Size: 48202
Comment:
|
Size: 48344
Comment: no xrange
|
Deletions are marked like this. | Additions are marked like this. |
Line 115: | Line 115: |
else: print 'NaN' | else: print('NaN') |
Line 140: | Line 140: |
if start < 1 or end <=start: print "invalid start or end value" if n > end: print "WARNING: n is larger than the end value" |
if start < 1 or end <=start: print("invalid start or end value") if n > end: print("WARNING: n is larger than the end value") |
Line 172: | Line 172: |
#print x_cord, y_cord | |
Line 183: | Line 182: |
#print x, "=x y=", y, " num =", num | |
Line 209: | Line 207: |
print '(to go from x,y coords to an n, reset by setting n=0)' | print('(to go from x,y coords to an n, reset by setting n=0)') |
Line 211: | Line 209: |
#print 'if n =', n, 'then (x,y) =', (x_cord, y_cord) print '(x,y) =', (x_cord, y_cord), '<=> n =', find_n(x_cord, y_cord, start) print ' ' print "SW/NE line" if -y_cord<x_cord: print '4*t^2 + 2*t +', -x_cord+y_cord+start else: print '4*t^2 + 2*t +', +x_cord-y_cord+start print "NW/SE line" if x_cord<y_cord: print '4*t^2 +', -x_cord-y_cord+start else: print '4*t^2 + 4*t +', +x_cord+y_cord+start |
print('(x,y) =', (x_cord, y_cord), '<=> n =', find_n(x_cord, y_cord, start)) print(' ') print("SW/NE line") if -y_cord<x_cord: print('4*t^2 + 2*t +', -x_cord+y_cord+start) else: print('4*t^2 + 2*t +', +x_cord-y_cord+start) print("NW/SE line") if x_cord<y_cord: print('4*t^2 +', -x_cord-y_cord+start) else: print('4*t^2 + 4*t +', +x_cord+y_cord+start) |
Line 239: | Line 236: |
if start < 1 or end <=start: print "invalid start or end value" if n > end: print "WARNING: n is greater than end value" |
if start < 1 or end <=start: print("invalid start or end value") if n > end: print("WARNING: n is greater than end value") |
Line 262: | Line 259: |
print 'n =', factor(n) | print('n = {}'.format(factor(n))) |
Line 284: | Line 281: |
print 'Pink Curve: n^2 +', c print 'Green Curve: n^2 + n +', c2 |
print('Pink Curve: n^2 +', c) print('Green Curve: n^2 + n +', c2) |
Line 312: | Line 309: |
print M; print '\n'*3 print "Computing basis...\n\n" |
print(M) print('\n' * 3) print("Computing basis...\n\n") |
Line 315: | Line 313: |
print "Space has dimension 0" | print("Space has dimension 0") |
Line 317: | Line 315: |
prec = max(prec, M.dimension()+1) | prec = max(prec, M.dimension() + 1) |
Line 320: | Line 318: |
print "\n\n\nDone computing basis." | print("\n\n\nDone computing basis.") |
Line 333: | Line 331: |
print A.cuspidal_subgroup() | print(A.cuspidal_subgroup()) |
Line 754: | Line 752: |
print "p = %s"%p show(E.change_ring(GF(p)).plot(),xmin=0,ymin=0) |
print("p = %s" % p) show(E.change_ring(GF(p)).plot(), xmin=0, ymin=0) |
Line 817: | Line 815: |
c = list(continued_fraction(RealField(prec)(number))); print c | c = list(continued_fraction(RealField(prec)(number))); print(c) |
Line 846: | Line 844: |
L = [[-0.5, 2.0^(x/100.0) - 1 + sqrt(3.0)/2] for x in xrange(1000, -1, -1)] R = [[0.5, 2.0^(x/100.0) - 1 + sqrt(3.0)/2] for x in xrange(1000)] xes = [x/1000.0 for x in xrange(-500,501,1)] |
L = [[-0.5, 2.0^(x/100.0) - 1 + sqrt(3.0)/2] for x in range(1000, -1, -1)] R = [[0.5, 2.0^(x/100.0) - 1 + sqrt(3.0)/2] for x in range(1000)] xes = [x/1000.0 for x in range(-500,501,1)] |
Line 872: | Line 870: |
= Multiple Zeta Values = | = Multiple Zeta Values = |
Line 874: | Line 872: |
== Computing Multiple Zeta values == | == Computing Multiple Zeta values == |
Line 879: | Line 877: |
def _( weight=(5,(2..20))): | def _( weight=(5,(2..100))): |
Line 932: | Line 930: |
print zeta(a) | u=zeta(a) RIF=RealIntervalField(int(3.321928*D)) u=u/1 print(u) |
Line 939: | Line 940: |
def _( Depth=(5,(2..20))): | def _( Depth=(5,(2..100))): |
Line 998: | Line 999: |
print zeta(a) |
