p-adic precision

Xavier Caruso

September 5, 2013

Current philosophy

Currently, in Sage (any many other softwares), a precision data is attached to each element in \mathbb{Q}_p and it is tracked operation by operation.

Nevertheless, using this philosophy, it might be difficult is many situations to produce *stable* and efficient algorithms. Here are some basic examples:

- computing inverse using Newton iteration
- computing efficiently products of polynomials
- computing efficiently products of matrices

Other examples — a stupid example

$$\begin{array}{rccc} f: & \mathbb{Q}_{\rho}^2 & \rightarrow & \mathbb{Q}_{\rho}^2 \\ & (x,y) & \mapsto & (x+y,x-y). \end{array}$$

We want to compute

$$f \circ f(x, y)$$
 with $x = 1 + O(p^{10}), y = 1 + O(p)$.

• if we apply *f* two times, we get:

$$f \circ f(x, y) = (2 + O(p), 2 + O(p))$$

• if we note that $f \circ f(x, y) = (2x, 2y)$, we get:

$$f \circ f(x, y) = (2 + O(p^{10}), 2 + O(p))$$

Other examples - LU factorization

Gauss elimination is very unstable.

Let $M \in M_d(\mathbb{Z}_p)$ be a random matrix whose all entries are known with precision $O(p^N)$.

Write M = LU for its LU factorization where all diagonal entries of *L* are equal to 1 (it exists almost surely). Then:

- Using Gauss elimination to compute *L*, the average precision we will get on *L* is O(p^{N-2d/p-1})
- One can show that the theorical precision of *L* is at least O(p^{N-2 log_p d}).

Other examples - Differential equations

Let $f(t) = \sum_{i=0}^{\infty} a_i t^i$ with $a_i \in \mathbb{Z}_p$ known with precision $O(p^N)$.

Consider the *p*-adic differential equation $y'(t) = f(t) \cdot y(t)$ and assume if $y(t) = \sum_{i=0}^{\infty} b_i t^i$, all b_i 's lie in \mathbb{Z}_p .

Then:

- one can compute the *b_i*'s using a recursive formula; however, doing this, we find *b_i* with precision *O*(*p^{N-ⁱ/p-1}*)
- one can prove theoretically that b_i is known with precision at least O(p^{N-c log_p i}) where c is some constant

A possible solution

Two ideas:

- separate precision and approximation, *i.e.* do all computations as follows:
 - precompute the precision of the result
 - perform the computation with taking care of precision
 - put together precision and approximation to get the desired result
- work with more precision data, *i.e.* if X is a p-adic object, allow us to write:

$$X + O(\text{something})$$

where *something* can be different from p^N .

Example: if X = (x, y), something may be a lattice in \mathbb{Q}_{ρ}^2 .

What is a *p*-adic object

Here are some examples:

- a *p*-adic number
- an element of a finite dimensional Q_p-vector space:
 a *p*-adic polynomial
 a *p*-adic matrix
- an element of a infinite dimensional Q_p-vector space:
 a *p*-adic series
- an element of a *p*-adic variety:

a point on an elliptic curve,

a subspace of \mathbb{Q}^n_p (which is an element of a grassmannian)

And... what is *something*?

Let *X* be a *p*-adic object which lives in a variety \mathcal{V} . We shall write:

X + O(H)

where *H* is any lattice in the tangent space of \mathcal{V} at *X*.

Important note: if *H* is small enough, X + O(H) defines an actual subset of \mathcal{V} .

Theorem

Let $f : \mathcal{V}_1 \to \mathcal{V}_2$ be a function of class \mathcal{C}^1 . Let $X \in \mathcal{V}_1$. Assume that df_X is surjective. Then, for all lattice H in the tangent space of \mathcal{V} at X, there exists an integer n_0 such that, for $n \ge n_0$:

 $f(X + O(p^n H)) = f(X) + O(p^n df_X(H))$