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Abstract

The purpose of this paper is to derive the Neumann to Dirichlet Map

of a connected electrical network and to explicate some of its properties,

namely, linearity, symmetry, positive semi-definiteness, the fact that row

and column sums are equal to zero, and that the map is not necessarily

a Kirchhoff matrix. Also, relationships among entries in the map will be

discussed, with a brief discourse concerning the duals of graphs.
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1 Derivation of Neumann to Dirichlet Map

1.1 Explication

Consider the electrical network Γ = (G, γ) with V being the set of vertices, ∂V
the set of boundary vertices, and intV = V −∂V the set of interior vertices. We
will further require that G be a graph with boundary such that every connected
component of G contains a boundary vertex. Let K be the Kirchhoff matrix of
Γ, partitioned in the conventional manner with boundary vertices followed by
interior vertices such that

K =

[

A B
BT C

]

Let ψ be a column vector corresponding to the Neumann data on the bound-
ary and u be a column vector corresponding to the electric potential at the ver-

tices of G (also partitioned in the conventional manner such that u =

[

x
y

]

).

Thus,

Ku =

[

A B
BT C

]

u =

[

A B
BT C

] [

x
y

]

=

[

ψ
0

]

(1)

Also note eTψ = 0 where eT =
[

1 . . . 1
]

. Notice that u is not uniquely
determined by ψ, since the addition of a constant vector to a solution will also
yeild a solution.

Lemma 1.1. Let Γ = (G, γ) be a connected electrical network, where V is the
vertices. Let K be the Kirchhoff matrix of Γ, partitioned in the conventional
manner. Then, the submatrix C of K is nonsingular if and only if ∂V 6= ∅.

Proof. By definition, the row and column sums of K are zero. That is, the
constant vector e is in the nullspace of K, which implies that detK = 0. Fur-
thermore, the determinant of any principal proper submatrix of K is nonzero.
If ∂V = ∅, then C = K, which implies that C is singular. On the other hand,
if ∂V 6= ∅, then C is a principal proper submatrix of K, which implies that C
is nonsingular.

Lemma 1.2. Let Γ = (G, γ) be an electrical network and K be the Kirchhoff
matrix of Γ, partitioned in the conventional manner. Then, the submatrix C of
K is nonsingular if and only if G is bounded, i.e. every connected component of
G contains a boundary vertex.

Proof. Say that G consists of n connected components. Call these components
G1, . . . , Gn = (V1, E1) , . . . , (Vn, En). Order the interior nodes of G such that

C =













C1 0 . . . 0

0 C2
. . .

...
...

. . .
. . . 0

0 . . . 0 Cn













,
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where Ck corresponds to interior-interior connections within the kth connected
component of G. It follows that

detC =

n
∏

i=1

detCi.

That is, C is singular if and only if there exists Ci such that Ci is singular.
By the previous lemma, C is nonsingular if and only if for all i ∈ [1, n],

∂Vi 6= ∅. The claim follows.

1.2 Derivation

In order to ensure the uniqueness of u given ψ, we will require that

eTx = 0 (2)

That is to say that the sum of the electric potential around the boundary is
equal to zero. While distinguishing an electric ground might seem more natural
in a physical situation and would also ensure uniqueness, the motivation for the
specified requirement is to retain symmetry, and this symmetry will be seen to
be rather convenient and useful.

With (1) and (2), we have

Ax+By = ψ

BTx+ Cy = 0

As previously mentioned the preceding equations do not uniquely define x. Since
C is a principal proper submatrix of K and G is connected, C is invertible, so

y = −C−1BTx

ψ = (A−BC−1BT )x =: Λx

Expressing these equations in matrix form,

[

Λ
eT

]

x =

[

ψ
0

]

and by multiplying on the left with
[

Λ ǫ
]

, we get

[

Λ ǫ
]

[

Λ
eT

]

x = Λψ (3)

(Λ2 + E)x = Λψ

where E = eeT . Note that Λ2 + E is invertible.
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Proof. Assume

(Λ2 + E)x =
[

Λ ǫ
]

[

Λ
eT

]

x = 0

⇒ xT
[

Λ ǫ
]

[

Λ
eT

]

x = 0

⇒ ‖Λx‖2 + ‖eTx‖2 = 0

Λx = 0 if and only if x is a constant vector, and eTx = 0 if and only if the
entries of x sum to zero. The only vector that satisfies both of these conditions
is the zero vector, thus Λ2 + E is invertible.

Finally, we may conclude x = (Λ2 + E)−1Λψ =: Hψ where H (capital eta)
is a Neumann to Dirichlet Map (and subsequently the Neumann to Dirichlet
Map).