u=zeta(a) RIF=RealIntervalField(int(3.321928*D)) u=u/1 print(u) |
Line 1005: | Line 1008: |
print "Enter the number of composition" @interact def _( n=(5,(2..20))): |
print("Enter the number of composition") @interact def _( n=(5,(2..100))): |
Line 1011: | Line 1014: |
print "In each box Enter composition as an array" | print("In each box Enter composition as an array") |
Line 1071: | Line 1074: |
print "zeta(",a[i],")=",zet[i] | mp.dps=D for i in range(n): zet[i]=zet[i]/1 print("zeta(", a[i], ")=", zet[i]) |
Line 1073: | Line 1079: |
print "the Intger Relation between the above zeta values given by the vector" print u |
print("the Intger Relation between the above zeta values given by the vector") print(u) |
Line 1080: | Line 1086: |
def _( weight=(7,(2..30))): | def _( weight=(7,(2..100))): |
Line 1097: | Line 1103: |
print "Composition is ",bintocomp(a) | print("Composition is {}".format(bintocomp(a))) |
Line 1104: | Line 1110: |
def _( Depth=(7,(1..30))): | def _( Depth=(7,(1..100))): |
Line 1118: | Line 1124: |
print "Word is ",comptobin(a) | print("Word is {}".format(comptobin(a))) |
Line 1125: | Line 1131: |
def _( weight=(7,(2..30))): | def _( weight=(7,(2..100))): |
Line 1140: | Line 1146: |
print "Dual word is ",dual(a) | print("Dual word is {}"?format(dual(a))) |
Line 1149: | Line 1155: |
def _( w1=(2,(2..20)), w2=(2,(2..20))): | def _( w1=(2,(2..100)), w2=(2,(2..100))): |
Line 1227: | Line 1233: |
print c[1][i],"*",c[0][i] ,"+ ", print c[1][len(c[0])-1],"*",c[0][len(c[0])-1] |
print(c[1][i],"*",c[0][i] ,"+ ") print(c[1][len(c[0])-1],"*",c[0][len(c[0])-1]) |
Line 1236: | Line 1242: |
def _( w=(2,(2..20))): | def _( w=(2,(2..100))): |
Line 1376: | Line 1382: |
c=Regshuf0(a) | c = Regshuf0(a) |
Line 1379: | Line 1385: |
print c[1][i],"*",c[0][i] ,"+ ", | print(c[1][i],"*",c[0][i] ,"+ ") |
Line 1381: | Line 1387: |
print c[1][len(c[0])-1],"*",c[0][len(c[0])-1] | print(c[1][len(c[0])-1],"*",c[0][len(c[0])-1]) |
Line 1529: | Line 1535: |
c=Regshuf1(a) | c = Regshuf1(a) |
Line 1532: | Line 1538: |
print c[1][i],"*",c[0][i] ,"+ ", | print(c[1][i],"*",c[0][i] ,"+ ") |
Line 1534: | Line 1540: |
print c[1][len(c[0])-1],"*",c[0][len(c[0])-1] | print(c[1][len(c[0])-1],"*",c[0][len(c[0])-1]) |
Contents
Integer Factorization
Divisibility Poset
by William Stein
Factor Trees
by William Stein
More complicated demonstration using Mathematica: http://demonstrations.wolfram.com/FactorTrees/
Factoring an Integer
by Timothy Clemans
Sage implementation of the Mathematica demonstration of the same name. http://demonstrations.wolfram.com/FactoringAnInteger/
Prime Numbers
Illustrating the prime number theorem
by William Stein
Prime Spiral - Square FIXME
by David Runde
Prime Spiral - Polar
by David Runde
Modular Forms
Computing modular forms
by William Stein
Computing the cuspidal subgroup
by William Stein
A Charpoly and Hecke Operator Graph
by William Stein
Modular Arithmetic
Quadratic Residue Table FIXME
by Emily Kirkman
Cubic Residue Table FIXME
by Emily Kirkman
Cyclotomic Fields
Gauss and Jacobi Sums in Complex Plane
by Emily Kirkman
Exhaustive Jacobi Plotter
by Emily Kirkman
Elliptic Curves
Adding points on an elliptic curve
by David Møller Hansen
Plotting an elliptic curve over a finite field
Cryptography
The Diffie-Hellman Key Exchange Protocol
by Timothy Clemans and William Stein
Other
Continued Fraction Plotter
by William Stein
Computing Generalized Bernoulli Numbers
by William Stein (Sage-2.10.3)
Fundamental Domains of SL_2(ZZ)
by Robert Miller
Multiple Zeta Values
by Akhilesh P.
Computing Multiple Zeta values
Word Input
Composition Input
Program to Compute Integer Relation between Multiple Zeta Values
Word to composition
Composition to Word
Dual of a Word
Shuffle product of two Words
Shuffle Regularization at 0
Shuffle Regularization at 1