Size: 1574
Comment:
|
Size: 3956
Comment:
|
Deletions are marked like this. | Additions are marked like this. |
Line 1: | Line 1: |
= Problem: Thread Safety = | = MSRI 2007 Parallel Computation Problem List = |
Line 3: | Line 3: |
SAGE includes the C/C++ libraries listed below. For each library, determine whether or not (or to what extent) it is thread safe. | == SAGE-related Problems == |
Line 5: | Line 5: |
* [:msri07/threadsafety: Thread Safety of the SAGE Libraries] * [:msri07/pthread_sagex: Add Pthread support to SageX] * [:msri07/anlist: Implementation in SAGE parallel computation of elliptic curve a_p for all p up to some bound] |
|
Line 6: | Line 9: |
"Be careful if your application uses libraries or other objects that don't explicitly guarantee thread-safeness. When in doubt, assume that they are not thread-safe until proven otherwise. Thread-safeness: in a nutshell, refers an application's ability to execute multiple threads simultaneously without "clobbering" shared data or creating "race" conditions. For example, suppose that you use a library routine that accesses/modifies a global structure or location in memory. If two threads both call this routine it is possible that they may try to modify this global structure/memory location at the same time. If the routine does not employ some sort of synchronization constructs to prevent data corruption, then it is not thread-safe. The implication to users of external library routines is that if you aren't 100% certain the routine is thread-safe, then you take your chances with problems that could arise." -- from [http://www.llnl.gov/computing/tutorials/pthreads/ the pthreads tutorial] |
== General Computer Algebra Problems == |
Line 9: | Line 11: |
== GMP: Arbitrary Precision Arithmetic Library == == GSL: Gnu Scientific Library == == MPFR: Arbitrary precision real arithmetic == == NTL: Number theory C++ library == == OpenSSL: Secure networking == == PARI: Number theory calculator == == Singular: fast commutative and noncommutative algebra == Singular doesn't quite have a library mode yet. But it also includes various libraries. |
{part}{I Algebra} {chapter}{ Arithmetic in Global Commutative Rings} {section}{ The ring $\@mathbb {Z}$ of Integers} {section}{ The ring $\@mathbb {Q}$ of Rational Numbers} {section}{ Arbitrary Precision Real (and Complex) Numbers} {section}{ Univariate Polynomial Rings} {section}{ Number Fields} {section}{ Multivariate Polynomial Rings} {chapter}{ Arithmetic in Local Commutative Rings} {section}{ Univariate Power series rings} {section}{ $p$-adic numbers} {chapter}{ Linear Algebra} {section}{ Arithmetic of Vectors} {subsection}{ Addition} {subsection}{ Scalar Multiplication} {subsection}{ Vector times Matrix} {section}{ Rational reconstruction of a matrix} {section}{ Echelon form} {subsection}{ Echelon form over Finite Field} {subsection}{ Echelon form over $\@mathbb {Q}$} {subsection}{ Echelon form over Cyclotomic Fields} {subsection}{ Echelon form (Hermite form) over $\@mathbb {Z}$} {section}{Kernel} {subsection}{ Kernel over Finite Field} {subsection}{ Kernel over $\@mathbb {Q}$} {subsection}{ Kernel over $\@mathbb {Z}$} {section}{ Matrix multiplication} {subsection}{ Matrix multiplication over Finite Fields} {subsection}{ Matrix multiplication over $\@mathbb {Z}$} {subsection}{ Matrix multiplication over Extensions of $\@mathbb {Z}$} {chapter}{ Noncommutative Rings} {chapter}{ Group Theory} {part}{II Arithmetic Geometry} {chapter}{ Groebner Basis Computation} {chapter}{ Elliptic Curves} {section}{ Generic elliptic curve operations} {subsection}{ Group Law} {subsection}{ Invariants} {subsection}{ Division Polynomials} {section}{ Elliptic curves over finite fields} {subsection}{ Order of the group $E({\@mathbb {F}}_{p})$} {subsection}{ Order of the group $E({\@mathbb {F}}_{q})$} {subsection}{ Order of a point} {section}{ Elliptic curves over ${\@mathbb {Q}}$ - part I} {subsection}{ Birch and Swinnerton-Dyer Conjecture} {subsection}{ Fourier coefficients} {subsection}{ Canonical height of a point} {subsection}{ Order of a point} {subsection}{ Periods} {subsection}{ Tate's algorithm} {subsection}{ Conductor and Globally minimal model} {subsection}{ CPS height bound} {subsection}{ Torsion subgroup} {subsubsection}{Nagell-Lutz} {subsubsection}{An $l$-adic algorithm} {subsubsection}{Another $l$-adic algorithm} {subsection}{ {7.3.10}Mordell-Weil via 2-descent} {subsection}{ {7.3.11}Saturation} {subsection}{ {7.3.12}Heegner points} {subsubsection}{Heegner discriminants} {subsubsection}{Heegner Hypothesis} {subsubsection}{Heegner point index and height} {section}{ Elliptic