|
Size: 1574
Comment:
|
Size: 3949
Comment:
|
| Deletions are marked like this. | Additions are marked like this. |
| Line 1: | Line 1: |
| = Problem: Thread Safety = | = MSRI 2007 Parallel Computation Problem List = |
| Line 3: | Line 3: |
| SAGE includes the C/C++ libraries listed below. For each library, determine whether or not (or to what extent) it is thread safe. | == SAGE-related Problems == |
| Line 5: | Line 5: |
| * [:msri07/threadsafety: Thread Safety of the SAGE Libraries] * [:msri07/pthread_sagex: Add Pthread support to SageX] * [:msri07/anlist: Implementation in SAGE parallel computation of elliptic curve a_p for all p up to some bound] |
|
| Line 6: | Line 9: |
| "Be careful if your application uses libraries or other objects that don't explicitly guarantee thread-safeness. When in doubt, assume that they are not thread-safe until proven otherwise. Thread-safeness: in a nutshell, refers an application's ability to execute multiple threads simultaneously without "clobbering" shared data or creating "race" conditions. For example, suppose that you use a library routine that accesses/modifies a global structure or location in memory. If two threads both call this routine it is possible that they may try to modify this global structure/memory location at the same time. If the routine does not employ some sort of synchronization constructs to prevent data corruption, then it is not thread-safe. The implication to users of external library routines is that if you aren't 100% certain the routine is thread-safe, then you take your chances with problems that could arise." -- from [http://www.llnl.gov/computing/tutorials/pthreads/ the pthreads tutorial] |
== Computer Algebra Problems == |
| Line 9: | Line 11: |
| {{{ | |
| Line 10: | Line 13: |
| == GMP: Arbitrary Precision Arithmetic Library == == GSL: Gnu Scientific Library == == MPFR: Arbitrary precision real arithmetic == == NTL: Number theory C++ library == |
{chapter}{ Arithmetic in Global Commutative Rings} {section}{ The ring $\@mathbb {Z}$ of Integers} {section}{ The ring $\@mathbb {Q}$ of Rational Numbers} {section}{ Arbitrary Precision Real (and Complex) Numbers} {section}{ Univariate Polynomial Rings} {section}{ Number Fields} {section}{ Multivariate Polynomial Rings} {chapter}{ Arithmetic in Local Commutative Rings} {section}{ Univariate Power series rings} {section}{ $p$-adic numbers} {chapter}{ Linear Algebra} {section}{ Arithmetic of Vectors} {subsection}{ Addition} {subsection}{ Scalar Multiplication} {subsection}{ Vector times Matrix} {section}{ Rational reconstruction of a matrix} {section}{ Echelon form} {subsection}{ Echelon form over Finite Field} {subsection}{ Echelon form over $\@mathbb {Q}$} {subsection}{ Echelon form over Cyclotomic Fields} {subsection}{ Echelon form (Hermite form) over $\@mathbb {Z}$} {section}{Kernel} {subsection}{ Kernel over Finite Field} {subsection}{ Kernel over $\@mathbb {Q}$} {subsection}{ Kernel over $\@mathbb {Z}$} {section}{ Matrix multiplication} {subsection}{ Matrix multiplication over Finite Fields} {subsection}{ Matrix multiplication over $\@mathbb {Z}$} {subsection}{ Matrix multiplication over Extensions of $\@mathbb {Z}$} {chapter}{ Noncommutative Rings} {chapter}{ Group Theory} }}} |
| Line 15: | Line 46: |
| == OpenSSL: Secure networking == | == Arithmetic Geometry Problems == {{{ {chapter}{ Groebner Basis Computation} {chapter}{ Elliptic Curves} {section}{ Generic elliptic curve operations} {subsection}{ Group Law} {subsection}{ Invariants} {subsection}{ Division Polynomials} {section}{ Elliptic curves over finite fields} {subsection}{ Order of the group $E({\@mathbb {F}}_{p})$} {subsection}{ Order of the group $E({\@mathbb {F}}_{q})$} {subsection}{ Order of a point} {section}{ Elliptic curves over ${\@mathbb {Q}}$ - part I} {subsection}{ Birch and Swinnerton-Dyer Conjecture} {subsection}{ Fourier coefficients} {subsection}{ Canonical height of a point} {subsection}{ Order of a point} {subsection}{ Periods} {subsection}{ Tate's algorithm} {subsection}{ Conductor and Globally minimal model} {subsection}{ CPS height bound} {subsection}{ Torsion subgroup} {subsubsection}{Nagell-Lutz} {subsubsection}{An $l$-adic algorithm} {subsubsection}{Another $l$-adic algorithm} {subsection}{ Mordell-Weil via 2-descent} {subsection}{ Saturation} {subsection}{ Heegner points} {subsubsection}{Heegner discriminants} {subsubsection}{Heegner Hypothesis} {subsubsection}{Heegner point index and height} {section}{ Elliptic curves over ${\@mathbb {Q}}$ - part II} {subsection}{ Root number} {subsection}{ Special values of L-series} {subsection}{ $\# {\unhbox \voidb@x \hbox {{\fontencoding {OT2}\fontfamily {wncyr}\fontseries {m}\fontshape {n}\selectfont Sh}}}(E)$ bound} {subsection}{ Isogenies} {subsection}{ Attributes of primes} {subsection}{ $p$-adic height} {subsection}{ Modular Degree} {subsection}{ Modular Parameterization} {chapter}{ Hyperelliptic Curves} {chapter}{ Modular Forms} {section}{ Presentation of spaces of modular symbols} {section}{ Hecke operators on modular symbols} {section}{ Decomposition of spaces under the Hecke operators} {section}{ Trace formulas} }}} |
