Trying out html2moin.py processor; this is one step in processing doc pages for a notebook help browser, as well as a step to making a wiki-version of the documentation. This is just a test using a random doc page.

14.3 Abelian group elements

prev

parent

next

''SAGE'' Reference Manual

module index

general index


14.3 Abelian group elements

Recall an example from abelian groups.

   1 sage: F = AbelianGroup(5,[4,5,5,7,8],names = list("abcde"))
   2 sage: (a,b,c,d,e) = F.gens()
   3 sage: x = a*b^2*e*d^20*e^12
   4 sage: x
   5 a*b^2*d^6*e^5
   6 sage: x = a^10*b^12*c^13*d^20*e^12
   7 sage: x
   8 a^2*b^2*c^3*d^6*e^4
   9 sage: y = a^13*b^19*c^23*d^27*e^72
  10 sage: y
  11 a*b^4*c^3*d^6
  12 sage: x*y
  13 a^3*b*c*d^5*e^4
  14 sage: x.list()
  15 [2, 2, 3, 6, 4]

It is important to note that lists are mutable and the returned list is not a copy. As a result, reassignment of an element of the list changes the object.

sage: x.list()[0] = 3
sage: x.list()
[3, 2, 3, 6, 4]
sage: x
a^3*b^2*c^3*d^6*e^4

Create the element x of the AbelianGroup F.

sage: F = AbelianGroup(5, [3,4,5,8,7], 'abcde')
sage: a, b, c, d, e = F.gens()
sage: a^2 * b^3 * a^2 * b^-4
a*b^3
sage: b^-11
b
sage: a^-11
a
sage: a*b in F
True

Return the element of the permutation group G (isomorphic to the abelian group A) associated to a in A.

dmr/example (last edited 2008-11-14 13:41:51 by anonymous)