Size: 3956
Comment:
|
Size: 3610
Comment:
|
Deletions are marked like this. | Additions are marked like this. |
Line 3: | Line 3: |
== SAGE-related Problems == | == Specific SAGE-related Problems == |
Line 5: | Line 5: |
* [:msri07/threadsafety: Thread Safety of the SAGE Libraries] | 1. [:msri07/threadsafety: Thread Safety of the SAGE Libraries] |
Line 8: | Line 8: |
* [:msri07/matrixadd: Implementation in SAGE matrix ADDITION over the rational numbers (say) using a multithreaded approach.] * [:msri07/pointcount: Brute force count points on a variety over a finite field in parallel.] |
|
Line 9: | Line 11: |
== General Computer Algebra Problems == | == Parallel Implementations == For each of the following, make remarks about how '''specific practical implementable''' parallel algorithms could be used to enhance mathematics software libraries (e.g., SAGE). |
Line 11: | Line 15: |
{part}{I Algebra} {chapter}{ Arithmetic in Global Commutative Rings} {section}{ The ring $\@mathbb {Z}$ of Integers} {section}{ The ring $\@mathbb {Q}$ of Rational Numbers} {section}{ Arbitrary Precision Real (and Complex) Numbers} {section}{ Univariate Polynomial Rings} {section}{ Number Fields} {section}{ Multivariate Polynomial Rings} {chapter}{ Arithmetic in Local Commutative Rings} {section}{ Univariate Power series rings} {section}{ $p$-adic numbers} {chapter}{ Linear Algebra} {section}{ Arithmetic of Vectors} {subsection}{ Addition} {subsection}{ Scalar Multiplication} {subsection}{ Vector times Matrix} {section}{ Rational reconstruction of a matrix} {section}{ Echelon form} {subsection}{ Echelon form over Finite Field} {subsection}{ Echelon form over $\@mathbb {Q}$} {subsection}{ Echelon form over Cyclotomic Fields} {subsection}{ Echelon form (Hermite form) over $\@mathbb {Z}$} {section}{Kernel} {subsection}{ Kernel over Finite Field} {subsection}{ Kernel over $\@mathbb {Q}$} {subsection}{ Kernel over $\@mathbb {Z}$} {section}{ Matrix multiplication} {subsection}{ Matrix multiplication over Finite Fields} {subsection}{ Matrix multiplication over $\@mathbb {Z}$} {subsection}{ Matrix multiplication over Extensions of $\@mathbb {Z}$} {chapter}{ Noncommutative Rings} {chapter}{ Group Theory} {part}{II Arithmetic Geometry} {chapter}{ Groebner Basis Computation} {chapter}{ Elliptic Curves} {section}{ Generic elliptic curve operations} {subsection}{ Group Law} {subsection}{ Invariants} {subsection}{ Division Polynomials} {section}{ Elliptic curves over finite fields} {subsection}{ Order of the group $E({\@mathbb {F}}_{p})$} {subsection}{ Order of the group $E({\@mathbb {F}}_{q})$} {subsection}{ Order of a point} {section}{ Elliptic curves over ${\@mathbb {Q}}$ - part I} {subsection}{ Birch and Swinnerton-Dyer Conjecture} {subsection}{ Fourier coefficients} {subsection}{ Canonical height of a point} {subsection}{ Order of a point} {subsection}{ Periods} {subsection}{ Tate's algorithm} {subsection}{ Conductor and Globally minimal model} {subsection}{ CPS height bound} {subsection}{ Torsion subgroup} {subsubsection}{Nagell-Lutz} {subsubsection}{An $l$-adic algorithm} {subsubsection}{Another $l$-adic algorithm} {subsection}{ {7.3.10}Mordell-Weil via 2-descent} {subsection}{ {7.3.11}Saturation} {subsection}{ {7.3.12}Heegner points} {subsubsection}{Heegner discriminants} {subsubsection}{Heegner Hypothesis} {subsubsection}{Heegner point index and height} {section}{ Elliptic curves over ${\@mathbb {Q}}$ - part II} {subsection}{ Root number} {subsection}{ Special values of L-series} {subsection}{ $\# {\unhbox \voidb@x \hbox {{\fontencoding {OT2}\fontfamily {wncyr}\fontseries {m}\fontshape {n}\selectfont Sh}}}(E)$ bound} {subsection}{ Isogenies} {subsection}{ Attributes of primes} {subsection}{ $p$-adic height} {subsection}{ Modular Degree} {subsection}{ Modular Parameterization} {chapter}{ Hyperelliptic Curves} {chapter}{ Modular Forms} {section}{ Presentation of spaces of modular symbols} {section}{ Hecke operators on modular symbols} {section}{ Decomposition of spaces under the Hecke operators} {section}{ Trace formulas} {part}{III Other Topics} {chapter}{ Computation of tables} {section}{ Elliptic curves} {section}{ Modular forms} {section}{ Number fields} {chapter}{ Cryptography} {chapter}{ Coding Theory} {chapter}{ Constants, functions and numerical computation} |