curves over ${\@mathbb {Q}}$ - part II} {subsection}{ Root number} {subsection}{ Special values of L-series} {subsection}{ $\# {\unhbox \voidb@x \hbox {{\fontencoding {OT2}\fontfamily {wncyr}\fontseries {m}\fontshape {n}\selectfont Sh}}}(E)$ bound} {subsection}{ Isogenies} {subsection}{ Attributes of primes} {subsection}{ $p$-adic height} {subsection}{ Modular Degree} {subsection}{ Modular Parameterization} {chapter}{ Hyperelliptic Curves} {chapter}{ Modular Forms} {section}{ Presentation of spaces of modular symbols} {section}{ Hecke operators on modular symbols} {section}{ Decomposition of spaces under the Hecke operators} {section}{ Trace formulas} {part}{III Other Topics} {chapter}{ Computation of tables} {section}{ Elliptic curves} {section}{ Modular forms} {section}{ Number fields} {chapter}{ Cryptography} {chapter}{ Coding Theory} {chapter}{ Constants, functions and numerical computation} |
MSRI 2007 Parallel Computation Problem List
SAGE-related Problems
- [:msri07/threadsafety: Thread Safety of the SAGE Libraries]
- [:msri07/pthread_sagex: Add Pthread support to SageX]
- [:msri07/anlist: Implementation in SAGE parallel computation of elliptic curve a_p for all p up to some bound]
General Computer Algebra Problems
- {part}{I Algebra} {chapter}{ Arithmetic in Global Commutative Rings}
{section}{ The ring \@mathbb {Z} of Integers} {section}{ The ring \@mathbb {Q} of Rational Numbers} {section}{ Arbitrary Precision Real (and Complex) Numbers} {section}{ Univariate Polynomial Rings} {section}{ Number Fields} {section}{ Multivariate Polynomial Rings} {chapter}{ Arithmetic in Local Commutative Rings} {section}{ Univariate Power series rings} {section}{ p-adic numbers} {chapter}{ Linear Algebra} {section}{ Arithmetic of Vectors} {subsection}{ Addition} {subsection}{ Scalar Multiplication} {subsection}{ Vector times Matrix} {section}{ Rational reconstruction of a matrix} {section}{ Echelon form} {subsection}{ Echelon form over Finite Field} {subsection}{ Echelon form over \@mathbb {Q}} {subsection}{ Echelon form over Cyclotomic Fields} {subsection}{ Echelon form (Hermite form) over \@mathbb {Z}} {section}{Kernel} {subsection}{ Kernel over Finite Field} {subsection}{ Kernel over \@mathbb {Q}} {subsection}{ Kernel over \@mathbb {Z}} {section}{ Matrix multiplication} {subsection}{ Matrix multiplication over Finite Fields} {subsection}{ Matrix multiplication over \@mathbb {Z}} {subsection}{ Matrix multiplication over Extensions of \@mathbb {Z}} {chapter}{ Noncommutative Rings} {chapter}{ Group Theory} {part}{II Arithmetic Geometry} {chapter}{ Groebner Basis Computation} {chapter}{ Elliptic Curves} {section}{ Generic elliptic curve operations} {subsection}{ Group Law} {subsection}{ Invariants} {subsection}{ Division Polynomials} {section}{ Elliptic curves over finite fields} {subsection}{ Order of the group E({\@mathbb {F}}_{p})} {subsection}{ Order of the group E({\@mathbb {F}}_{q})} {subsection}{ Order of a point} {section}{ Elliptic curves over {\@mathbb {Q}} - part I} {subsection}{ Birch and Swinnerton-Dyer Conjecture} {subsection}{ Fourier coefficients} {subsection}{ Canonical height of a point} {subsection}{ Order of a point} {subsection}{ Periods} {subsection}{ Tate's algorithm} {subsection}{ Conductor and Globally minimal model} {subsection}{ CPS height bound} {subsection}{ Torsion subgroup} {subsubsection}{Nagell-Lutz} {subsubsection}{An l-adic algorithm} {subsubsection}{Another l-adic algorithm} {subsection}{ {7.3.10}Mordell-Weil via 2-descent} {subsection}{ {7.3.11}Saturation} {subsection}{ {7.3.12}Heegner points} {subsubsection}{Heegner discriminants} {subsubsection}{Heegner Hypothesis} {subsubsection}{Heegner point index and height} {section}{ Elliptic curves over {\@mathbb {Q}} - part II} {subsection}{ Root number} {subsection}{ Special values of L-series} {subsection}{ \# {\unhbox \voidb@x \hbox {{\fontencoding {OT2}\fontfamily {wncyr}\fontseries {m}\fontshape {n}\selectfont Sh}}}(E) bound} {subsection}{ Isogenies} {subsection}{ Attributes of primes} {subsection}{ p-adic height} {subsection}{ Modular Degree} {subsection}{ Modular Parameterization} {chapter}{ Hyperelliptic Curves} {chapter}{ Modular Forms} {section}{ Presentation of spaces of modular symbols} {section}{ Hecke operators on modular symbols} {section}{ Decomposition of spaces under the Hecke operators} {section}{ Trace formulas} {part}{III Other Topics} {chapter}{ Computation of tables} {section}{ Elliptic curves} {section}{ Modular forms} {section}{ Number fields} {chapter}{ Cryptography} {chapter}{ Coding Theory} {chapter}{ Constants, functions and numerical computation}