Sage Interactions - Linear Algebra

goto interact main page

Numerical instability of the classical Gram-Schmidt algorithm

by Marshall Hampton

GramSchmidt.png

Equality of det(A) and det(A.tranpose())

by Marshall Hampton

Det_transpose_new.png

Linear transformations

by Jason Grout

A square matrix defines a linear transformation which rotates and/or scales vectors. In the interact command below, the red vector represents the original vector (v) and the blue vector represents the image w under the linear transformation. You can change the angle and length of v by changing theta and r.

Linear-Transformations.png

Gerschgorin Circle Theorem

by Marshall Hampton. This animated version requires convert (imagemagick) to be installed, but it can easily be modified to a static version. The animation illustrates the idea behind the stronger version of Gerschgorin's theorem, which says that if the disks around the eigenvalues are disjoint then there is one eigenvalue per disk. The proof is by continuity of the eigenvalues under a homotopy to a diagonal matrix.

Gerschanimate.png

Gersch.gif

Singular value decomposition

by Marshall Hampton

svd1.png

Discrete Fourier Transform

by Marshall Hampton

dfft1.png

The Gauss-Jordan method for inverting a matrix

by Hristo Inouzhe

gauss-jordan.png

...(goes all the way to invert the matrix)

Solution of an homogeneous system of linear equations

by Pablo Angulo and Hristo Inouzhe

Coefficients are introduced as a matrix in a single text box. The number of equations and unknowns are arbitrary.

HSEL_1.png HSEL_2.png

Solution of a non homogeneous system of linear equations

by Pablo Angulo and Hristo Inouzhe

Coefficients are introduced as a matrix in a single text box, and independent terms as a vector in a separate text box. The number of equations and unknowns are arbitrary.

NHSEL_1.png NHSEL_2.png

interact/linear_algebra (last edited 2020-11-27 12:10:23 by pang)