p-adics in FLINT

Jean-Pierre Flori

ANSSI

September 4, 2013

1/41

FLINT: Fast Library for Number Theory

C library on top of GMP/MPIR, MPFR (with support for NTL).

e FLINT 1 (2007/xx — 2010/12) originally developed by Hart, Harvey
and Novocin.

e FLINT 2 (2011/01 -) is a completele rewrite by Hart, Johansson and
Pancratz.

@ About 130k lines of C code.
@ Used by Sage since 2007.

@ Used by Singular since 2011/12, code by Martin Lee; not used in
Sage, see trac ticket 13331.

2/41

p-adics in FLINT

@ padic module in FLINT 2 since version 2.2 (released 2011/06/04),
mostly by Pancratz.

@ padic_poly, padic_matrix and qadic modules on Pancratz's
github since a few years, to be included into version 2.4.

@ About 14k lines of C code.

@ backward uncompatible changes between versions 2.3 and 2.4 (more
on that later).

3/41

p-adics in Sage using FLINT

@ Unramified p-adics implementation using the new template interface.

@ See trac ticket 14304 and
https://github.com/saraedum/sage-renamed/tree/Zq.

@ This relies on the fmpz_mod_poly module.

@ No implementation using the padic, padic_poly and gadic
modules yet?

4/m

https://github.com/saraedum/sage-renamed/tree/Zq

Other applications

@ Point counting using deformation theory available on Pancratz’s
github.

@ Point counting a la Satoh, ..., Harley using a custom qadic_dense
module available on my github.

@ Both of these are base on version 2.3, so have to be rebased.

5/41

Design decisions

Decision.

@ Each p-adic operation treats the input as exact data and requires the
desired output precision as a separate argument.

Rationale.
@ A number is just a number.

@ The intrinsic difficulty in p-adic arithmetic stems from the precision
loss, which depends on the particular operation.

@ Note that it would be straightforward to implement various precision
models on top of this.

6/41

Design decisions

An element z # 0 is typically stored as « = pu with v = ord,(z) € Z and
u € Z with p{ u.
In 2.3 and before.

typedef struct {
fmpz u ;
long v ;

} padic_struct ;

After 2.3.

typedef struct {
fmpz u;
slong v;
slong N;

} padic_struct;

7/41

Design decisions

Additional information stored in a context object.
In 2.3 and before.

typedef struct {
fmpz_t p;
long N;

double pinv;

fmpz *pow;
long min;
long max;

enum padic_print_mode mode;
} padic_ctx_struct;

After 2.3 the precision is not stored anymore.

8/41

Design decisions

Remarks.

@ Improved maintainability by having one data type; no special case
depending on the size of p or p";

@ One could consider a different implementation performing basic
arithmetic to base p* with k s.t. such that p” fits in a word. This
would allow replacing mod p¥ operations by mod p* operations (with
a precomputed word-sized inverse) in many algorithms.

9/41

Functions for Q,

Addition, subtraction, negation
Multiplication, powers

Inversion

Inversion (with precomputed lifting structure)
Division

Square root

Exponential

Logarithm

Teichmueller lift

10/41

Benchmarks for Q,

We present some timings for arithmetic in Q, mod p where p = 17,
N =2, i=0,...,10, comparing the three systems Magma (V2.19-2),
Sage (current github, 5.12.beta4) and FLINT (current github) on a
machine with Intel Core i7-2620M CPU running at 2.70GHz.

To avoid worrying about taking the same random sequences of elements,
we instead fix elements a = 33V, b = 52V (and variations thereof) modulo
PN
We consider the following operations:

@ Addition

@ Multiplication

@ Inversion

@ Square root

@ Teichmueller lift

@ Exponential

o Logarithm

11/41

Signature

void padic_add(z, x, y, ctx)

Assumes that z and y are reduced modulo p" and returns z in reduced
form, too.)
Avoids expensive modulo operation, replacing this by one comparison and
at most one subtraction.

12/41

T T T T T T

103 | |—*Magma .
| |-= Sage |
| —e— FLINT i
- i I———l———lﬂ:4I%44I/”'F“'*“'”ﬁﬂ.__'.///. 1
5 [N
()
£ 10
|_

13/41

Multiplication

Signature
void padic_mul(z, x, y, ctx)
Makes no assumptions on z and v, returns z reduced modulo p'. l

14/41

Multiplication

10*

15/41

Signature

void padic_inv(z, x, ctx)

Makes no assumptions on x. \

Algorithm

Hensel lifting on g(X) = X — 1, starting from an inverse in F), and using
the update formula z = 2z 4+ 2(1 — x2).

16 /41

Time (ns.)

10°

10*

10°

102

o

10

17 /41

Signature

int padic_sqrt(z, x, ctx)

Makes no assumptions on x. Returns whether z is actually a square and if
so computes its square root.
Algorithm

@ Hensel lifting to compute an inverse square root to half precision.