Notice that in (3) any non-zero scalar multiple of e or eT will have no effect
on our imposed stipulation, (2), due to its homogeneity, and the previous argu-
ment will still follow. Let us consider the case where an arbitrary scalar, α, is
introduced. Then let Hα = (Λ2 + α2E)−1Λ which is an equally valid Neumann
to Dirichlet Map.

Remark 1.3. Hα = H for all α 6= 0.

Proof. Let us take the derivative of Hα with respect to α.

d

dα
Hα =

d

dα
(Λ2 + α2E)−1Λ

= −(Λ2 + α2E)−1(2αE)(Λ2 + α2E)−1Λ

= −(Λ2 + α2E)−1(2αE)Λ(Λ2 + α2E)−1

= 0

since Λ commutes with (Λ2 + α2E)−1, which will be proved further on in (4),
and because the row and column sums of Λ are equal to zero. Thus we may
conclude that Hα = (Λ2 + α2E)−1Λ = (Λ2 + E)−1Λ = H for all α 6= 0.

1.3 Abstract Justification

Let D = {ξ : eT ξ = 0} and n be the number of boundary vertices for a given
electrical network. Since the set of currents produced by Λ always sums to zero,
we may consider Λ a map from R

n → D, i.e. Λ : R
n → D. If we restrict

the domain of Λ to D, then Λ|D : D → D is an invertible map, and we will
denote its inverse by H . Notice that H is not defined on all of R

n, but we may
extend its domain to include vectors that correspond to illegal currents (ones
disobeying Kirchhoff’s Law) where H orthogonally projects such a vector to a
legal current vector. This is done by requiring that H(e) = 0 and extending H
linearly.
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Remark 1.4. Λ = (H2 + E)−1H

Proof. For the sake of understanding, we will assume Λ = (H2 +E)−1H and by
biconditional statements deduce an indisputably true statement, thus verifying
our assumption, Λ = (H2 +E)−1H . Note that the argument is valid in reverse
order but is not at all intuitive.

Λ = (H2 + E)−1H

⇐⇒ H = (Λ2 + E)−1Λ

⇐⇒ H = (((H2 + E)−2H2 + E)−1(H2 + E)−1H)

⇐⇒ H = ((H2 + E)−2H2 + nE)−1H

⇐⇒ ((H2 + E)−1H2 + nE)H = H

⇐⇒ (H2 + E)−1H3 = H

⇐⇒ H3 = H(H2 + E)

which is obviously true, thus Λ = (H2 + E)−1H .

2 Properties of Neumann to Dirichlet Map

2.1 Symmetric

Remark 2.1. The Neumann to Dirichlet Map is symmetric.

Proof. Let H = (Λ2 + E)−1Λ be the Neumann to Dirichlet Map for some elec-
trical network, Γ = (G, γ).

Since row and column sums of Λ are equal to zero,

(Λ2 + E)Λ = Λ3 = Λ(Λ2 + E)

Λ(Λ2 + E)−1 = (Λ2 + E)−1Λ (4)

Since the inverse of a transpose is the transpose of an inverse, the square of a
transpose is the transpose of a square, and E is symmetric,

H = (Λ2 + E)−1Λ = Λ(Λ2 + E)−1 = HT

2.2 Positive Semi-Definite

Remark 2.2. The Neumann to Dirichlet Map is positive semi-definite.
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Proof. We know that Λ, the response matrix for any given electrical network,
Γ = (G, γ), is positive semi-definite. Therefore,

ψTHψ = xTψ

= xT Λx ≥ 0

Also notice that αǫ ∈ ker(H) where α is an arbitrary constant.

2.3 Row and Column Sums Zero

Remark 2.3. The Neumann to Dirichlet Map has row and column sums equal
to zero.

Proof. Since Λǫ = 0, then (Λ2 + E)−1Λǫ = Hǫ = 0, and by symmetry column
sums are also equal to zero.

2.4 Diagnal Entries Positive

Remark 2.4. The diagnal entries of the Neumann to Dirichlet Map are positive.

Proof. Let Hi be the ith column of H .

Hi = Hei

where ei is the ith unit basis vector (for our purposes we will need it to be a
column vector). Then,

Hei = H(ei − αe)

In order to have a legal current (one obeying Kirchhoff’s Law), 1 − αn = 0,
where n is equal to the number of boundary vertices which implies that α = 1/n.
Furthermore,

(ei − e/n)j =

{

(n− 1)/n if i = j

−1/n if i 6= j

If the maximum electric potential were to occur at a vertex other than i, then
the current from this vertex would be positive into the rest of the graph, a
contradiction. Therefore, the maximum electric potential must occur at the ith
vertex. Due to our requirement that the electric potentials on the boundary
sum to zero, (2), the electric potential at the ith vertex must be positive.
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Figure 1: Electrical network of a ⋆4 graph with vertex labels to the left of/below
the vertices (boundary vertices are solid black while the interior vertex is white),
current in parentheses, electric potential to the right of current, and conductiv-
ities to the left of/below the edges connecting the vertices.

