384
Comment:
|
1351
|
Deletions are marked like this. | Additions are marked like this. |
Line 1: | Line 1: |
= The Symbolic Benchmark Challenge Suite = | See also [:SymbolicBenchmarks: this other page]. |
Line 3: | Line 3: |
1. SETUP: Let $f = (x+y+z+1)^20$. COMPUTATION: Compute all coefficients of all monomials of $f\cdot (f+1)$, i.e., expand that expression. | = The Symbolic Benchmark Suite = |
Line 5: | Line 5: |
1. SETUP: Define a function $f(z) = sqrt(1/3)*z^2 + I/3$. COMPUTATION: Compute the first 5 digits of the numerator of the real part of $f(f(f(...(f(I/2))...)$ iterated $10$ times. | The conditions for something to be listed here: (a) it must be resemble an ''actual'' computation somebody actually wanted to do in Sage, and (b) the question must be precisely formulated with Sage code that uses the Sage symbolics in a straightforward way (i.e., don't cleverly use number fields). |
Line 7: | Line 7: |
2. | == PROBLEM 1 == SETUP: Define a function $f(z) = \sqrt{1/3}\cdot z^2 + i/3$. COMPUTATION: Compute the real part of $f(f(f(...(f(i/2))...)$ iterated $10$ times. {{{ # setup def f(z): return sqrt(1/3)*z^2 + i/3 # computation real(f(f(f(f(f(f(f(f(f(f(i/2))))))))))) // -15323490199844318074242473679071410934833494247466385771803570370858961112774390851798166656796902695599442662754502211584226105508648298600018090510170430216881977761279503642801008178271982531042720727178135881702924595044672634313417239327304576652633321095875724771887486594852083526001648217317718794685379391946143663292907934545842931411982264788766619812559999515408813796287448784343854980686798782575952258163992236113752353237705088451481168691158059505161807961082162315225057299394348203539002582692884735745377391416638540520323363224931163680324690025802009761307137504963304640835891588925883135078996398616361571065941964628043214890356454145039464055430143 }}} |
See also [:SymbolicBenchmarks: this other page].
The Symbolic Benchmark Suite
The conditions for something to be listed here: (a) it must be resemble an actual computation somebody actually wanted to do in Sage, and (b) the question must be precisely formulated with Sage code that uses the Sage symbolics in a straightforward way (i.e., don't cleverly use number fields).
PROBLEM 1
SETUP: Define a function f(z) = \sqrt{1/3}\cdot z^2 + i/3. COMPUTATION: Compute the real part of f(f(f(...(f(i/2))...) iterated 10 times.
# setup def f(z): return sqrt(1/3)*z^2 + i/3 # computation real(f(f(f(f(f(f(f(f(f(f(i/2))))))))))) // -15323490199844318074242473679071410934833494247466385771803570370858961112774390851798166656796902695599442662754502211584226105508648298600018090510170430216881977761279503642801008178271982531042720727178135881702924595044672634313417239327304576652633321095875724771887486594852083526001648217317718794685379391946143663292907934545842931411982264788766619812559999515408813796287448784343854980686798782575952258163992236113752353237705088451481168691158059505161807961082162315225057299394348203539002582692884735745377391416638540520323363224931163680324690025802009761307137504963304640835891588925883135078996398616361571065941964628043214890356454145039464055430143