@ The final step performs the needed inversion as well.

18/41

F T T T T T T B

10° | 1

ig, 10* | .
) F 1
E i]
~ | |
10% 1

L | | | | | |]

0 2 4 6 8 10

19/41

Teichmueller lift

Signature

void padic_teichmuller(z, x, ctx)

Assumes only that ord,(z) = 0.

Algorithm
Hensel lifting, avoiding inversions.

20/41

Teichmueller lift

107 T T T T T T

109

10°

10*

Time (ns.)

102

102

10!

ol
o
~
=)
%)

10

21/41

Exponentiation

Signature

int padic_exp(z, x, ctx)

Return whether the series converges, and if so computes the exponential.

Algorithm

Evaluate the truncated series, multiplying by the common factorial in
denominators, hence requiring only one inversion.

@ Rectangular splitting.
@ Balanced splitting.

22/41

Exponentiation

107 |

Time (ns.)

10! b
0 2 4 6 8 10

23 /41

Logarithm

Signature

int padic_log(z, x, ctx)

Return whether the series converges, and if so computes the logarithm.

Algorithm

Evaluate the truncated series, performing an inversion for each summand.

@ Rectangular splitting.
@ Balanced splitting (quasi-linear in N when p is fixed).
@ ala SST.

24 /41

108 T T T T T T
—e— Magma
—m— Sage
—e— FLINT

107

106

10°
10*

Time (ns.)

103
102

10!

0 2 4 6 8 10

25 /41

Polynomials over Q,

We represent a non-zero polynomial f(X) € Q,[X] as
f(X)=p"(ap+ a1 X +---+a,X")

where aq, ..., an € Z and, for at least one i , p does not divide a;.

26 /41

Functions for Q,[X]

Conversions to polynomials over Z and Q
Coefficient manipulation

Addition, subtraction, negation

Scalar multiplication

Multiplication

Powers

Series inversion

Derivative

Evaluation

Composition

27 /41

Unramified extensions Q,

We represent an unramified extension of QQ, as

Qq = Qp[X]/(f(X))

where f(X) mod p is separable, storing f(X) in a data structure for
sparse polynomials.

This allows for the reduction of a degree n polynomial modulo f(X) in
linear time O(n) (but slow Frobenius substitutions...).

28 /41

Functions for Q,

Addition, subtraction, negation
Multiplication

Powers

Inversion

Exponential

Logarithm

Frobenius

Teichmueller lift

Trace

Norm

29 /41

Benchmarks for Q,

We present some timings for arithmetic in Q, mod pV where p = 17,
N =2 i=0,...,10, comparing the three systems Magma (V2.19-2),
Sage (current github, 5.12.beta4) and FLINT (current github) on a
machine with Intel Core i7-2620M CPU running at 2.70GHz.

To avoid worrying about taking the same random sequences of elements,
we instead fix elements as before.

We consider the following operations:

@ Exponential
@ Logarithm
@ Frobenius
@ Trace

@ Norm

30/41

Exponential

Signature

int qadic_exp(z, x, ctx)

Return whether the series converges, and if so computes the exponential.

Algorithm

Evaluate the truncated series, performing an inversion at each step.
@ Rectangular splitting.
@ Balanced splitting.

31/41

Exponential

0 2 4 6 8 10

32/41

Addition

Signature
int qadic_log(z, x, ctx)

Return whether the series converges, and if so computes the logarithm.

Algorithm
Evaluate the truncated series, performing an inversion for each summand.

@ Rectangular splitting.
@ Balanced splitting.

33/41

109

T T T T T T

—e— Magma
—m— Sage
—e— FLINT

108
107
106

10°
10*
103

Time (ns.)

102

0 2 4 6 8 10

34 /41

Signature

void gqadic_frobenius(z, x, k, ctx)

Computes z = ¥F(z).

Algorithm

e Compute X¥(X) using Hensel lifting.
@ Perform polynomal composition modulo p?¥ and f(X).

@ Generalize to use rectangular splitting.

35/41

1010

107
108

107

Time (ns.)

109

10°

—e— Magma
—m— Sage
—e— FLINT

o -
[N}

36/41

Signature
void qadic_trace(z, x, ctx)

No assumptions are made on .

Algorithm

o Compute the traces of X iteratively.

@ Compute the trace of x.

37/41

10*

Time (ns.)

o -
[N}

38/41

No assumptions are made on x.

Signature
void gadic_norm(z, x, ctx)

Algorithm

@ Using an analytical formula.

@ Using resultants.

39/41

Time (ns.)

107
106
10°
10*
103

102

—e— Magma

10

40 /41

Future features?

@ Specialize code for finite fields.
@ Modular reduction for non-sparse modulus.
@ Other types of extensions.

@ Specific implementations for p = 2.

41/41