2.5 Not Necessarily Kirchhoff

Remark 2.5. The Neumann to Dirichlet Map is not necessarily a Kirchhoff
matrix.

Proof. If the Neumann to Dirichlet Map, H , were a Kirchhoff matrix, then

Hij > 0 for i = j

Hij ≤ 0 for i 6= j

Note that extending the previous arguement to show that the off-diagonal entries
of the Neumann to Dirichlet Map are negative is impossible. Consider the
following counterexample.

In Figure 1 the currents, denoted in parentheses, are consistent with the
previously prescribed method while the electric potentials do not observe the
required sign conventions of a Kirchhoff matrix i.e. the electric potential on
vertex four is positive. Thus, in general, H is not a Kirchhoff matrix.

3 Entry Relationships

3.1 Relationships on the Four Star Network

By the use of mixed boundary data problems certain relationships among entries
of H , the Neumann to Dirichlet Map, have been discovered for star graphs
(specifically for ⋆4, although generalization to ⋆n is trivial).
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Figure 2: Electrical network of a ⋆4 graph with the same labeling conventions
as Figure 1, except conductivities are absent for purposes of their arbitrariness.

Let H be the Neumann to Dirichlet Map for the electrical network repre-
sented in Figure 2. Notice that prescribing a current of a to vertex one, an
electric potential and current of zero to vertex two, and a current of zero to ver-
tex three fully determines the remaining data (trivial scaling will be necessary
to coincide with our requirement that the sum of the electric potential on the
boundary vertices should be zero, (2)). Now we have that

H









a
0
0
−a









=









∗
b
b
∗









(5)

where b is the electric potential at vertices two and three due to scaling. Thus
(5) has a non-trivial solution (a 6= 0) i.e. aη21 − aη24 = aη31 − aη34 has a non-
trivial solution (a 6= 0). Therefore by dividing through by a and rearranging,
η21 + η34 = η31 + η24, a relationship in H . This argument and resulting rela-
tionship is simply generalizable to any of the vertices.

3.2 Generalization of Relationships

Definition 3.1. There exists a generalized path, p↔ q, between two boundary
vertices p and q if and only if there exists a sequence of vertices in G whose
edges join p to q.

Definition 3.2. If P = (p1, p2, ..., pk) and Q = (q1, q2, ..., qk) are sets of bound-
ary vertices, then there exist a generalized k-connection from P to Q if and
only if there exists a permutation, σ, such that there exist generalized paths
{pi ↔ qσ(i)} which are vertex disjoint.
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Please notice that most literature refer to paths as being sequences of interior
vertices, and subsequently, k-connections are defined in terms of these paths.
Note that generalized paths do not distinguish between interior and boundary
vertices, and that generalized k-connections are defined in terms of generalized
paths.

Theorem 3.3. If the entry in the Neumann to Dirichlet Map, ηpq, is not equal

to zero, then there exists a generalized path between p and q, p↔ q.

Proof by contrapositive. Assume that there does not exist a generalized path
between p and q. That is, the connected component containing p and that
containing q are distinct. Observe that ηpq reflects the effect of the current at
q on the voltage at p. Since p and q lie in distinct connected components, they
are effectively independent of one another; it follows that ηpq = 0.

Conjecture 3.4. If there does not exists a generalized 2-connection between the

sets of boundary vertices, P = (p1, p2) and Q = (q1, q2), then

ηp1q1
+ ηp2q2

− ηp1q2
− ηp2q1

= 0.

Now the pending question is do these relationships, symmetry, and row/column
sums equal to zero provide a characterization of the Neumann to Dirichlet Map.

4 Duality

Due to the analogies between the Dirichlet to Neumann Map and the Neumann
to Dirichlet Map and a graph and its dual graph, we will explore relationships
of duality.

Definition 4.1. The Adjacidence Tensor also known as the Incidacency Matrix

is

In order to ensure the uniqueness of the solution, we will require that

eTx = 0 (6)

That is to say that the sum of the electric potential around the boundary is
equal to zero. While distinguishing an electric ground might seem more natural
in a physical situation and would also ensure uniqueness, the motivation for the
specified requirement is to retain symmetry, and this symmetry will be seen to
be rather convenient and useful.
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