Sage Interactions - Geometry
goto interact main page
Intersecting tetrahedral reflections
by Marshall Hampton. Inspired by a question from Hans Schepker of Glass Geometry.
#Pairs of tetrahedra, one the reflection of the other in the internal face, are joined by union operations: p1 = Polyhedron(vertices = [[1,1,1],[1,1,0],[0,1,1],[1,0,1]]) p2 = Polyhedron(vertices = [[1/3,1/3,1/3],[1,1,0],[0,1,1],[1,0,1]]) p12 = p1.union(p2) p3 = Polyhedron(vertices = [[0,0,1],[0,0,0],[0,1,1],[1,0,1]]) p4 = Polyhedron(vertices = [[2/3,2/3,1/3],[0,0,0],[0,1,1],[1,0,1]]) p34 = p3.union(p4) p5 = Polyhedron(vertices = [[1,0,0],[1,0,1],[0,0,0],[1,1,0]]) p6 = Polyhedron(vertices = [[1/3,2/3,2/3],[1,0,1],[0,0,0],[1,1,0]]) p56 = p5.union(p6) p7 = Polyhedron(vertices = [[0,1,0],[0,0,0],[1,1,0],[0,1,1]]) p8 = Polyhedron(vertices = [[2/3,1/3,2/3],[0,0,0],[1,1,0],[0,1,1]]) p78 = p7.union(p8) pti = p12.intersection(p34).intersection(p56).intersection(p78) @interact def tetra_plot(opac = slider(srange(0,1.0,.25), default = .25)): p12r = p12.render_wireframe()+p12.render_solid(opacity = opac) p34r = p34.render_wireframe()+p34.render_solid(rgbcolor = (0,0,1),opacity = opac) p56r = p56.render_wireframe()+p56.render_solid(rgbcolor = (0,1,0),opacity = opac) p78r = p78.render_wireframe()+p78.render_solid(rgbcolor = (0,1,1),opacity = opac) ptir = pti.render_wireframe()+pti.render_solid(rgbcolor = (1,0,1),opacity = .9) show(p12r+p34r+p56r+p78r+ptir, frame = False)
Evolutes
by Pablo Angulo. Computes the evolute of a plane curve given in parametric coordinates. The curve must be parametrized from the interval [0,2pi].
var('t'); def norma(v): return sqrt(sum(x^2 for x in v)) paso_angulo=5 @interact def _( gamma1=input_box(default=sin(t)), gamma2=input_box(default=1.3*cos(t)), rango_angulos=range_slider(0,360,paso_angulo,(0,45),label='Draw lines for these angles') ): print rango_angulos gamma=(gamma1,gamma2) gammap=(gamma[0].derivative(),gamma[1].derivative()) normal=(gammap[1]/norma(gammap), -gammap[0]/norma(gammap)) gammapp=(gammap[0].derivative(),gammap[1].derivative()) np=norma(gammap) npp=norma(gammapp) pe=gammap[0]*gammapp[0]+gammap[1]*gammapp[1] radio=np^3/sqrt(np^2*npp^2-pe^2) centros=(gamma[0]+radio*normal[0],gamma[1]+radio*normal[1]) curva=parametric_plot(gamma,(t,0,2*pi)) evoluta=parametric_plot(centros,(t,0,2*pi), color='red') f=2*pi/360 lineas=sum(line2d([(gamma[0](t=i*f), gamma[1](t=i*f)), (centros[0](t=i*f), centros[1](t=i*f)) ], thickness=1,rgbcolor=(1,0.8,0.8)) for i in range(rango_angulos[0],rango_angulos[1]+paso_angulo,paso_angulo)) show(curva+evoluta+lineas,aspect_ratio=1,xmin=-2,xmax=2,ymin=-2,ymax=2)