-b[i] return(b) def zeta(a): b=dual(a) l1=Li(a)+[1] l2=Li(b)+[1] Z=mpf('0') for i in range(len(l1)): Z=Z+l1[i]*l2[len(a)-i] return(Z) zet=[] for i in range(n): zet.append((zeta(comptobin(a[i])))) mp.dps=D for i in range(n): zet[i]=zet[i]/1 print "zeta(",a[i],")=",zet[i] u=pslq(zet,tol=10**-D,maxcoeff=100,maxsteps=10000) print "the Intger Relation between the above zeta values given by the vector" print u }}} {{attachment:akhi10.png}} |
|
Line 1006: | Line 1088: |
def _( weight=(7,(2..30))): | def _( weight=(7,(2..100))): |
Line 1030: | Line 1112: |
def _( Depth=(7,(1..30))): | def _( Depth=(7,(1..100))): |
Line 1051: | Line 1133: |
def _( weight=(7,(2..30))): | def _( weight=(7,(2..100))): |
Line 1075: | Line 1157: |
def _( w1=(2,(2..20)), w2=(2,(2..20))): | def _( w1=(2,(2..100)), w2=(2,(2..100))): |
Line 1162: | Line 1244: |
def _( w=(2,(2..20))): | def _( w=(2,(2..100))): |
Contents
- Integer Factorization
- Prime Numbers
- Modular Forms
- Modular Arithmetic
- Cyclotomic Fields
- Elliptic Curves
- Cryptography
- Other
- Multiple Zeta Values
Integer Factorization
Divisibility Poset
by William Stein
Factor Trees
by William Stein
More complicated demonstration using Mathematica: http://demonstrations.wolfram.com/FactorTrees/
Factoring an Integer
by Timothy Clemans
Sage implementation of the Mathematica demonstration of the same name. http://demonstrations.wolfram.com/FactoringAnInteger/
Prime Numbers
Illustrating the prime number theorem
by William Stein
Prime Spiral - Square FIXME
by David Runde
Prime Spiral - Polar
by David Runde
Modular Forms
Computing modular forms
by William Stein
Computing the cuspidal subgroup
by William Stein
A Charpoly and Hecke Operator Graph
by William Stein
Modular Arithmetic
Quadratic Residue Table FIXME
by Emily Kirkman
Cubic Residue Table FIXME
by Emily Kirkman
Cyclotomic Fields
Gauss and Jacobi Sums in Complex Plane
by Emily Kirkman
Exhaustive Jacobi Plotter
by Emily Kirkman
Elliptic Curves
Adding points on an elliptic curve
by David Møller Hansen
Plotting an elliptic curve over a finite field
Cryptography
The Diffie-Hellman Key Exchange Protocol
by Timothy Clemans and William Stein
Other
Continued Fraction Plotter
by William Stein
Computing Generalized Bernoulli Numbers
by William Stein (Sage-2.10.3)
Fundamental Domains of SL_2(ZZ)
by Robert Miller
Multiple Zeta Values
by Akhilesh P.
Computing Multiple Zeta values (Euler-Zagier numbers)
Word Input
Composition Input
Program to Compute Integer Relation between Multiple Zeta Values (Euler-Zagier numbers)
Word to composition
Composition to Word
Dual of a Word
Shuffle product of two Words
Shuffle Regularization at 0
Shuffle Regularization at 1