| Line 17: | Line 94: |
| == PARI: Number theory calculator == | == Other Topics Problems == |
| Line 19: | Line 96: |
| == Singular: fast commutative and noncommutative algebra == Singular doesn't quite have a library mode yet. But it also includes various libraries. |
{{{ {chapter}{ Computation of tables} {section}{ Elliptic curves} {section}{ Modular forms} {section}{ Number fields} {chapter}{ Cryptography} {chapter}{ Coding Theory} {chapter}{ Constants, functions and numerical computation} }}} |
MSRI 2007 Parallel Computation Problem List
SAGE-related Problems
- [:msri07/threadsafety: Thread Safety of the SAGE Libraries]
- [:msri07/pthread_sagex: Add Pthread support to SageX]
- [:msri07/anlist: Implementation in SAGE parallel computation of elliptic curve a_p for all p up to some bound]
Computer Algebra Problems
{chapter}{ Arithmetic in Global Commutative Rings}
{section}{ The ring $\@mathbb {Z}$ of Integers}
{section}{ The ring $\@mathbb {Q}$ of Rational Numbers}
{section}{ Arbitrary Precision Real (and Complex) Numbers}
{section}{ Univariate Polynomial Rings}
{section}{ Number Fields}
{section}{ Multivariate Polynomial Rings}
{chapter}{ Arithmetic in Local Commutative Rings}
{section}{ Univariate Power series rings}
{section}{ $p$-adic numbers}
{chapter}{ Linear Algebra}
{section}{ Arithmetic of Vectors}
{subsection}{ Addition}
{subsection}{ Scalar Multiplication}
{subsection}{ Vector times Matrix}
{section}{ Rational reconstruction of a matrix}
{section}{ Echelon form}
{subsection}{ Echelon form over Finite Field}
{subsection}{ Echelon form over $\@mathbb {Q}$}
{subsection}{ Echelon form over Cyclotomic Fields}
{subsection}{ Echelon form (Hermite form) over $\@mathbb {Z}$}
{section}{Kernel}
{subsection}{ Kernel over Finite Field}
{subsection}{ Kernel over $\@mathbb {Q}$}
{subsection}{ Kernel over $\@mathbb {Z}$}
{section}{ Matrix multiplication}
{subsection}{ Matrix multiplication over Finite Fields}
{subsection}{ Matrix multiplication over $\@mathbb {Z}$}
{subsection}{ Matrix multiplication over Extensions of $\@mathbb {Z}$}
{chapter}{ Noncommutative Rings}
{chapter}{ Group Theory}
Arithmetic Geometry Problems
{chapter}{ Groebner Basis Computation}
{chapter}{ Elliptic Curves}
{section}{ Generic elliptic curve operations}
{subsection}{ Group Law}
{subsection}{ Invariants}
{subsection}{ Division Polynomials}
{section}{ Elliptic curves over finite fields}
{subsection}{ Order of the group $E({\@mathbb {F}}_{p})$}
{subsection}{ Order of the group $E({\@mathbb {F}}_{q})$}
{subsection}{ Order of a point}
{section}{ Elliptic curves over ${\@mathbb {Q}}$ - part I}
{subsection}{ Birch and Swinnerton-Dyer Conjecture}
{subsection}{ Fourier coefficients}
{subsection}{ Canonical height of a point}
{subsection}{ Order of a point}
{subsection}{ Periods}
{subsection}{ Tate's algorithm}
{subsection}{ Conductor and Globally minimal model}
{subsection}{ CPS height bound}
{subsection}{ Torsion subgroup}
{subsubsection}{Nagell-Lutz}
{subsubsection}{An $l$-adic algorithm}
{subsubsection}{Another $l$-adic algorithm}
{subsection}{ Mordell-Weil via 2-descent}
{subsection}{ Saturation}
{subsection}{ Heegner points}
{subsubsection}{Heegner discriminants}
{subsubsection}{Heegner Hypothesis}
{subsubsection}{Heegner point index and height}
{section}{ Elliptic curves over ${\@mathbb {Q}}$ - part II}
{subsection}{ Root number}
{subsection}{ Special values of L-series}
{subsection}{ $\# {\unhbox \voidb@x \hbox {{\fontencoding {OT2}\fontfamily {wncyr}\fontseries {m}\fontshape {n}\selectfont Sh(E)$ bound}
- {subsection}{ Isogenies} {subsection}{ Attributes of primes}
{subsection}{ p-adic height} {subsection}{ Modular Degree} {subsection}{ Modular Parameterization} {chapter}{ Hyperelliptic Curves} {chapter}{ Modular Forms} {section}{ Presentation of spaces of modular symbols} {section}{ Hecke operators on modular symbols} {section}{ Decomposition of spaces under the Hecke operators} {section}{ Trace formulas}
}}}
Other Topics Problems
{chapter}{ Computation of tables}
{section}{ Elliptic curves}
{section}{ Modular forms}
{section}{ Number fields}
{chapter}{ Cryptography}
{chapter}{ Coding Theory}
{chapter}{ Constants, functions and numerical computation}