*Arithmetic in Global Commutative Rings *The ring ${Z}$ of Integers *The ring ${Q}$ of Rational Numbers *Arbitrary Precision Real (and Complex) Numbers *Univariate Polynomial Rings *Number Fields *Multivariate Polynomial Rings *Arithmetic in Local Commutative Rings *Univariate Power series rings *$p$-adic numbers *Linear Algebra *Arithmetic of Vectors *Addition *Scalar Multiplication *Vector times Matrix *Rational reconstruction of a matrix *Echelon form *Echelon form over Finite Field *Echelon form over ${Q}$ *Echelon form over Cyclotomic Fields *Echelon form (Hermite form) over ${Z}$ *Kernel *Kernel over Finite Field *Kernel over ${Q}$ *Kernel over ${Z}$ *Matrix multiplication *Matrix multiplication over Finite Fields *Matrix multiplication over ${Z}$ *Matrix multiplication over Extensions of ${Z}$ *Noncommutative Rings *Group Theory *Groebner Basis Computation *Elliptic Curves *Generic elliptic curve operations *Group Law *Invariants *Division Polynomials *Elliptic curves over finite fields *Order of the group $E({{F}}_{p})$ *Order of the group $E({{F}}_{q})$ *Order of a point *Elliptic curves over ${{Q}}$ - part I *Birch and Swinnerton-Dyer Conjecture *Fourier coefficients *Canonical height of a point *Order of a point *Periods *Tate's algorithm *Conductor and Globally minimal model *CPS height bound *Torsion subgroup *Nagell-Lutz *An $l$-adic algorithm *Another $l$-adic algorithm *Mordell-Weil via 2-descent *Saturation *Heegner points *Heegner discriminants *Heegner Hypothesis *Heegner point index and height *Elliptic curves over ${{Q}}$ - part II *Root number *Special values of L-series *Sha bound *Isogenies *Attributes of primes *$p$-adic height *Modular Degree *Modular Parameterization *Hyperelliptic Curves *Modular Forms *Presentation of spaces of modular symbols *Hecke operators on modular symbols *Decomposition of spaces under the Hecke operators *Trace formulas *Computation of tables *Elliptic curves *Modular forms *Number fields *Cryptography *Coding Theory *Constants, functions and numerical computation == John McKay CHALLENGE system of polynomial equations == http://www.cargo.wlu.ca/McKay/ |
MSRI 2007 Parallel Computation Problem List
Specific SAGE-related Problems
- [:msri07/threadsafety: Thread Safety of the SAGE Libraries]
- [:msri07/pthread_sagex: Add Pthread support to SageX]
- [:msri07/anlist: Implementation in SAGE parallel computation of elliptic curve a_p for all p up to some bound]
- [:msri07/matrixadd: Implementation in SAGE matrix ADDITION over the rational numbers (say) using a multithreaded approach.]
- [:msri07/pointcount: Brute force count points on a variety over a finite field in parallel.]
Parallel Implementations
For each of the following, make remarks about how specific practical implementable parallel algorithms could be used to enhance mathematics software libraries (e.g., SAGE).
- Arithmetic in Global Commutative Rings
The ring {Z} of Integers
The ring {Q} of Rational Numbers
- Arbitrary Precision Real (and Complex) Numbers
- Univariate Polynomial Rings
- Number Fields
- Multivariate Polynomial Rings
- Arithmetic in Local Commutative Rings
- Univariate Power series rings
p-adic numbers
- Linear Algebra
- Arithmetic of Vectors
- Addition
- Scalar Multiplication
- Vector times Matrix
- Rational reconstruction of a matrix
- Echelon form
- Echelon form over Finite Field
Echelon form over {Q}
- Echelon form over Cyclotomic Fields
Echelon form (Hermite form) over {Z}
- Kernel
- Kernel over Finite Field
Kernel over {Q}
Kernel over {Z}
- Matrix multiplication
- Matrix multiplication over Finite Fields
Matrix multiplication over {Z}
Matrix multiplication over Extensions of {Z}
- Arithmetic of Vectors
- Noncommutative Rings
- Group Theory
- Groebner Basis Computation
- Elliptic Curves
- Generic elliptic curve operations
- Group Law
- Invariants
- Division Polynomials
- Elliptic curves over finite fields
Order of the group E({{F}}_{p})
Order of the group E({{F}}_{q})
- Order of a point
Elliptic curves over {{Q}} - part I
- Birch and Swinnerton-Dyer Conjecture
- Fourier coefficients
- Canonical height of a point
- Order of a point
- Periods
- Tate's algorithm
- Conductor and Globally minimal model
- CPS height bound
- Torsion subgroup
- Nagell-Lutz
An l-adic algorithm
Another l-adic algorithm
- Mordell-Weil via 2-descent
- Saturation
- Heegner points
- Heegner discriminants
- Heegner Hypothesis
- Heegner point index and height
Elliptic curves over {{Q}} - part II
- Root number
- Special values of L-series
- Sha bound
- Isogenies
- Attributes of primes
p-adic height
- Modular Degree
- Modular Parameterization
- Generic elliptic curve operations
- Hyperelliptic Curves
- Modular Forms
- Presentation of spaces of modular symbols
- Hecke operators on modular symbols
- Decomposition of spaces under the Hecke operators
- Trace formulas
- Computation of tables
- Elliptic curves
- Modular forms
- Number fields
- Cryptography
- Coding Theory
- Constants, functions and numerical computation